thys4/posix/PosixSpec.thy
author Chengsong
Sat, 12 Nov 2022 00:37:23 +0000
changeset 623 c0c1ebe09c7d
parent 587 3198605ac648
permissions -rw-r--r--
finished injchap2
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
587
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
     1
   
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
     2
theory PosixSpec
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
     3
  imports RegLangs
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
     4
begin
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
     5
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
     6
section \<open>"Plain" Values\<close>
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
     7
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
     8
datatype val = 
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
     9
  Void
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
    10
| Char char
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
    11
| Seq val val
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
    12
| Right val
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
    13
| Left val
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
    14
| Stars "val list"
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
    15
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
    16
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
    17
section \<open>The string behind a value\<close>
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
    18
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
    19
fun 
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
    20
  flat :: "val \<Rightarrow> string"
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
    21
where
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
    22
  "flat (Void) = []"
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
    23
| "flat (Char c) = [c]"
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
    24
| "flat (Left v) = flat v"
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
    25
| "flat (Right v) = flat v"
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
    26
| "flat (Seq v1 v2) = (flat v1) @ (flat v2)"
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
    27
| "flat (Stars []) = []"
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
    28
| "flat (Stars (v#vs)) = (flat v) @ (flat (Stars vs))" 
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
    29
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
    30
abbreviation
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
    31
  "flats vs \<equiv> concat (map flat vs)"
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
    32
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
    33
lemma flat_Stars [simp]:
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
    34
 "flat (Stars vs) = flats vs"
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
    35
by (induct vs) (auto)
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
    36
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
    37
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
    38
section \<open>Lexical Values\<close>
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
    39
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
    40
inductive 
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
    41
  Prf :: "val \<Rightarrow> rexp \<Rightarrow> bool" ("\<Turnstile> _ : _" [100, 100] 100)
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
    42
where
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
    43
 "\<lbrakk>\<Turnstile> v1 : r1; \<Turnstile> v2 : r2\<rbrakk> \<Longrightarrow> \<Turnstile>  Seq v1 v2 : SEQ r1 r2"
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
    44
| "\<Turnstile> v1 : r1 \<Longrightarrow> \<Turnstile> Left v1 : ALT r1 r2"
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
    45
| "\<Turnstile> v2 : r2 \<Longrightarrow> \<Turnstile> Right v2 : ALT r1 r2"
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
    46
| "\<Turnstile> Void : ONE"
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
    47
| "\<Turnstile> Char c : CH c"
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
    48
| "\<forall>v \<in> set vs. \<Turnstile> v : r \<and> flat v \<noteq> [] \<Longrightarrow> \<Turnstile> Stars vs : STAR r"
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
    49
| "\<lbrakk>\<forall>v \<in> set vs1. \<Turnstile> v : r \<and> flat v \<noteq> []; 
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
    50
    \<forall>v \<in> set vs2. \<Turnstile> v : r \<and> flat v = []; 
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
    51
    length (vs1 @ vs2) = n\<rbrakk> \<Longrightarrow> \<Turnstile> Stars (vs1 @ vs2) : NTIMES r n"   
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
    52
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
    53
inductive_cases Prf_elims:
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
    54
  "\<Turnstile> v : ZERO"
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
    55
  "\<Turnstile> v : SEQ r1 r2"
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
    56
  "\<Turnstile> v : ALT r1 r2"
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
    57
  "\<Turnstile> v : ONE"
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
    58
  "\<Turnstile> v : CH c"
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
    59
  "\<Turnstile> vs : STAR r"
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
    60
  "\<Turnstile> vs : NTIMES r n"
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
    61
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
    62
lemma Prf_Stars_appendE:
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
    63
  assumes "\<Turnstile> Stars (vs1 @ vs2) : STAR r"
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
    64
  shows "\<Turnstile> Stars vs1 : STAR r \<and> \<Turnstile> Stars vs2 : STAR r" 
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
    65
using assms
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
    66
by (auto intro: Prf.intros elim!: Prf_elims)
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
    67
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
    68
lemma Pow_cstring:
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
    69
  fixes A::"string set"
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
    70
  assumes "s \<in> A ^^ n"
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
    71
  shows "\<exists>ss1 ss2. concat (ss1 @ ss2) = s \<and> length (ss1 @ ss2) = n \<and> 
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
    72
         (\<forall>s \<in> set ss1. s \<in> A \<and> s \<noteq> []) \<and> (\<forall>s \<in> set ss2. s \<in> A \<and> s = [])"
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
    73
using assms
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
    74
apply(induct n arbitrary: s)
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
    75
  apply(auto)[1]
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
    76
  apply(auto simp add: Sequ_def)
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
    77
  apply(drule_tac x="s2" in meta_spec)
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
    78
  apply(simp)
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
    79
apply(erule exE)+
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
    80
  apply(clarify)
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
    81
apply(case_tac "s1 = []")
