444
+ − 1
theory ClosedForms imports
+ − 2
"BasicIdentities"
443
+ − 3
begin
+ − 4
489
+ − 5
lemma flts_middle0:
+ − 6
shows "rflts (rsa @ RZERO # rsb) = rflts (rsa @ rsb)"
+ − 7
apply(induct rsa)
+ − 8
apply simp
+ − 9
by (metis append_Cons rflts.simps(2) rflts.simps(3) rflts_def_idiot)
+ − 10
490
+ − 11
+ − 12
+ − 13
lemma simp_flatten_aux0:
+ − 14
shows "rsimp (RALTS rs) = rsimp (RALTS (map rsimp rs))"
+ − 15
by (metis append_Nil head_one_more_simp identity_wwo0 list.simps(8) rdistinct.simps(1) rflts.simps(1) rsimp.simps(2) rsimp_ALTs.simps(1) rsimp_ALTs.simps(3) simp_flatten spawn_simp_rsimpalts)
+ − 16
+ − 17
+ − 18
+ − 19
+ − 20
+ − 21
+ − 22
+ − 23
+ − 24
489
+ − 25
+ − 26
+ − 27
inductive
492
+ − 28
hrewrite:: "rrexp \<Rightarrow> rrexp \<Rightarrow> bool" ("_ h\<leadsto> _" [99, 99] 99)
489
+ − 29
where
492
+ − 30
"RSEQ RZERO r2 h\<leadsto> RZERO"
+ − 31
| "RSEQ r1 RZERO h\<leadsto> RZERO"
+ − 32
| "RSEQ RONE r h\<leadsto> r"
+ − 33
| "r1 h\<leadsto> r2 \<Longrightarrow> RSEQ r1 r3 h\<leadsto> RSEQ r2 r3"
+ − 34
| "r3 h\<leadsto> r4 \<Longrightarrow> RSEQ r1 r3 h\<leadsto> RSEQ r1 r4"
+ − 35
| "r h\<leadsto> r' \<Longrightarrow> (RALTS (rs1 @ [r] @ rs2)) h\<leadsto> (RALTS (rs1 @ [r'] @ rs2))"
489
+ − 36
(*context rule for eliminating 0, alts--corresponds to the recursive call flts r::rs = r::(flts rs)*)
492
+ − 37
| "RALTS (rsa @ [RZERO] @ rsb) h\<leadsto> RALTS (rsa @ rsb)"
+ − 38
| "RALTS (rsa @ [RALTS rs1] @ rsb) h\<leadsto> RALTS (rsa @ rs1 @ rsb)"
+ − 39
| "RALTS [] h\<leadsto> RZERO"
+ − 40
| "RALTS [r] h\<leadsto> r"
+ − 41
| "a1 = a2 \<Longrightarrow> RALTS (rsa@[a1]@rsb@[a2]@rsc) h\<leadsto> RALTS (rsa @ [a1] @ rsb @ rsc)"
489
+ − 42
+ − 43
inductive
492
+ − 44
hrewrites:: "rrexp \<Rightarrow> rrexp \<Rightarrow> bool" ("_ h\<leadsto>* _" [100, 100] 100)
489
+ − 45
where
492
+ − 46
rs1[intro, simp]:"r h\<leadsto>* r"
+ − 47
| rs2[intro]: "\<lbrakk>r1 h\<leadsto>* r2; r2 h\<leadsto> r3\<rbrakk> \<Longrightarrow> r1 h\<leadsto>* r3"
+ − 48
+ − 49
+ − 50
lemma hr_in_rstar : "r1 h\<leadsto> r2 \<Longrightarrow> r1 h\<leadsto>* r2"
489
+ − 51
using hrewrites.intros(1) hrewrites.intros(2) by blast
+ − 52
+ − 53
lemma hreal_trans[trans]:
492
+ − 54
assumes a1: "r1 h\<leadsto>* r2" and a2: "r2 h\<leadsto>* r3"
+ − 55
shows "r1 h\<leadsto>* r3"
489
+ − 56
using a2 a1
+ − 57
apply(induct r2 r3 arbitrary: r1 rule: hrewrites.induct)
+ − 58
apply(auto)
+ − 59
done
+ − 60
492
+ − 61
lemma hmany_steps_later: "\<lbrakk>r1 h\<leadsto> r2; r2 h\<leadsto>* r3 \<rbrakk> \<Longrightarrow> r1 h\<leadsto>* r3"
489
+ − 62
