18
|
1 |
|
|
2 |
theory Re1
|
|
3 |
imports "Main"
|
|
4 |
begin
|
|
5 |
|
|
6 |
section {* Sequential Composition of Sets *}
|
|
7 |
|
|
8 |
definition
|
|
9 |
Sequ :: "string set \<Rightarrow> string set \<Rightarrow> string set" ("_ ;; _" [100,100] 100)
|
|
10 |
where
|
|
11 |
"A ;; B = {s1 @ s2 | s1 s2. s1 \<in> A \<and> s2 \<in> B}"
|
|
12 |
|
|
13 |
text {* Two Simple Properties about Sequential Composition *}
|
|
14 |
|
|
15 |
lemma seq_empty [simp]:
|
|
16 |
shows "A ;; {[]} = A"
|
|
17 |
and "{[]} ;; A = A"
|
|
18 |
by (simp_all add: Sequ_def)
|
|
19 |
|
|
20 |
lemma seq_null [simp]:
|
|
21 |
shows "A ;; {} = {}"
|
|
22 |
and "{} ;; A = {}"
|
|
23 |
by (simp_all add: Sequ_def)
|
|
24 |
|
|
25 |
section {* Regular Expressions *}
|
|
26 |
|
|
27 |
datatype rexp =
|
|
28 |
NULL
|
|
29 |
| EMPTY
|
|
30 |
| CHAR char
|
|
31 |
| SEQ rexp rexp
|
|
32 |
| ALT rexp rexp
|
|
33 |
|
|
34 |
section {* Semantics of Regular Expressions *}
|
|
35 |
|
|
36 |
fun
|
|
37 |
L :: "rexp \<Rightarrow> string set"
|
|
38 |
where
|
|
39 |
"L (NULL) = {}"
|
|
40 |
| "L (EMPTY) = {[]}"
|
|
41 |
| "L (CHAR c) = {[c]}"
|
|
42 |
| "L (SEQ r1 r2) = (L r1) ;; (L r2)"
|
|
43 |
| "L (ALT r1 r2) = (L r1) \<union> (L r2)"
|
|
44 |
|
|
45 |
|
|
46 |
section {* Values *}
|
|
47 |
|
|
48 |
datatype val =
|
|
49 |
Void
|
|
50 |
| Char char
|
|
51 |
| Seq val val
|
|
52 |
| Right val
|
|
53 |
| Left val
|
|
54 |
|
|
55 |
section {* Relation between values and regular expressions *}
|
|
56 |
|
|
57 |
inductive Prf :: "val \<Rightarrow> rexp \<Rightarrow> bool" ("\<turnstile> _ : _" [100, 100] 100)
|
|
58 |
where
|
|
59 |
"\<lbrakk>\<turnstile> v1 : r1; \<turnstile> v2 : r2\<rbrakk> \<Longrightarrow> \<turnstile> Seq v1 v2 : SEQ r1 r2"
|
|
60 |
| "\<turnstile> v1 : r1 \<Longrightarrow> \<turnstile> Left v1 : ALT r1 r2"
|
|
61 |
| "\<turnstile> v2 : r2 \<Longrightarrow> \<turnstile> Right v2 : ALT r1 r2"
|
|
62 |
| "\<turnstile> Void : EMPTY"
|
|
63 |
| "\<turnstile> Char c : CHAR c"
|
|
64 |
|
|
65 |
section {* The string behind a value *}
|
|
66 |
|
|
67 |
fun flat :: "val \<Rightarrow> string"
|
|
68 |
where
|
|
69 |
"flat(Void) = []"
|
|
70 |
| "flat(Char c) = [c]"
|
|
71 |
| "flat(Left v) = flat(v)"
|
|
72 |
| "flat(Right v) = flat(v)"
|
|
73 |
| "flat(Seq v1 v2) = flat(v1) @ flat(v2)"
|
|
74 |
|
|
75 |
|
|
76 |
lemma Prf_flat_L:
|
|
77 |
assumes "\<turnstile> v : r" shows "flat v \<in> L r"
|
|
78 |
using assms
|
|
79 |
apply(induct)
|
|
80 |
apply(auto simp add: Sequ_def)
|
|
81 |
done
|
|
82 |
|
|
83 |
lemma L_flat_Prf:
|
|
84 |
"L(r) = {flat v | v. \<turnstile> v : r}"
|
|
85 |
apply(induct r)
|
|
86 |