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
    82
apply(simp)
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
    83
apply(rule_tac x="ss1" in exI)
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
    84
apply(rule_tac x="s1 # ss2" in exI)
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
    85
apply(simp)
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
    86
apply(rule_tac x="s1 # ss1" in exI)
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
    87
apply(rule_tac x="ss2" in exI)
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
    88
  apply(simp)
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
    89
  done
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
    90
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
    91
lemma flats_Prf_value:
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
    92
  assumes "\<forall>s\<in>set ss. \<exists>v. s = flat v \<and> \<Turnstile> v : r"
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
    93
  shows "\<exists>vs. flats vs = concat ss \<and> (\<forall>v\<in>set vs. \<Turnstile> v : r \<and> flat v \<noteq> [])"
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
    94
using assms
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
    95
apply(induct ss)
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
    96
apply(auto)
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
    97
apply(rule_tac x="[]" in exI)
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
    98
apply(simp)
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
    99
apply(case_tac "flat v = []")
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   100
apply(rule_tac x="vs" in exI)
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   101
apply(simp)
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   102
apply(rule_tac x="v#vs" in exI)
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   103
apply(simp)
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   104
  done
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   105
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   106
lemma Aux:
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   107
  assumes "\<forall>s\<in>set ss. s = []"
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   108
  shows "concat ss = []"
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   109
using assms
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   110
by (induct ss) (auto)
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   111
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   112
lemma flats_cval:
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   113
  assumes "\<forall>s\<in>set ss. \<exists>v. s = flat v \<and> \<Turnstile> v : r"
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   114
  shows "\<exists>vs1 vs2. flats (vs1 @ vs2) = concat ss \<and> length (vs1 @ vs2) = length ss \<and> 
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   115
          (\<forall>v\<in>set vs1. \<Turnstile> v : r \<and> flat v \<noteq> []) \<and>
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   116
          (\<forall>v\<in>set vs2. \<Turnstile> v : r \<and> flat v = [])"
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   117
using assms
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   118
apply(induct ss rule: rev_induct)
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   119
apply(rule_tac x="[]" in exI)+
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   120
apply(simp)
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   121
apply(simp)
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   122
apply(clarify)
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   123
apply(case_tac "flat v = []")
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   124
apply(rule_tac x="vs1" in exI)
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   125
apply(rule_tac x="v#vs2" in exI)
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   126
apply(simp)
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   127
apply(rule_tac x="vs1 @ [v]" in exI)
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   128
apply(rule_tac x="vs2" in exI)
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   129
apply(simp)
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   130
by (simp add: Aux)
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   131
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   132
lemma pow_Prf:
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   133
  assumes "\<forall>v\<in>set vs. \<Turnstile> v : r \<and> flat v \<in> A"
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   134
  shows "flats vs \<in> A ^^ (length vs)"
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   135
  using assms
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   136
  by (induct vs) (auto)
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   137
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   138
lemma L_flat_Prf1:
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   139
  assumes "\<Turnstile> v : r" 
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   140
  shows "flat v \<in> L r"
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   141
  using assms
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   142
  apply (induct v r rule: Prf.induct) 
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   143
  apply(auto simp add: Sequ_def Star_concat lang_pow_add)
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   144
  by (metis pow_Prf)
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   145
  
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   146
lemma L_flat_Prf2:
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   147
  assumes "s \<in> L r" 
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   148
  shows "\<exists>v. \<Turnstile> v : r \<and> flat v = s"
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   149
using assms
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   150
proof(induct r arbitrary: s)
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   151
  case (STAR r s)
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   152
  have IH: "\<And>s. s \<in> L r \<Longrightarrow> \<exists>v. \<Turnstile> v : r \<and> flat v = s" by fact
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   153
  have "s \<in> L (STAR r)" by fact
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   154
  then obtain ss where "concat ss = s" "\<forall>s \<in> set ss. s \<in> L r \<and> s \<noteq> []"
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   155
  using Star_split by auto  
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   156
  then obtain vs where "flats vs = s" "\<forall>v\<in>set vs. \<Turnstile> v : r \<and> flat v \<noteq> []"
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   157
  using IH flats_Prf_value by metis 
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   158
  then show "\<exists>v. \<Turnstile> v : STAR r \<and> flat v = s"
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   159
  using Prf.intros(6) flat_Stars by blast
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   160
next 
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   161
  case (SEQ r1 r2 s)
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   162
  then show "\<exists>v. \<Turnstile> v : SEQ r1 r2 \<and> flat v = s"
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   163
  unfolding Sequ_def L.simps by (fastforce intro: Prf.intros)
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   164