by (meson hr_in_rstar hreal_trans)
+ − 63
+ − 64
lemma hrewrites_seq_context:
492
+ − 65
shows "r1 h\<leadsto>* r2 \<Longrightarrow> RSEQ r1 r3 h\<leadsto>* RSEQ r2 r3"
489
+ − 66
apply(induct r1 r2 rule: hrewrites.induct)
+ − 67
apply simp
+ − 68
using hrewrite.intros(4) by blast
+ − 69
+ − 70
lemma hrewrites_seq_context2:
492
+ − 71
shows "r1 h\<leadsto>* r2 \<Longrightarrow> RSEQ r0 r1 h\<leadsto>* RSEQ r0 r2"
489
+ − 72
apply(induct r1 r2 rule: hrewrites.induct)
+ − 73
apply simp
+ − 74
using hrewrite.intros(5) by blast
+ − 75
+ − 76
lemma hrewrites_seq_context0:
492
+ − 77
shows "r1 h\<leadsto>* RZERO \<Longrightarrow> RSEQ r1 r3 h\<leadsto>* RZERO"
+ − 78
apply(subgoal_tac "RSEQ r1 r3 h\<leadsto>* RSEQ RZERO r3")
489
+ − 79
using hrewrite.intros(1) apply blast
+ − 80
by (simp add: hrewrites_seq_context)
+ − 81
+ − 82
lemma hrewrites_seq_contexts:
492
+ − 83
shows "\<lbrakk>r1 h\<leadsto>* r2; r3 h\<leadsto>* r4\<rbrakk> \<Longrightarrow> RSEQ r1 r3 h\<leadsto>* RSEQ r2 r4"
489
+ − 84
by (meson hreal_trans hrewrites_seq_context hrewrites_seq_context2)
+ − 85
+ − 86
+ − 87
453
+ − 88
lemma map_concat_cons:
+ − 89
shows "map f rsa @ f a # rs = map f (rsa @ [a]) @ rs"
+ − 90
by simp
+ − 91
+ − 92
lemma neg_removal_element_of:
+ − 93
shows " \<not> a \<notin> aset \<Longrightarrow> a \<in> aset"
+ − 94
by simp
+ − 95
465
+ − 96
+ − 97
+ − 98
+ − 99
478
+ − 100
465
+ − 101
+ − 102
478
+ − 103
465
+ − 104
+ − 105
+ − 106
lemma flts_middle01:
+ − 107
shows "rflts (rsa @ [RZERO] @ rsb) = rflts (rsa @ rsb)"
+ − 108
by (simp add: flts_middle0)
+ − 109
+ − 110
lemma flts_append1:
+ − 111
shows "\<lbrakk>a \<noteq> RZERO; \<nexists>rs1. a = RALTS rs1; a \<in> set rs\<rbrakk> \<Longrightarrow>
+ − 112
rflts (rsa @ [a] @ rsb) = rflts rsa @ [a] @ (rflts rsb)"
+ − 113
apply(induct rsa arbitrary: rsb)
+ − 114
apply simp
+ − 115
using rflts_def_idiot apply presburger
+ − 116
apply(case_tac aa)
+ − 117
apply simp+
+ − 118
done
+ − 119
478
+ − 120
465
+ − 121
+ − 122
lemma simp_removes_duplicate1:
+ − 123
shows " a \<in> set rsa \<Longrightarrow> rsimp (RALTS (rsa @ [a])) = rsimp (RALTS (rsa))"
+ − 124
and " rsimp (RALTS (a1 # rsa @ [a1])) = rsimp (RALTS (a1 # rsa))"
+ − 125
apply(induct rsa arbitrary: a1)
+ − 126
apply simp
+ − 127
apply simp
+ − 128
prefer 2
+ − 129
apply(case_tac "a = aa")
+ − 130
apply simp
+ − 131
apply simp
+ − 132
apply (metis Cons_eq_appendI Cons_eq_map_conv distinct_removes_duplicate_flts list.set_intros(2))
+ − 133
apply (metis append_Cons append_Nil distinct_removes_duplicate_flts list.set_intros(1) list.simps(8) list.simps(9))