apply(auto dest: Prf_flat_L simp add: Sequ_def)
|
|
87 |
apply (metis Prf.intros(4) flat.simps(1))
|
|
88 |
apply (metis Prf.intros(5) flat.simps(2))
|
|
89 |
apply (metis Prf.intros(1) flat.simps(5))
|
|
90 |
apply (metis Prf.intros(2) flat.simps(3))
|
|
91 |
apply (metis Prf.intros(3) flat.simps(4))
|
|
92 |
apply(erule Prf.cases)
|
|
93 |
apply(auto)
|
|
94 |
done
|
|
95 |
|
|
96 |
section {* Ordering of values *}
|
|
97 |
|
|
98 |
inductive ValOrd :: "val \<Rightarrow> rexp \<Rightarrow> val \<Rightarrow> bool" ("_ \<succ>_ _" [100, 100, 100] 100)
|
|
99 |
where
|
|
100 |
"\<lbrakk>v1 = v1'; v2 \<succ>r2 v2'\<rbrakk> \<Longrightarrow> (Seq v1 v2) \<succ>(SEQ r1 r2) (Seq v1' v2')"
|
|
101 |
| "v1 \<succ>r1 v1' \<Longrightarrow> (Seq v1 v2) \<succ>(SEQ r1 r2) (Seq v1' v2')"
|
|
102 |
| "length (flat v1) \<ge> length (flat v2) \<Longrightarrow> (Left v1) \<succ>(ALT r1 r2) (Right v2)"
|
|
103 |
| "length (flat v2) > length (flat v1) \<Longrightarrow> (Right v2) \<succ>(ALT r1 r2) (Left v1)"
|
|
104 |
| "v2 \<succ>r2 v2' \<Longrightarrow> (Right v2) \<succ>(ALT r1 r2) (Right v2')"
|
|
105 |
| "v1 \<succ>r1 v1' \<Longrightarrow> (Left v1) \<succ>(ALT r1 r2) (Left v1')"
|
|
106 |
| "Void \<succ>EMPTY Void"
|
|
107 |
| "(Char c) \<succ>(CHAR c) (Char c)"
|
|
108 |
|
|
109 |
(*
|
|
110 |
lemma
|
|
111 |
assumes "r = SEQ (ALT EMPTY EMPTY) (ALT EMPTY (CHAR c))"
|
|
112 |
shows "(Seq (Left Void) (Right (Char c))) \<succ>r (Seq (Left Void) (Left Void))"
|
|
113 |
using assms
|
|
114 |
apply(simp)
|
|
115 |
apply(rule ValOrd.intros)
|
|
116 |
apply(rule ValOrd.intros)
|
|
117 |
apply(rule ValOrd.intros)
|
|
118 |
apply(rule ValOrd.intros)
|
|
119 |
apply(simp)
|
|
120 |
done
|
|
121 |
*)
|
|
122 |
|
|
123 |
section {* Posix definition *}
|
|
124 |
|
|
125 |
definition POSIX :: "val \<Rightarrow> rexp \<Rightarrow> bool"
|
|
126 |
where
|
|
127 |
"POSIX v r \<equiv> (\<forall>v'. (\<turnstile> v' : r \<and> flat v = flat v') \<longrightarrow> v \<succ>r v')"
|
|
128 |
|
|
129 |
(*
|
|
130 |
an alternative definition: might cause problems
|
|
131 |
with theorem mkeps_POSIX
|
|
132 |
*)
|
|
133 |
|
|
134 |
definition POSIX2 :: "val \<Rightarrow> rexp \<Rightarrow> bool"
|
|
135 |
where
|
|
136 |
"POSIX2 v r \<equiv> \<turnstile> v : r \<and> (\<forall>v'. \<turnstile> v' : r \<longrightarrow> v \<succ>r v')"
|
|
137 |
|
|
138 |
|
|
139 |
(*
|
|
140 |
lemma POSIX_SEQ:
|
|
141 |
assumes "POSIX (Seq v1 v2) (SEQ r1 r2)" "\<turnstile> v1 : r1" "\<turnstile> v2 : r2"
|
|
142 |
shows "POSIX v1 r1 \<and> POSIX v2 r2"
|
|
143 |
using assms
|
|
144 |
unfolding POSIX_def
|
|
145 |
apply(auto)
|
|
146 |
apply(drule_tac x="Seq v' v2" in spec)