next
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   165
  case (ALT r1 r2 s)
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   166
  then show "\<exists>v. \<Turnstile> v : ALT r1 r2 \<and> flat v = s"
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   167
    unfolding L.simps by (fastforce intro: Prf.intros)
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   168
next
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   169
  case (NTIMES r n)
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   170
  have IH: "\<And>s. s \<in> L r \<Longrightarrow> \<exists>v. \<Turnstile> v : r \<and> flat v = s" by fact
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   171
  have "s \<in> L (NTIMES r n)" by fact
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   172
  then obtain ss1 ss2 where "concat (ss1 @ ss2) = s" "length (ss1 @ ss2) = n" 
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   173
    "\<forall>s \<in> set ss1. s \<in> L r \<and> s \<noteq> []" "\<forall>s \<in> set ss2. s \<in> L r \<and> s = []"
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   174
  using Pow_cstring by force
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   175
  then obtain vs1 vs2 where "flats (vs1 @ vs2) = s" "length (vs1 @ vs2) = n" 
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   176
      "\<forall>v\<in>set vs1. \<Turnstile> v : r \<and> flat v \<noteq> []" "\<forall>v\<in>set vs2. \<Turnstile> v : r \<and> flat v = []"
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   177
    using IH flats_cval 
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   178
  apply -
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   179
  apply(drule_tac x="ss1 @ ss2" in meta_spec)
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   180
  apply(drule_tac x="r" in meta_spec)
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   181
  apply(drule meta_mp)
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   182
  apply(simp)
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   183
  apply (metis Un_iff)
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   184
  apply(clarify)
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   185
  apply(drule_tac x="vs1" in meta_spec)
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   186
  apply(drule_tac x="vs2" in meta_spec)
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   187
  apply(simp)
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   188
  done
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   189
  then show "\<exists>v. \<Turnstile> v : NTIMES r n \<and> flat v = s"
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   190
  using Prf.intros(7) flat_Stars by blast
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   191
qed (auto intro: Prf.intros)
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   192
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   193
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   194
lemma L_flat_Prf:
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   195
  shows "L(r) = {flat v | v. \<Turnstile> v : r}"
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   196
using L_flat_Prf1 L_flat_Prf2 by blast
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   197
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   198
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   199
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   200
section \<open>Sets of Lexical Values\<close>
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   201
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   202
text \<open>
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   203
  Shows that lexical values are finite for a given regex and string.
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   204
\<close>
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   205
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   206
definition
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   207
  LV :: "rexp \<Rightarrow> string \<Rightarrow> val set"
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   208
where  "LV r s \<equiv> {v. \<Turnstile> v : r \<and> flat v = s}"
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   209
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   210
lemma LV_simps:
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   211
  shows "LV ZERO s = {}"
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   212
  and   "LV ONE s = (if s = [] then {Void} else {})"
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   213
  and   "LV (CH c) s = (if s = [c] then {Char c} else {})"
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   214
  and   "LV (ALT r1 r2) s = Left ` LV r1 s \<union> Right ` LV r2 s"
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   215
  and   "LV (NTIMES r 0) s = (if s = [] then {Stars []} else {})"
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   216
unfolding LV_def
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   217
  apply (auto intro: Prf.intros elim: Prf.cases)
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   218
  by (metis Prf.intros(7) append.right_neutral empty_iff list.set(1) list.size(3))
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   219
  
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   220
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   221
abbreviation
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   222
  "Prefixes s \<equiv> {s'. prefix s' s}"
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   223
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   224
abbreviation
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   225
  "Suffixes s \<equiv> {s'. suffix s' s}"
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   226
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   227
abbreviation
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   228
  "SSuffixes s \<equiv> {s'. strict_suffix s' s}"
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   229
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   230
lemma Suffixes_cons [simp]:
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   231
  shows "Suffixes (c # s) = Suffixes s \<union> {c # s}"
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   232
by (auto simp add: suffix_def Cons_eq_append_conv)
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   233
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   234
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   235
lemma finite_Suffixes: 
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   236
  shows "finite (Suffixes s)"
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   237
by (induct s) (simp_all)
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   238
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   239
lemma finite_SSuffixes: 
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   240
  shows "finite (SSuffixes s)"
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   241
proof -
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   242
  have "SSuffixes s \<subseteq> Suffixes s"
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   243
   unfolding strict_suffix_def suffix_def by auto
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   244
  then show "finite (SSuffixes s)"
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   245
   using finite_Suffixes finite_subset by blast
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   246
qed