+ − 134
by (metis (mono_tags, lifting) append_Cons distinct_removes_duplicate_flts list.set_intros(1) list.simps(8) list.simps(9) map_append rsimp.simps(2))
+ − 135
+ − 136
lemma simp_removes_duplicate2:
+ − 137
shows "a \<in> set rsa \<Longrightarrow> rsimp (RALTS (rsa @ [a] @ rsb)) = rsimp (RALTS (rsa @ rsb))"
+ − 138
apply(induct rsb arbitrary: rsa)
+ − 139
apply simp
+ − 140
using distinct_removes_duplicate_flts apply auto[1]
+ − 141
by (metis append.assoc head_one_more_simp rsimp.simps(2) simp_flatten simp_removes_duplicate1(1))
+ − 142
+ − 143
lemma simp_removes_duplicate3:
+ − 144
shows "a \<in> set rsa \<Longrightarrow> rsimp (RALTS (rsa @ a # rsb)) = rsimp (RALTS (rsa @ rsb))"
+ − 145
using simp_removes_duplicate2 by auto
+ − 146
+ − 147
lemma distinct_removes_middle4:
+ − 148
shows "a \<in> set rsa \<Longrightarrow> rdistinct (rsa @ [a] @ rsb) rset = rdistinct (rsa @ rsb) rset"
+ − 149
using distinct_removes_middle(1) by fastforce
+ − 150
+ − 151
lemma distinct_removes_middle_list:
+ − 152
shows "\<forall>a \<in> set x. a \<in> set rsa \<Longrightarrow> rdistinct (rsa @ x @ rsb) rset = rdistinct (rsa @ rsb) rset"
+ − 153
apply(induct x)
+ − 154
apply simp
+ − 155
by (simp add: distinct_removes_middle3)
+ − 156
+ − 157
+ − 158
lemma distinct_removes_duplicate_flts2:
+ − 159
shows " a \<in> set rsa
+ − 160
\<Longrightarrow> rdistinct (rflts (rsa @ [a] @ rsb)) {} =
+ − 161
rdistinct (rflts (rsa @ rsb)) {}"
+ − 162
apply(induct a arbitrary: rsb)
+ − 163
using flts_middle01 apply presburger
+ − 164
apply(subgoal_tac "rflts (rsa @ [RONE] @ rsb) = rflts rsa @ [RONE] @ rflts rsb")
+ − 165
prefer 2
+ − 166
using flts_append1 apply blast
+ − 167
apply simp
+ − 168
apply(subgoal_tac "RONE \<in> set (rflts rsa)")
+ − 169
prefer 2
+ − 170
using rflts_def_idiot2 apply blast
+ − 171
apply(subst distinct_removes_middle3)
+ − 172
apply simp
+ − 173
using flts_append apply presburger
+ − 174
apply simp
+ − 175
apply (metis distinct_removes_middle3 flts_append in_set_conv_decomp rflts.simps(5))
+ − 176
apply (metis distinct_removes_middle(1) flts_append flts_append1 rflts_def_idiot2 rrexp.distinct(25) rrexp.distinct(5))
+ − 177
apply(subgoal_tac "rflts (rsa @ [RALTS x] @ rsb) = rflts rsa @ x @ rflts rsb")
+ − 178
prefer 2
+ − 179
apply (simp add: flts_append)
+ − 180
apply (simp only:)
+ − 181
+ − 182
apply(subgoal_tac "\<forall>r1 \<in> set x. r1 \<in> set (rflts rsa)")
+ − 183
prefer 2
+ − 184
using spilled_alts_contained apply blast
+ − 185
apply(subst flts_append)
+ − 186
using distinct_removes_middle_list apply blast
+ − 187