|
|
147 |
apply(simp)
|
|
148 |
apply (smt Prf.intros(1) ValOrd.simps assms(3) rexp.inject(2) val.distinct(15) val.distinct(17) val.distinct(3) val.distinct(9) val.inject(2))
|
|
149 |
apply(drule_tac x="Seq v1 v'" in spec)
|
|
150 |
apply(simp)
|
|
151 |
by (smt Prf.intros(1) ValOrd.simps rexp.inject(2) val.distinct(15) val.distinct(17) val.distinct(3) val.distinct(9) val.inject(2))
|
|
152 |
*)
|
|
153 |
|
|
154 |
(*
|
|
155 |
lemma POSIX_SEQ_I:
|
|
156 |
assumes "POSIX v1 r1" "POSIX v2 r2"
|
|
157 |
shows "POSIX (Seq v1 v2) (SEQ r1 r2)"
|
|
158 |
using assms
|
|
159 |
unfolding POSIX_def
|
|
160 |
apply(auto)
|
|
161 |
apply(rotate_tac 2)
|
|
162 |
apply(erule Prf.cases)
|
|
163 |
apply(simp_all)[5]
|
|
164 |
apply(auto)[1]
|
|
165 |
apply(rule ValOrd.intros)
|
|
166 |
|
|
167 |
apply(auto)
|
|
168 |
done
|
|
169 |
*)
|
|
170 |
|
|
171 |
|
|
172 |
|
|
173 |
|
|
174 |
lemma POSIX_ALT2:
|
|
175 |
assumes "POSIX (Left v1) (ALT r1 r2)"
|
|
176 |
shows "POSIX v1 r1"
|
|
177 |
using assms
|
|
178 |
unfolding POSIX_def
|
|
179 |
apply(auto)
|
|
180 |
apply(drule_tac x="Left v'" in spec)
|
|
181 |
apply(simp)
|
|
182 |
apply(drule mp)
|
|
183 |
apply(rule Prf.intros)
|
|
184 |
apply(auto)
|
|
185 |
apply(erule ValOrd.cases)
|
|
186 |
apply(simp_all)
|
|
187 |
done
|
|
188 |
|
|
189 |
lemma POSIX2_ALT:
|
|
190 |
assumes "POSIX2 (Left v1) (ALT r1 r2)"
|
|
191 |
shows "POSIX2 v1 r1"
|
|
192 |
using assms
|
|
193 |
unfolding POSIX2_def
|
|
194 |
apply(auto)
|
|
195 |
|
|
196 |
done
|
|
197 |
|
|
198 |
|
|
199 |
lemma POSIX_ALT2:
|
|
200 |
lemma POSIX_ALT:
|
|
201 |
assumes "POSIX (Left v1) (ALT r1 r2)"
|
|
202 |
shows "POSIX v1 r1"
|
|
203 |
using assms
|
|
204 |
unfolding POSIX_def
|
|
205 |
apply(auto)
|
|
206 |
apply(drule_tac x="Left v'" in spec)
|
|
207 |
apply(simp)
|
|
208 |
apply(drule mp)
|
|
209 |
apply(rule Prf.intros)
|
|
210 |
apply(auto)
|
|
211 |
apply(erule ValOrd.cases)
|
|
212 |
apply(simp_all)
|
|
213 |
done
|
|
214 |
|
|
215 |
lemma POSIX_ALT1a:
|
|
216 |
assumes "POSIX (Right v2) (ALT r1 r2)"
|
|
217 |
shows "POSIX v2 r2"
|
|
218 |
using assms
|
|
219 |
unfolding POSIX_def
|
|
220 |
apply(auto)
|
|
221 |
apply(drule_tac x="Right v'" in spec)
|
|
222 |
apply(simp)
|
|
223 |
apply(drule mp)
|
|
224 |
apply(rule Prf.intros)
|
|
225 |
apply(auto)
|
|
226 |
apply(erule ValOrd.cases)
|
|
227 |
apply(simp_all)
|
|
228 |
done
|
|
229 |
|
|
230 |
|
|
231 |
lemma POSIX_ALT1b:
|
|
232 |
assumes "POSIX (Right v2) (ALT r1 r2)"
|
|
233 |
shows "(\<forall>v'. (\<turnstile> v' : r2 \<and> flat v' = flat v2) \<longrightarrow> v2 \<succ>r2 v')"
|
|
234 |
using assms
|
|
235 |
apply(drule_tac POSIX_ALT1a)