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   247
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   248
lemma finite_Prefixes: 
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   249
  shows "finite (Prefixes s)"
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   250
proof -
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   251
  have "finite (Suffixes (rev s))" 
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   252
    by (rule finite_Suffixes)
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   253
  then have "finite (rev ` Suffixes (rev s))" by simp
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   254
  moreover
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   255
  have "rev ` (Suffixes (rev s)) = Prefixes s"
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   256
  unfolding suffix_def prefix_def image_def
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   257
   by (auto)(metis rev_append rev_rev_ident)+
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   258
  ultimately show "finite (Prefixes s)" by simp
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   259
qed
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   260
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   261
definition
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   262
  "Stars_Append Vs1 Vs2 \<equiv> {Stars (vs1 @ vs2) | vs1 vs2. Stars vs1 \<in> Vs1 \<and> Stars vs2 \<in> Vs2}"
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   263
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   264
lemma finite_Stars_Append:
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   265
  assumes "finite Vs1" "finite Vs2"
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   266
  shows "finite (Stars_Append Vs1 Vs2)"
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   267
  using assms  
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   268
proof -
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   269
  define UVs1 where "UVs1 \<equiv> Stars -` Vs1"
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   270
  define UVs2 where "UVs2 \<equiv> Stars -` Vs2"  
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   271
  from assms have "finite UVs1" "finite UVs2"
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   272
    unfolding UVs1_def UVs2_def
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   273
    by(simp_all add: finite_vimageI inj_on_def) 
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   274
  then have "finite ((\<lambda>(vs1, vs2). Stars (vs1 @ vs2)) ` (UVs1 \<times> UVs2))"
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   275
    by simp
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   276
  moreover 
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   277
    have "Stars_Append Vs1 Vs2 = (\<lambda>(vs1, vs2). Stars (vs1 @ vs2)) ` (UVs1 \<times> UVs2)"
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   278
    unfolding Stars_Append_def UVs1_def UVs2_def by auto    
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   279
  ultimately show "finite (Stars_Append Vs1 Vs2)"   
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   280
    by simp
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   281
qed 
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   282
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   283
lemma LV_NTIMES_subset:
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   284
  "LV (NTIMES r n) s \<subseteq> Stars_Append (LV (STAR r) s) (\<Union>i\<le>n. LV (NTIMES r i) [])"
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   285
apply(auto simp add: LV_def)
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   286
apply(auto elim!: Prf_elims)
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   287
  apply(auto simp add: Stars_Append_def)
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   288
  apply(rule_tac x="vs1" in exI)
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   289
  apply(rule_tac x="vs2" in exI)  
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   290
  apply(auto)
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   291
    using Prf.intros(6) apply(auto)
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   292
      apply(rule_tac x="length vs2" in bexI)
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   293
    thm Prf.intros
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   294
      apply(subst append.simps(1)[symmetric])
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   295
    apply(rule Prf.intros)
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   296
      apply(auto)[1]
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   297
      apply(auto)[1]
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   298
     apply(simp)
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   299
    apply(simp)
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   300
    done
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   301
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   302
lemma LV_NTIMES_Suc_empty:
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   303
  shows "LV (NTIMES r (Suc n)) [] = 
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   304
     (\<lambda>(v, vs). Stars (v#vs)) ` (LV r [] \<times> (Stars -` (LV (NTIMES r n) [])))"
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   305
unfolding LV_def
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   306
apply(auto elim!: Prf_elims simp add: image_def)
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   307
apply(case_tac vs1)
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   308
apply(auto)
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   309
apply(case_tac vs2)
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   310
apply(auto)
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   311
apply(subst append.simps(1)[symmetric])
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   312
apply(rule Prf.intros)
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   313
apply(auto)
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   314
apply(subst append.simps(1)[symmetric])
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   315
apply(rule Prf.intros)
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   316
apply(auto)
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   317
  done 
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   318
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   319
lemma LV_STAR_finite:
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   320
  assumes "\<forall>s. finite (LV r s)"
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   321
  shows "finite (LV (STAR r) s)"
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   322
proof(induct s rule: length_induct)
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   323
  fix s::"char list"
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   324
  assume "\<forall>s'. length s' < length s \<longrightarrow> finite (LV (STAR r) s')"
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   325
  then have IH: "\<forall>s' \<in> SSuffixes s. finite (LV (STAR r) s')"
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   326
    by (force simp add: strict_suffix_def suffix_def) 
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   327
  define f where "f \<equiv> \<lambda>(v, vs). Stars (v # vs)"
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   328
  define S1 where "S1 \<equiv> \<Union>s' \<in> Prefixes s. LV r s'"