using distinct_removes_middle2 flts_append rflts_def_idiot2 by fastforce
+ − 188
+ − 189
+ − 190
lemma simp_removes_duplicate:
+ − 191
shows "a \<in> set rsa \<Longrightarrow> rsimp (rsimp_ALTs (rsa @ a # rs)) = rsimp (rsimp_ALTs (rsa @ rs))"
+ − 192
apply(subgoal_tac "rsimp (rsimp_ALTs (rsa @ a # rs)) = rsimp (RALTS (rsa @ a # rs))")
+ − 193
prefer 2
+ − 194
apply (smt (verit, best) Cons_eq_append_conv append_is_Nil_conv empty_set equals0D list.distinct(1) rsimp_ALTs.elims)
+ − 195
apply(simp only:)
+ − 196
apply simp
+ − 197
apply(subgoal_tac "(rdistinct (rflts (map rsimp rsa @ rsimp a # map rsimp rs)) {}) = (rdistinct (rflts (map rsimp rsa @ map rsimp rs)) {})")
+ − 198
apply(simp only:)
+ − 199
prefer 2
+ − 200
apply(subgoal_tac "rsimp a \<in> set (map rsimp rsa)")
+ − 201
prefer 2
+ − 202
apply simp
+ − 203
using distinct_removes_duplicate_flts2 apply force
+ − 204
apply(case_tac rsa)
+ − 205
apply simp
+ − 206
apply(case_tac rs)
+ − 207
apply simp
+ − 208
apply(case_tac list)
+ − 209
apply simp
+ − 210
using idem_after_simp1 apply presburger
+ − 211
apply simp+
+ − 212
apply(subgoal_tac "rsimp_ALTs (aa # list @ aaa # lista) = RALTS (aa # list @ aaa # lista)")
+ − 213
apply simp
+ − 214
using rsimpalts_conscons by presburger
467
+ − 215
+ − 216
+ − 217
+ − 218
468
+ − 219
467
+ − 220
+ − 221
471
+ − 222
+ − 223
inductive frewrite:: "rrexp list \<Rightarrow> rrexp list \<Rightarrow> bool" ("_ \<leadsto>f _" [10, 10] 10)
+ − 224
where
+ − 225
"(RZERO # rs) \<leadsto>f rs"
+ − 226
| "((RALTS rs) # rsa) \<leadsto>f (rs @ rsa)"
+ − 227
| "rs1 \<leadsto>f rs2 \<Longrightarrow> (r # rs1) \<leadsto>f (r # rs2)"
+ − 228
+ − 229
+ − 230
inductive
+ − 231
frewrites:: "rrexp list \<Rightarrow> rrexp list \<Rightarrow> bool" ("_ \<leadsto>f* _" [10, 10] 10)
+ − 232
where
473
+ − 233
[intro, simp]:"rs \<leadsto>f* rs"
+ − 234
| [intro]: "\<lbrakk>rs1 \<leadsto>f* rs2; rs2 \<leadsto>f rs3\<rbrakk> \<Longrightarrow> rs1 \<leadsto>f* rs3"
+ − 235
+ − 236
inductive grewrite:: "rrexp list \<Rightarrow> rrexp list \<Rightarrow> bool" ("_ \<leadsto>g _" [10, 10] 10)
+ − 237
where
+ − 238
"(RZERO # rs) \<leadsto>g rs"
+ − 239
| "((RALTS rs) # rsa) \<leadsto>g (rs @ rsa)"
+ − 240
| "rs1 \<leadsto>g rs2 \<Longrightarrow> (r # rs1) \<leadsto>g (r # rs2)"
+ − 241
| "rsa @ [a] @ rsb @ [a] @ rsc \<leadsto>g rsa @ [a] @ rsb @ rsc"
+ − 242
478
+ − 243
lemma grewrite_variant1:
+ − 244
shows "a \<in> set rs1 \<Longrightarrow> rs1 @ a # rs \<leadsto>g rs1 @ rs"
+ − 245
apply (metis append.assoc append_Cons append_Nil grewrite.intros(4) split_list_first)