|
|
236 |
unfolding POSIX_def
|
|
237 |
apply(auto)
|
|
238 |
done
|
|
239 |
|
|
240 |
lemma POSIX_ALT_I1:
|
|
241 |
assumes "POSIX v1 r1"
|
|
242 |
shows "POSIX (Left v1) (ALT r1 r2)"
|
|
243 |
using assms
|
|
244 |
unfolding POSIX_def
|
|
245 |
apply(auto)
|
|
246 |
apply(rotate_tac 3)
|
|
247 |
apply(erule Prf.cases)
|
|
248 |
apply(simp_all)[5]
|
|
249 |
apply(auto)
|
|
250 |
apply(rule ValOrd.intros)
|
|
251 |
apply(auto)
|
|
252 |
apply(rule ValOrd.intros)
|
|
253 |
by simp
|
|
254 |
|
|
255 |
lemma POSIX_ALT_I2:
|
|
256 |
assumes "POSIX v2 r2" "\<forall>v'. \<turnstile> v' : r1 \<longrightarrow> length (flat v2) > length (flat v')"
|
|
257 |
shows "POSIX (Right v2) (ALT r1 r2)"
|
|
258 |
using assms
|
|
259 |
unfolding POSIX_def
|
|
260 |
apply(auto)
|
|
261 |
apply(rotate_tac 3)
|
|
262 |
apply(erule Prf.cases)
|
|
263 |
apply(simp_all)[5]
|
|
264 |
apply(auto)
|
|
265 |
apply(rule ValOrd.intros)
|
|
266 |
apply metis
|
|
267 |
done
|
|
268 |
|
|
269 |
|
|
270 |
section {* The ordering is reflexive *}
|
|
271 |
|
|
272 |
lemma ValOrd_refl:
|
|
273 |
assumes "\<turnstile> v : r"
|
|
274 |
shows "v \<succ>r v"
|
|
275 |
using assms
|
|
276 |
apply(induct)
|
|
277 |
apply(auto intro: ValOrd.intros)
|
|
278 |
done
|
|
279 |
|
|
280 |
|
|
281 |
section {* The Matcher *}
|
|
282 |
|
|
283 |
fun
|
|
284 |
nullable :: "rexp \<Rightarrow> bool"
|
|
285 |
where
|
|
286 |
"nullable (NULL) = False"
|
|
287 |
| "nullable (EMPTY) = True"
|
|
288 |
| "nullable (CHAR c) = False"
|
|
289 |
| "nullable (ALT r1 r2) = (nullable r1 \<or> nullable r2)"
|
|
290 |
| "nullable (SEQ r1 r2) = (nullable r1 \<and> nullable r2)"
|
|
291 |
|
|
292 |
lemma nullable_correctness:
|
|
293 |
shows "nullable r \<longleftrightarrow> [] \<in> (L r)"
|
|
294 |
apply (induct r)
|
|
295 |
apply(auto simp add: Sequ_def)
|
|
296 |
done
|
|
297 |
|
|
298 |
fun mkeps :: "rexp \<Rightarrow> val"
|
|
299 |
where
|
|
300 |
"mkeps(EMPTY) = Void"
|
|
301 |
| "mkeps(SEQ r1 r2) = Seq (mkeps r1) (mkeps r2)"
|
|
302 |
| "mkeps(ALT r1 r2) = (if nullable(r1) then Left (mkeps r1) else Right (mkeps r2))"
|
|
303 |
|
|
304 |
lemma mkeps_nullable:
|
|
305 |
assumes "nullable(r)" shows "\<turnstile> mkeps r : r"
|
|
306 |
using assms
|
|
307 |
apply(induct rule: nullable.induct)
|
|
308 |
apply(auto intro: Prf.intros)
|
|
309 |
done
|
|
310 |
|
|
311 |
lemma mkeps_flat:
|
|
312 |
assumes "nullable(r)" shows "flat (mkeps r) = []"
|
|
313 |
using assms
|
|
314 |
apply(induct rule: nullable.induct)
|
|
315 |
apply(auto)
|
|
316 |
done
|
|
317 |
|
|
318 |
text {*
|
|
319 |
The value mkeps returns is always the correct POSIX
|
|
320 |
value.