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   329
  define S2 where "S2 \<equiv> \<Union>s2 \<in> SSuffixes s. Stars -` (LV (STAR r) s2)"
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   330
  have "finite S1" using assms
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   331
    unfolding S1_def by (simp_all add: finite_Prefixes)
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   332
  moreover 
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   333
  with IH have "finite S2" unfolding S2_def
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   334
    by (auto simp add: finite_SSuffixes inj_on_def finite_vimageI)
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   335
  ultimately 
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   336
  have "finite ({Stars []} \<union> f ` (S1 \<times> S2))" by simp
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   337
  moreover 
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   338
  have "LV (STAR r) s \<subseteq> {Stars []} \<union> f ` (S1 \<times> S2)" 
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   339
  unfolding S1_def S2_def f_def
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   340
  unfolding LV_def image_def prefix_def strict_suffix_def 
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   341
  apply(auto)
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   342
  apply(case_tac x)
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   343
  apply(auto elim: Prf_elims)
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   344
  apply(erule Prf_elims)
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   345
  apply(auto)
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   346
  apply(case_tac vs)
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   347
  apply(auto intro: Prf.intros)  
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   348
  apply(rule exI)
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   349
  apply(rule conjI)
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   350
  apply(rule_tac x="flat a" in exI)
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   351
  apply(rule conjI)
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   352
  apply(rule_tac x="flats list" in exI)
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   353
  apply(simp)
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   354
   apply(blast)
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   355
  apply(simp add: suffix_def)
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   356
  using Prf.intros(6) by blast  
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   357
  ultimately
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   358
  show "finite (LV (STAR r) s)" by (simp add: finite_subset)
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   359
qed  
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   360
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   361
lemma finite_NTimes_empty:
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   362
  assumes "\<And>s. finite (LV r s)" 
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   363
  shows "finite (LV (NTIMES r n) [])"
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   364
  using assms
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   365
  apply(induct n)
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   366
   apply(auto simp add: LV_simps)
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   367
  apply(subst LV_NTIMES_Suc_empty)
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   368
  apply(rule finite_imageI)
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   369
  apply(rule finite_cartesian_product)
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   370
  using assms apply simp 
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   371
  apply(rule finite_vimageI)
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   372
  apply(simp)
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   373
  apply(simp add: inj_on_def)
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   374
  done
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   375
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   376
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   377
lemma LV_finite:
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   378
  shows "finite (LV r s)"
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   379
proof(induct r arbitrary: s)
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   380
  case (ZERO s) 
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   381
  show "finite (LV ZERO s)" by (simp add: LV_simps)
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   382
next
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   383
  case (ONE s)
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   384
  show "finite (LV ONE s)" by (simp add: LV_simps)
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   385
next
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   386
  case (CH c s)
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   387
  show "finite (LV (CH c) s)" by (simp add: LV_simps)
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   388
next 
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   389
  case (ALT r1 r2 s)
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   390
  then show "finite (LV (ALT r1 r2) s)" by (simp add: LV_simps)
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   391
next 
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   392
  case (SEQ r1 r2 s)
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   393
  define f where "f \<equiv> \<lambda>(v1, v2). Seq v1 v2"
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   394
  define S1 where "S1 \<equiv> \<Union>s' \<in> Prefixes s. LV r1 s'"
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   395
  define S2 where "S2 \<equiv> \<Union>s' \<in> Suffixes s. LV r2 s'"
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   396
  have IHs: "\<And>s. finite (LV r1 s)" "\<And>s. finite (LV r2 s)" by fact+
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   397
  then have "finite S1" "finite S2" unfolding S1_def S2_def
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   398
    by (simp_all add: finite_Prefixes finite_Suffixes)
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   399
  moreover
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   400
  have "LV (SEQ r1 r2) s \<subseteq> f ` (S1 \<times> S2)"
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   401
    unfolding f_def S1_def S2_def 
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   402
    unfolding LV_def image_def prefix_def suffix_def
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   403
    apply (auto elim!: Prf_elims)
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   404
    by (metis (mono_tags, lifting) mem_Collect_eq)  
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   405
  ultimately 
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   406
  show "finite (LV (SEQ r1 r2) s)"
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   407
    by (simp add: finite_subset)
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   408
next
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   409
  case (STAR r s)
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   410
  then show "finite (LV (STAR r) s)" by (simp add: LV_STAR_finite)
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   411
next