+ − 246
done
+ − 247
473
+ − 248
+ − 249
inductive
+ − 250
grewrites:: "rrexp list \<Rightarrow> rrexp list \<Rightarrow> bool" ("_ \<leadsto>g* _" [10, 10] 10)
+ − 251
where
+ − 252
[intro, simp]:"rs \<leadsto>g* rs"
+ − 253
| [intro]: "\<lbrakk>rs1 \<leadsto>g* rs2; rs2 \<leadsto>g rs3\<rbrakk> \<Longrightarrow> rs1 \<leadsto>g* rs3"
478
+ − 254
+ − 255
+ − 256
473
+ − 257
(*
+ − 258
inductive
+ − 259
frewrites2:: "rrexp list \<Rightarrow> rrexp list \<Rightarrow> bool" ("_ <\<leadsto>f* _" [10, 10] 10)
+ − 260
where
+ − 261
[intro]: "\<lbrakk>rs1 \<leadsto>f* rs2; rs2 \<leadsto>f* rs1\<rbrakk> \<Longrightarrow> rs1 <\<leadsto>f* rs2"
+ − 262
*)
471
+ − 263
+ − 264
lemma fr_in_rstar : "r1 \<leadsto>f r2 \<Longrightarrow> r1 \<leadsto>f* r2"
+ − 265
using frewrites.intros(1) frewrites.intros(2) by blast
+ − 266
+ − 267
lemma freal_trans[trans]:
+ − 268
assumes a1: "r1 \<leadsto>f* r2" and a2: "r2 \<leadsto>f* r3"
+ − 269
shows "r1 \<leadsto>f* r3"
+ − 270
using a2 a1
+ − 271
apply(induct r2 r3 arbitrary: r1 rule: frewrites.induct)
+ − 272
apply(auto)
+ − 273
done
+ − 274
+ − 275
+ − 276
lemma many_steps_later: "\<lbrakk>r1 \<leadsto>f r2; r2 \<leadsto>f* r3 \<rbrakk> \<Longrightarrow> r1 \<leadsto>f* r3"
+ − 277
by (meson fr_in_rstar freal_trans)
+ − 278
+ − 279
475
+ − 280
lemma gr_in_rstar : "r1 \<leadsto>g r2 \<Longrightarrow> r1 \<leadsto>g* r2"
+ − 281
using grewrites.intros(1) grewrites.intros(2) by blast
+ − 282
+ − 283
lemma greal_trans[trans]:
+ − 284
assumes a1: "r1 \<leadsto>g* r2" and a2: "r2 \<leadsto>g* r3"
+ − 285
shows "r1 \<leadsto>g* r3"
+ − 286
using a2 a1
+ − 287
apply(induct r2 r3 arbitrary: r1 rule: grewrites.induct)
+ − 288
apply(auto)
+ − 289
done
+ − 290
+ − 291
+ − 292
lemma gmany_steps_later: "\<lbrakk>r1 \<leadsto>g r2; r2 \<leadsto>g* r3 \<rbrakk> \<Longrightarrow> r1 \<leadsto>g* r3"
+ − 293
by (meson gr_in_rstar greal_trans)
+ − 294
478
+ − 295
lemma gstar_rdistinct_general:
+ − 296
shows "rs1 @ rs \<leadsto>g* rs1 @ (rdistinct rs (set rs1))"
+ − 297
apply(induct rs arbitrary: rs1)
+ − 298
apply simp
+ − 299
apply(case_tac " a \<in> set rs1")
+ − 300
apply simp
+ − 301
apply(subgoal_tac "rs1 @ a # rs \<leadsto>g rs1 @ rs")
+ − 302
using gmany_steps_later apply auto[1]
+ − 303
apply (metis append.assoc append_Cons append_Nil grewrite.intros(4) split_list_first)
+ − 304
apply simp
+ − 305
apply(drule_tac x = "rs1 @ [a]" in meta_spec)
+ − 306
by simp
+ − 307
+ − 308
+ − 309
lemma gstar_rdistinct:
+ − 310
shows "rs \<leadsto>g* rdistinct rs {}"
+ − 311
apply(induct rs)
+ − 312
apply simp
+ − 313