|
|
321 |
*}
|
|
322 |
|
|
323 |
lemma mkeps_POSIX2:
|
|
324 |
assumes "nullable r"
|
|
325 |
shows "POSIX2 (mkeps r) r"
|
|
326 |
using assms
|
|
327 |
apply(induct r)
|
|
328 |
apply(auto)[1]
|
|
329 |
apply(simp add: POSIX2_def)
|
|
330 |
|
|
331 |
lemma mkeps_POSIX:
|
|
332 |
assumes "nullable r"
|
|
333 |
shows "POSIX (mkeps r) r"
|
|
334 |
using assms
|
|
335 |
apply(induct r)
|
|
336 |
apply(auto)[1]
|
|
337 |
apply(simp add: POSIX_def)
|
|
338 |
apply(auto)[1]
|
|
339 |
apply(erule Prf.cases)
|
|
340 |
apply(simp_all)[5]
|
|
341 |
apply (metis ValOrd.intros)
|
|
342 |
apply(simp add: POSIX_def)
|
|
343 |
apply(auto)[1]
|
|
344 |
apply(simp add: POSIX_def)
|
|
345 |
apply(auto)[1]
|
|
346 |
apply(erule Prf.cases)
|
|
347 |
apply(simp_all)[5]
|
|
348 |
apply(auto)
|
|
349 |
apply (simp add: ValOrd.intros(2) mkeps_flat)
|
|
350 |
apply(simp add: POSIX_def)
|
|
351 |
apply(auto)[1]
|
|
352 |
apply(erule Prf.cases)
|
|
353 |
apply(simp_all)[5]
|
|
354 |
apply(auto)
|
|
355 |
apply (simp add: ValOrd.intros(6))
|
|
356 |
apply (simp add: ValOrd.intros(3))
|
|
357 |
apply(simp add: POSIX_def)
|
|
358 |
apply(auto)[1]
|
|
359 |
apply(erule Prf.cases)
|
|
360 |
apply(simp_all)[5]
|
|
361 |
apply(auto)
|
|
362 |
apply (simp add: ValOrd.intros(6))
|
|
363 |
apply (simp add: ValOrd.intros(3))
|
|
364 |
apply(simp add: POSIX_def)
|
|
365 |
apply(auto)[1]
|
|
366 |
apply(erule Prf.cases)
|
|
367 |
apply(simp_all)[5]
|
|
368 |
apply(auto)
|
|
369 |
apply (metis Prf_flat_L mkeps_flat nullable_correctness)
|
|
370 |
by (simp add: ValOrd.intros(5))
|
|
371 |
|
|
372 |
|
|
373 |
section {* Derivatives *}
|
|
374 |
|
|
375 |
fun
|
|
376 |
der :: "char \<Rightarrow> rexp \<Rightarrow> rexp"
|
|
377 |
where
|
|
378 |
"der c (NULL) = NULL"
|
|
379 |
| "der c (EMPTY) = NULL"
|
|
380 |
| "der c (CHAR c') = (if c = c' then EMPTY else NULL)"
|
|
381 |
| "der c (ALT r1 r2) = ALT (der c r1) (der c r2)"
|
|
382 |
| "der c (SEQ r1 r2) =
|
|
383 |
(if nullable r1
|
|
384 |
then ALT (SEQ (der c r1) r2) (der c r2)
|
|
385 |
else SEQ (der c r1) r2)"
|
|
386 |
|
|
387 |
fun
|
|
388 |
ders :: "string \<Rightarrow> rexp \<Rightarrow> rexp"
|
|
389 |
where
|
|
390 |
"ders [] r = r"
|
|
391 |
| "ders (c # s) r = ders s (der c r)"
|
|
392 |
|
|
393 |
section {* Injection function *}
|
|
394 |
|
|
395 |
fun injval :: "rexp \<Rightarrow> char \<Rightarrow> val \<Rightarrow> val"
|
|
396 |
where
|
|
397 |
"injval (CHAR d) c Void = Char d"
|
|
398 |
| "injval (ALT r1 r2) c (Left v1) = Left(injval r1 c v1)"
|
|
399 |
| "injval (ALT r1 r2) c (Right v2) = Right(injval r2 c v2)"
|
|
400 |
| "injval (SEQ r1 r2) c (Seq v1 v2) = Seq (injval r1 c v1) v2"
|
|
401 |
| "injval (SEQ r1 r2) c (Left (Seq v1 v2)) = Seq (injval r1 c v1) v2"
|
|
402 |
| "injval (SEQ r1 r2) c (Right v2) = Seq (mkeps r1) (injval r2 c v2)"
|
|
403 |
|
|
404 |
section {* Projection function *}
|
|
405 |
|
|
406 |
fun projval :: "rexp \<Rightarrow> char \<Rightarrow> val \<Rightarrow> val"
|
|
407 |
where
|
|
408 |