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   412
  case (NTIMES r n s)
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   413
  have "\<And>s. finite (LV r s)" by fact
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   414
  then have "finite (Stars_Append (LV (STAR r) s) (\<Union>i\<le>n. LV (NTIMES r i) []))" 
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   415
    apply(rule_tac finite_Stars_Append)
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   416
     apply (simp add: LV_STAR_finite)
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   417
    using finite_NTimes_empty by blast
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   418
  then show "finite (LV (NTIMES r n) s)"
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   419
    by (metis LV_NTIMES_subset finite_subset)
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   420
qed
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   421
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   422
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   423
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   424
section \<open>Our inductive POSIX Definition\<close>
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   425
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   426
inductive 
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   427
  Posix :: "string \<Rightarrow> rexp \<Rightarrow> val \<Rightarrow> bool" ("_ \<in> _ \<rightarrow> _" [100, 100, 100] 100)
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   428
where
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   429
  Posix_ONE: "[] \<in> ONE \<rightarrow> Void"
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   430
| Posix_CH: "[c] \<in> (CH c) \<rightarrow> (Char c)"
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   431
| Posix_ALT1: "s \<in> r1 \<rightarrow> v \<Longrightarrow> s \<in> (ALT r1 r2) \<rightarrow> (Left v)"
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   432
| Posix_ALT2: "\<lbrakk>s \<in> r2 \<rightarrow> v; s \<notin> L(r1)\<rbrakk> \<Longrightarrow> s \<in> (ALT r1 r2) \<rightarrow> (Right v)"
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   433
| Posix_SEQ: "\<lbrakk>s1 \<in> r1 \<rightarrow> v1; s2 \<in> r2 \<rightarrow> v2;
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   434
    \<not>(\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> (s1 @ s\<^sub>3) \<in> L r1 \<and> s\<^sub>4 \<in> L r2)\<rbrakk> \<Longrightarrow> 
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   435
    (s1 @ s2) \<in> (SEQ r1 r2) \<rightarrow> (Seq v1 v2)"
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   436
| Posix_STAR1: "\<lbrakk>s1 \<in> r \<rightarrow> v; s2 \<in> STAR r \<rightarrow> Stars vs; flat v \<noteq> [];
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   437
    \<not>(\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> (s1 @ s\<^sub>3) \<in> L r \<and> s\<^sub>4 \<in> L (STAR r))\<rbrakk>
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   438
    \<Longrightarrow> (s1 @ s2) \<in> STAR r \<rightarrow> Stars (v # vs)"
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   439
| Posix_STAR2: "[] \<in> STAR r \<rightarrow> Stars []"
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   440
| Posix_NTIMES1: "\<lbrakk>s1 \<in> r \<rightarrow> v; s2 \<in> NTIMES r (n - 1) \<rightarrow> Stars vs; flat v \<noteq> []; 0 < n;
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   441
    \<not>(\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> (s1 @ s\<^sub>3) \<in> L r \<and> s\<^sub>4 \<in> L (NTIMES r (n - 1)))\<rbrakk>
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   442
    \<Longrightarrow> (s1 @ s2) \<in> NTIMES r n \<rightarrow> Stars (v # vs)"
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   443
| Posix_NTIMES2: "\<lbrakk>\<forall>v \<in> set vs. [] \<in> r \<rightarrow> v; length vs = n\<rbrakk>
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   444
    \<Longrightarrow> [] \<in> NTIMES r n \<rightarrow> Stars vs"  
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   445
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   446
inductive_cases Posix_elims:
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   447
  "s \<in> ZERO \<rightarrow> v"
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   448
  "s \<in> ONE \<rightarrow> v"
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   449
  "s \<in> CH c \<rightarrow> v"
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   450
  "s \<in> ALT r1 r2 \<rightarrow> v"
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   451
  "s \<in> SEQ r1 r2 \<rightarrow> v"
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   452
  "s \<in> STAR r \<rightarrow> v"
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   453
  "s \<in> NTIMES r n \<rightarrow> v"
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   454
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   455
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   456
lemma Posix1:
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   457
  assumes "s \<in> r \<rightarrow> v"
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   458
  shows "s \<in> L r" "flat v = s"
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   459
using assms
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   460
  apply(induct s r v rule: Posix.induct)
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   461
  apply(auto simp add: pow_empty_iff)
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   462
  apply (metis Suc_pred concI lang_pow.simps(2))
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   463
  by (meson ex_in_conv set_empty)
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   464
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   465
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   466
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   467
lemma Posix1a:
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   468
  assumes "s \<in> r \<rightarrow> v"
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   469
  shows "\<Turnstile> v : r"
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   470
using assms
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   471
  apply(induct s r v rule: Posix.induct)
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   472
  apply(auto intro: Prf.intros)
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   473
  apply (metis Prf.intros(6) Prf_elims(6) set_ConsD val.inject(5))
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   474
  prefer 2
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   475
  apply (metis Posix1(2) Prf.intros(7) append_Nil empty_iff list.set(1))
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   476
  apply(erule Prf_elims)
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   477
  apply(auto)
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   478
  apply(subst append.simps(2)[symmetric])
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   479
  apply(rule Prf.intros)
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   480
  apply(auto)
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   481
  done
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   482
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   483
text \<open>
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   484
  For a give value and string, our Posix definition 
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   485
  determines a unique value.