by (metis append.left_neutral empty_set gstar_rdistinct_general)
+ − 314
475
+ − 315
+ − 316
471
+ − 317
lemma frewrite_append:
+ − 318
shows "\<lbrakk> rsa \<leadsto>f rsb \<rbrakk> \<Longrightarrow> rs @ rsa \<leadsto>f rs @ rsb"
+ − 319
apply(induct rs)
472
+ − 320
apply simp+
+ − 321
using frewrite.intros(3) by blast
475
+ − 322
+ − 323
lemma grewrite_append:
+ − 324
shows "\<lbrakk> rsa \<leadsto>g rsb \<rbrakk> \<Longrightarrow> rs @ rsa \<leadsto>g rs @ rsb"
+ − 325
apply(induct rs)
+ − 326
apply simp+
+ − 327
using grewrite.intros(3) by blast
472
+ − 328
471
+ − 329
+ − 330
+ − 331
lemma frewrites_cons:
+ − 332
shows "\<lbrakk> rsa \<leadsto>f* rsb \<rbrakk> \<Longrightarrow> r # rsa \<leadsto>f* r # rsb"
472
+ − 333
apply(induct rsa rsb rule: frewrites.induct)
+ − 334
apply simp
+ − 335
using frewrite.intros(3) by blast
471
+ − 336
+ − 337
475
+ − 338
lemma grewrites_cons:
+ − 339
shows "\<lbrakk> rsa \<leadsto>g* rsb \<rbrakk> \<Longrightarrow> r # rsa \<leadsto>g* r # rsb"
+ − 340
apply(induct rsa rsb rule: grewrites.induct)
+ − 341
apply simp
+ − 342
using grewrite.intros(3) by blast
+ − 343
+ − 344
471
+ − 345
lemma frewrites_append:
+ − 346
shows " \<lbrakk>rsa \<leadsto>f* rsb\<rbrakk> \<Longrightarrow> (rs @ rsa) \<leadsto>f* (rs @ rsb)"
472
+ − 347
apply(induct rs)
471
+ − 348
apply simp
472
+ − 349
by (simp add: frewrites_cons)
471
+ − 350
475
+ − 351
lemma grewrites_append:
+ − 352
shows " \<lbrakk>rsa \<leadsto>g* rsb\<rbrakk> \<Longrightarrow> (rs @ rsa) \<leadsto>g* (rs @ rsb)"
+ − 353
apply(induct rs)
+ − 354
apply simp
+ − 355
by (simp add: grewrites_cons)
+ − 356
471
+ − 357
+ − 358
+ − 359
lemma frewrites_concat:
+ − 360
shows "\<lbrakk>rs1 \<leadsto>f rs2; rsa \<leadsto>f* rsb \<rbrakk> \<Longrightarrow> (rs1 @ rsa) \<leadsto>f* (rs2 @ rsb)"
+ − 361
apply(induct rs1 rs2 rule: frewrite.induct)
+ − 362
apply(simp)
+ − 363
apply(subgoal_tac "(RZERO # rs @ rsa) \<leadsto>f (rs @ rsa)")
+ − 364
prefer 2
+ − 365
using frewrite.intros(1) apply blast
+ − 366
apply(subgoal_tac "(rs @ rsa) \<leadsto>f* (rs @ rsb)")
+ − 367
using many_steps_later apply blast
472
+ − 368
apply (simp add: frewrites_append)
+ − 369
apply (metis append.assoc append_Cons frewrite.intros(2) frewrites_append many_steps_later)
+ − 370
using frewrites_cons by auto
471
+ − 371
475
+ − 372
lemma grewrites_concat:
+ − 373
shows "\<lbrakk>rs1 \<leadsto>g rs2; rsa \<leadsto>g* rsb \<rbrakk> \<Longrightarrow> (rs1 @ rsa) \<leadsto>g* (rs2 @ rsb)"
+ − 374
apply(induct rs1 rs2 rule: grewrite.induct)
+ − 375
apply(simp)
+ − 376