"projval (CHAR d) c _ = Void"
|
|
409 |
| "projval (ALT r1 r2) c (Left v1) = Left(projval r1 c v1)"
|
|
410 |
| "projval (ALT r1 r2) c (Right v2) = Right(projval r2 c v2)"
|
|
411 |
| "projval (SEQ r1 r2) c (Seq v1 v2) =
|
|
412 |
(if flat v1 = [] then Right(projval r2 c v2)
|
|
413 |
else if nullable r1 then Left (Seq (projval r1 c v1) v2)
|
|
414 |
else Seq (projval r1 c v1) v2)"
|
|
415 |
|
|
416 |
text {*
|
|
417 |
Injection value is related to r
|
|
418 |
*}
|
|
419 |
|
|
420 |
lemma v3:
|
|
421 |
assumes "\<turnstile> v : der c r" shows "\<turnstile> (injval r c v) : r"
|
|
422 |
using assms
|
|
423 |
apply(induct arbitrary: v rule: der.induct)
|
|
424 |
apply(simp)
|
|
425 |
apply(erule Prf.cases)
|
|
426 |
apply(simp_all)[5]
|
|
427 |
apply(erule Prf.cases)
|
|
428 |
apply(simp_all)[5]
|
|
429 |
apply(case_tac "c = c'")
|
|
430 |
apply(simp)
|
|
431 |
apply(erule Prf.cases)
|
|
432 |
apply(simp_all)[5]
|
|
433 |
apply (metis Prf.intros(5))
|
|
434 |
apply(erule Prf.cases)
|
|
435 |
apply(simp_all)[5]
|
|
436 |
apply(erule Prf.cases)
|
|
437 |
apply(simp_all)[5]
|
|
438 |
apply (metis Prf.intros(2))
|
|
439 |
apply (metis Prf.intros(3))
|
|
440 |
apply(simp)
|
|
441 |
apply(case_tac "nullable r1")
|
|
442 |
apply(simp)
|
|
443 |
apply(erule Prf.cases)
|
|
444 |
apply(simp_all)[5]
|
|
445 |
apply(auto)[1]
|
|
446 |
apply(erule Prf.cases)
|
|
447 |
apply(simp_all)[5]
|
|
448 |
apply(auto)[1]
|
|
449 |
apply (metis Prf.intros(1))
|
|
450 |
apply(auto)[1]
|
|
451 |
apply (metis Prf.intros(1) mkeps_nullable)
|
|
452 |
apply(simp)
|
|
453 |
apply(erule Prf.cases)
|
|
454 |
apply(simp_all)[5]
|
|
455 |
apply(auto)[1]
|
|
456 |
apply(rule Prf.intros)
|
|
457 |
apply(auto)[2]
|
|
458 |
done
|
|
459 |
|
|
460 |
text {*
|
|
461 |
The string behin the injection value is an added c
|
|
462 |
*}
|
|
463 |
|
|
464 |
lemma v4:
|
|
465 |
assumes "\<turnstile> v : der c r" shows "flat (injval r c v) = c # (flat v)"
|
|
466 |
using assms
|
|
467 |
apply(induct arbitrary: v rule: der.induct)
|
|
468 |
apply(simp)
|
|
469 |
apply(erule Prf.cases)
|
|
470 |
apply(simp_all)[5]
|
|
471 |
apply(simp)
|
|
472 |
apply(erule Prf.cases)
|
|
473 |
apply(simp_all)[5]
|
|
474 |
apply(simp)
|
|
475 |
apply(case_tac "c = c'")
|
|
476 |
apply(simp)
|
|
477 |
apply(auto)[1]
|
|
478 |
apply(erule Prf.cases)
|
|
479 |
apply(simp_all)[5]
|
|
480 |
apply(simp)
|
|
481 |
apply(erule Prf.cases)
|
|
482 |
apply(simp_all)[5]
|
|
483 |
apply(simp)
|
|
484 |
apply(erule Prf.cases)
|
|
485 |
apply(simp_all)[5]
|
|
486 |
apply(simp)
|
|
487 |
apply(case_tac "nullable r1")
|
|
488 |
apply(simp)
|
|
489 |
apply(erule Prf.cases)
|
|
490 |
apply(simp_all)[5]
|
|
491 |
apply(auto)[1]
|
|
492 |
apply(erule Prf.cases)
|
|
493 |
apply(simp_all)[5]
|
|
494 |
apply(auto)[1]
|
|
495 |
apply (metis mkeps_flat)
|
|
496 |
apply(simp)
|
|
497 |
apply(erule Prf.cases)
|
|
498 |
apply(simp_all)[5]
|
|
499 |
done
|
|
500 |
|
|
501 |
text {*
|
|
502 |
Injection followed by projection is the identity.