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   486
\<close>
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   487
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   488
lemma List_eq_zipI:
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   489
  assumes "list_all2 (\<lambda>v1 v2. v1 = v2) vs1 vs2" 
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   490
  and "length vs1 = length vs2"
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   491
  shows "vs1 = vs2"  
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   492
 using assms
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   493
  apply(induct vs1 vs2 rule: list_all2_induct)
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   494
  apply(auto)
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   495
  done 
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   496
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   497
lemma Posix_determ:
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   498
  assumes "s \<in> r \<rightarrow> v1" "s \<in> r \<rightarrow> v2"
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   499
  shows "v1 = v2"
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   500
using assms
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   501
proof (induct s r v1 arbitrary: v2 rule: Posix.induct)
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   502
  case (Posix_ONE v2)
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   503
  have "[] \<in> ONE \<rightarrow> v2" by fact
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   504
  then show "Void = v2" by cases auto
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   505
next 
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   506
  case (Posix_CH c v2)
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   507
  have "[c] \<in> CH c \<rightarrow> v2" by fact
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   508
  then show "Char c = v2" by cases auto
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   509
next 
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   510
  case (Posix_ALT1 s r1 v r2 v2)
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   511
  have "s \<in> ALT r1 r2 \<rightarrow> v2" by fact
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   512
  moreover
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   513
  have "s \<in> r1 \<rightarrow> v" by fact
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   514
  then have "s \<in> L r1" by (simp add: Posix1)
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   515
  ultimately obtain v' where eq: "v2 = Left v'" "s \<in> r1 \<rightarrow> v'" by cases auto 
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   516
  moreover
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   517
  have IH: "\<And>v2. s \<in> r1 \<rightarrow> v2 \<Longrightarrow> v = v2" by fact
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   518
  ultimately have "v = v'" by simp
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   519
  then show "Left v = v2" using eq by simp
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   520
next 
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   521
  case (Posix_ALT2 s r2 v r1 v2)
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   522
  have "s \<in> ALT r1 r2 \<rightarrow> v2" by fact
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   523
  moreover
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   524
  have "s \<notin> L r1" by fact
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   525
  ultimately obtain v' where eq: "v2 = Right v'" "s \<in> r2 \<rightarrow> v'" 
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   526
    by cases (auto simp add: Posix1) 
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   527
  moreover
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   528
  have IH: "\<And>v2. s \<in> r2 \<rightarrow> v2 \<Longrightarrow> v = v2" by fact
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   529
  ultimately have "v = v'" by simp
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   530
  then show "Right v = v2" using eq by simp
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   531
next
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   532
  case (Posix_SEQ s1 r1 v1 s2 r2 v2 v')
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   533
  have "(s1 @ s2) \<in> SEQ r1 r2 \<rightarrow> v'" 
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   534
       "s1 \<in> r1 \<rightarrow> v1" "s2 \<in> r2 \<rightarrow> v2"
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   535
       "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L r1 \<and> s\<^sub>4 \<in> L r2)" by fact+
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   536
  then obtain v1' v2' where "v' = Seq v1' v2'" "s1 \<in> r1 \<rightarrow> v1'" "s2 \<in> r2 \<rightarrow> v2'"
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   537
  apply(cases) apply (auto simp add: append_eq_append_conv2)
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   538
  using Posix1(1) by fastforce+
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   539
  moreover
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   540
  have IHs: "\<And>v1'. s1 \<in> r1 \<rightarrow> v1' \<Longrightarrow> v1 = v1'"
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   541
            "\<And>v2'. s2 \<in> r2 \<rightarrow> v2' \<Longrightarrow> v2 = v2'" by fact+
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   542
  ultimately show "Seq v1 v2 = v'" by simp
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   543
next
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   544
  case (Posix_STAR1 s1 r v s2 vs v2)
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   545
  have "(s1 @ s2) \<in> STAR r \<rightarrow> v2" 
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   546
       "s1 \<in> r \<rightarrow> v" "s2 \<in> STAR r \<rightarrow> Stars vs" "flat v \<noteq> []"
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   547
       "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L r \<and> s\<^sub>4 \<in> L (STAR r))" by fact+
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   548
  then obtain v' vs' where "v2 = Stars (v' # vs')" "s1 \<in> r \<rightarrow> v'" "s2 \<in> (STAR r) \<rightarrow> (Stars vs')"
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   549
  apply(cases) apply (auto simp add: append_eq_append_conv2)
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   550
  using Posix1(1) apply fastforce
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   551
  apply (metis Posix1(1) Posix_STAR1.hyps(6) append_Nil append_Nil2)
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   552
  using Posix1(2) by blast
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   553
  moreover
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   554
  have IHs: "\<And>v2. s1 \<in> r \<rightarrow> v2 \<Longrightarrow> v = v2"
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   555
            "\<And>v2. s2 \<in> STAR r \<rightarrow> v2 \<Longrightarrow> Stars vs = v2" by fact+
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   556
  ultimately show "Stars (v # vs) = v2" by auto
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   557
next
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   558
  case (Posix_STAR2 r v2)
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   559
  have "[] \<in> STAR r \<rightarrow> v2" by fact
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   560
  then show "Stars [] = v2" by cases (auto simp add: Posix1)
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   561
next
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   562
  case (Posix_NTIMES2 vs r n v2)
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   563
  then show "Stars vs = v2"
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   564
    apply(erule_tac Posix_elims)
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   565
    apply(auto)
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   566
    apply (simp add: Posix1(2))  
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   567
    apply(rule List_eq_zipI)
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   568
     apply(auto simp add: list_all2_iff)
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   569
    by (meson in_set_zipE)
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   570
next
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   571
  case (Posix_NTIMES1 s1 r v s2 n vs)
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   572
  have "(s1 @ s2) \<in> NTIMES r n \<rightarrow> v2" 
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   573
       "s1 \<in> r \<rightarrow> v" "s2 \<in> NTIMES r (n - 1) \<rightarrow> Stars vs" "flat v \<noteq> []"
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   574
       "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L r \<and> s\<^sub>4 \<in> L (NTIMES r (n - 1 )))" by fact+
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   575
  then obtain v' vs' where "v2 = Stars (v' # vs')" "s1 \<in> r \<rightarrow> v'" "s2 \<in> (NTIMES r (n - 1)) \<rightarrow> (Stars vs')"
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   576
  apply(cases) apply (auto simp add: append_eq_append_conv2)
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   577
    using Posix1(1) apply fastforce
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   578
    apply (metis One_nat_def Posix1(1) Posix_NTIMES1.hyps(7) append.right_neutral append_self_conv2)
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   579
  using Posix1(2) by blast
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   580
  moreover
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   581
  have IHs: "\<And>v2. s1 \<in> r \<rightarrow> v2 \<Longrightarrow> v = v2"
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   582
            "\<And>v2. s2 \<in> NTIMES r (n - 1) \<rightarrow> v2 \<Longrightarrow> Stars vs = v2" by fact+
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   583
  ultimately show "Stars (v # vs) = v2" by auto
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   584
qed
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   585
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   586
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   587
text \<open>
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   588
  Our POSIX values are lexical values.
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   589
\<close>
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   590
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   591
lemma Posix_LV:
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   592
  assumes "s \<in> r \<rightarrow> v"
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   593
  shows "v \<in> LV r s"
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   594
  using assms unfolding LV_def
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   595
  apply(induct rule: Posix.induct)
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   596
   apply(auto simp add: intro!: Prf.intros elim!: Prf_elims Posix1a)
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   597
   apply (smt (verit, best) One_nat_def Posix1a Posix_NTIMES1 L.simps(7))
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   598
  using Posix1a Posix_NTIMES2 by blast
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   599
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   600
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   601
lemma longer_string_nonempty_suff:
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   602
  shows "s3 @ s4 = s1 @ s2 \<and> length s3 > length  s1  \<Longrightarrow> (\<exists>s5. s3 = s1 @ s5 \<and> s5 \<noteq> [])"
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   603
  sorry
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   604
  
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   605
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   606
lemma equivalent_concat_condition_aux:
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   607
  shows "(\<exists>s3 s4. s3 @ s4 = s1 @ s2 \<and> length s3 > length  s1\<and> s3 \<in> L r1 \<and> s4 \<in> L r2 ) \<Longrightarrow> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> (s1 @ s\<^sub>3) \<in> L r1 \<and> s\<^sub>4 \<in> L r2)"
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   608
  apply(erule exE)+
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   609
  apply(subgoal_tac "\<exists>s5. s3 = s1 @ s5\<and> s5 \<noteq> [] ")
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   610
   apply(erule exE)
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   611
  apply auto[1]
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   612
  using longer_string_nonempty_suff by blast
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   613
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   614
lemma equivalent_concat_condition:
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   615
  shows "    \<not>(\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> (s1 @ s\<^sub>3) \<in> L r1 \<and> s\<^sub>4 \<in> L r2) \<Longrightarrow>   \<not>(\<exists>s3 s4. s3 @ s4 = s1 @ s2 \<and> length s3 > length  s1\<and> s3 \<in> L r1 \<and> s4 \<in> L r2 )"
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   616
  by (meson equivalent_concat_condition_aux)
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   617
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   618
lemma seqPOSIX_altdef:
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   619
  shows "\<lbrakk>s1 \<in> r1 \<rightarrow> v1; s2 \<in> r2 \<rightarrow> v2;
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   620
    \<not>(\<exists>s3 s4. s3 @ s4 = s1 @ s2 \<and> length s3 > length  s1\<and> s3 \<in> L r1 \<and> s4 \<in> L r2 )\<rbrakk> \<Longrightarrow> 
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   621
    (s1 @ s2) \<in> (SEQ r1 r2) \<rightarrow> (Seq v1 v2)"
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   622
  by (metis Posix_SEQ append.assoc length_append length_greater_0_conv less_add_same_cancel1)
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   623
  
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   624
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   625
3198605ac648 bsimp idempotency
Chengsong
parents:
diff changeset
   626
end