|
|
503 |
*}
|
|
504 |
|
|
505 |
lemma proj_inj_id:
|
|
506 |
assumes "\<turnstile> v : der c r"
|
|
507 |
shows "projval r c (injval r c v) = v"
|
|
508 |
using assms
|
|
509 |
apply(induct r arbitrary: c v rule: rexp.induct)
|
|
510 |
apply(simp)
|
|
511 |
apply(erule Prf.cases)
|
|
512 |
apply(simp_all)[5]
|
|
513 |
apply(simp)
|
|
514 |
apply(erule Prf.cases)
|
|
515 |
apply(simp_all)[5]
|
|
516 |
apply(simp)
|
|
517 |
apply(case_tac "c = char")
|
|
518 |
apply(simp)
|
|
519 |
apply(erule Prf.cases)
|
|
520 |
apply(simp_all)[5]
|
|
521 |
apply(simp)
|
|
522 |
apply(erule Prf.cases)
|
|
523 |
apply(simp_all)[5]
|
|
524 |
defer
|
|
525 |
apply(simp)
|
|
526 |
apply(erule Prf.cases)
|
|
527 |
apply(simp_all)[5]
|
|
528 |
apply(simp)
|
|
529 |
apply(case_tac "nullable rexp1")
|
|
530 |
apply(simp)
|
|
531 |
apply(erule Prf.cases)
|
|
532 |
apply(simp_all)[5]
|
|
533 |
apply(auto)[1]
|
|
534 |
apply(erule Prf.cases)
|
|
535 |
apply(simp_all)[5]
|
|
536 |
apply(auto)[1]
|
|
537 |
apply (metis list.distinct(1) v4)
|
|
538 |
apply(auto)[1]
|
|
539 |
apply (metis mkeps_flat)
|
|
540 |
apply(auto)
|
|
541 |
apply(erule Prf.cases)
|
|
542 |
apply(simp_all)[5]
|
|
543 |
apply(auto)[1]
|
|
544 |
apply(simp add: v4)
|
|
545 |
done
|
|
546 |
|
|
547 |
lemma "\<exists>v. POSIX v r"
|
|
548 |
apply(induct r)
|
|
549 |
apply(rule exI)
|
|
550 |
apply(simp add: POSIX_def)
|
|
551 |
apply (metis (full_types) Prf_flat_L der.simps(1) der.simps(2) der.simps(3) flat.simps(1) nullable.simps(1) nullable_correctness proj_inj_id projval.simps(1) v3 v4)
|
|
552 |
apply(rule_tac x = "Void" in exI)
|
|
553 |
apply(simp add: POSIX_def)
|
|
554 |
apply (metis POSIX_def flat.simps(1) mkeps.simps(1) mkeps_POSIX nullable.simps(2))
|
|
555 |
apply(rule_tac x = "Char char" in exI)
|
|
556 |
apply(simp add: POSIX_def)
|
|
557 |
apply(auto) [1]
|
|
558 |
apply(erule Prf.cases)
|
|
559 |
apply(simp_all) [5]
|
|
560 |
apply (metis ValOrd.intros(8))
|
|
561 |
defer
|
|
562 |
apply(auto)
|
|
563 |
apply (metis POSIX_ALT_I1)
|
|
564 |
(* maybe it is too early to instantiate this existential quantifier *)
|
|
565 |
(* potentially this is the wrong POSIX value *)
|
|
566 |
apply(rule_tac x = "Seq v va" in exI )
|
|
567 |
apply(simp (no_asm) add: POSIX_def)
|
|
568 |
apply(auto)
|
|
569 |
apply(erule Prf.cases)
|
|
570 |
apply(simp_all)
|
|
571 |
apply(case_tac "v \<succ>r1a v1")
|
|
572 |
apply (metis ValOrd.intros(2))
|
|
573 |
apply(simp add: POSIX_def)
|
|
574 |
apply(case_tac "flat v = flat v1")
|
|
575 |
apply(auto)[1]
|
|
576 |
apply(simp only: append_eq_append_conv2)
|
|
577 |
apply(auto)
|
|
578 |
thm append_eq_append_conv2
|
|
579 |
|
|
580 |
text {*
|
|
581 |
|
|
582 |
HERE: Crucial lemma that does not go through in the sequence case.
|
|
583 |
|
|
584 |
*}
|
|
585 |
lemma v5:
|
|
586 |
assumes "\<turnstile> v : der c r" "POSIX v (der c r)"
|
|
587 |
shows "POSIX (injval r c v) r"
|
|
588 |
using assms
|
|
589 |
apply(induct arbitrary: v rule: der.induct)
|
|
590 |
apply(simp)
|
|
591 |
apply(erule Prf.cases)
|
|
592 |
apply(simp_all)[5]
|
|
593 |
apply(simp)
|
|
594 |
apply(erule Prf.cases)
|
|
595 |
apply(simp_all)[5]
|
|
596 |
apply(simp)
|
|
597 |
apply(case_tac "c = c'")
|
|
598 |
apply(auto simp add: POSIX_def)[1]
|
|
599 |
apply(erule Prf.cases)
|
|
600 |
apply(simp_all)[5]
|
|
601 |
apply(erule Prf.cases)
|
|
602 |
apply(simp_all)[5]
|
|
603 |
using ValOrd.simps apply blast
|
|
604 |
apply(auto)
|
|
605 |
apply(erule Prf.cases)
|
|
606 |
apply(simp_all)[5]
|
|
607 |
(* base cases done *)
|
|
608 |
(* ALT case *)
|
|
609 |
apply(erule Prf.cases)
|
|
610 |
apply(simp_all)[5]
|
|
611 |
using POSIX_ALT POSIX_ALT_I1 apply blast
|
|
612 |
apply(clarify)
|
|
613 |
apply(subgoal_tac "POSIX v2 (der c r2)")
|
|
614 |
prefer 2
|
|
615 |
apply(auto simp add: POSIX_def)[1]
|
|
616 |
apply (metis POSIX_ALT1a POSIX_def flat.simps(4))
|
|
617 |
apply(rotate_tac 1)
|
|
618 |
apply(drule_tac x="v2" in meta_spec)
|
|
619 |
apply(simp)
|
|
620 |
apply(subgoal_tac "\<turnstile> Right (injval r2 c v2) : (ALT r1 r2)")
|
|
621 |
prefer 2
|
|
622 |
apply (metis Prf.intros(3) v3)
|
|
623 |
apply(rule ccontr)
|
|
624 |
apply(auto simp add: POSIX_def)[1]
|
|
625 |
|
|
626 |
apply(rule allI)
|
|
627 |
apply(rule impI)
|
|
628 |
apply(erule conjE)
|
|
629 |
thm POSIX_ALT_I2
|
|
630 |
apply(frule POSIX_ALT1a)
|
|
631 |
apply(drule POSIX_ALT1b)
|
|
632 |
apply(rule POSIX_ALT_I2)
|
|
633 |
apply auto[1]
|
|
634 |
apply(subst v4)
|
|
635 |
apply(auto)[2]
|
|
636 |
apply(rotate_tac 1)
|
|
637 |
apply(drule_tac x="v2" in meta_spec)
|
|
638 |
apply(simp)
|
|
639 |
apply(subst (asm) (4) POSIX_def)
|
|
640 |
apply(subst (asm) v4)
|
|
641 |
apply(auto)[2]
|
|
642 |
(* stuck in the ALT case *)
|