apply(subgoal_tac "(RZERO # rs @ rsa) \<leadsto>g (rs @ rsa)")
+ − 377
prefer 2
+ − 378
using grewrite.intros(1) apply blast
+ − 379
apply(subgoal_tac "(rs @ rsa) \<leadsto>g* (rs @ rsb)")
+ − 380
using gmany_steps_later apply blast
+ − 381
apply (simp add: grewrites_append)
+ − 382
apply (metis append.assoc append_Cons grewrite.intros(2) grewrites_append gmany_steps_later)
+ − 383
using grewrites_cons apply auto
+ − 384
apply(subgoal_tac "rsaa @ a # rsba @ a # rsc @ rsa \<leadsto>g* rsaa @ a # rsba @ a # rsc @ rsb")
+ − 385
using grewrite.intros(4) grewrites.intros(2) apply force
+ − 386
using grewrites_append by auto
+ − 387
+ − 388
+ − 389
lemma grewritess_concat:
+ − 390
shows "\<lbrakk>rsa \<leadsto>g* rsb; rsc \<leadsto>g* rsd \<rbrakk> \<Longrightarrow> (rsa @ rsc) \<leadsto>g* (rsb @ rsd)"
+ − 391
apply(induct rsa rsb rule: grewrites.induct)
+ − 392
apply(case_tac rs)
+ − 393
apply simp
+ − 394
using grewrites_append apply blast
+ − 395
by (meson greal_trans grewrites.simps grewrites_concat)
+ − 396
476
+ − 397
fun alt_set:: "rrexp \<Rightarrow> rrexp set"
+ − 398
where
+ − 399
"alt_set (RALTS rs) = set rs \<union> \<Union> (alt_set ` (set rs))"
+ − 400
| "alt_set r = {r}"
+ − 401
+ − 402
lemma alt_set_has_all:
+ − 403
shows "RALTS rs \<in> alt_set rx \<Longrightarrow> set rs \<subseteq> alt_set rx"
+ − 404
apply(induct rx arbitrary: rs)
+ − 405
apply simp_all
+ − 406
apply(rename_tac rSS rss)
+ − 407
using in_mono by fastforce
+ − 408
+ − 409
+ − 410
+ − 411
+ − 412
478
+ − 413
lemma grewrite_cases_middle:
+ − 414
shows "rs1 \<leadsto>g rs2 \<Longrightarrow>
+ − 415
(\<exists>rsa rsb rsc. rs1 = (rsa @ [RALTS rsb] @ rsc) \<and> rs2 = (rsa @ rsb @ rsc)) \<or>
+ − 416
(\<exists>rsa rsc. rs1 = rsa @ [RZERO] @ rsc \<and> rs2 = rsa @ rsc) \<or>
+ − 417
(\<exists>rsa rsb rsc a. rs1 = rsa @ [a] @ rsb @ [a] @ rsc \<and> rs2 = rsa @ [a] @ rsb @ rsc)"
+ − 418
apply( induct rs1 rs2 rule: grewrite.induct)
+ − 419
apply simp
+ − 420
apply blast
+ − 421
apply (metis append_Cons append_Nil)
+ − 422
apply (metis append_Cons)
+ − 423
by blast
476
+ − 424
+ − 425
490
+ − 426
lemma good_singleton:
+ − 427
shows "good a \<and> nonalt a \<Longrightarrow> rflts [a] = [a]"
+ − 428
using good.simps(1) k0b by blast
+ − 429
+ − 430
+ − 431
+ − 432
+ − 433
+ − 434
+ − 435
+ − 436
lemma all_that_same_elem:
+ − 437
shows "\<lbrakk> a \<in> rset; rdistinct rs {a} = []\<rbrakk>
+ − 438
\<Longrightarrow> rdistinct (rs @ rsb) rset = rdistinct rsb rset"
+ − 439
apply(induct rs)
+ − 440
apply simp
+ − 441
apply(subgoal_tac "aa = a")
+ − 442
apply simp
+ − 443
by (metis empty_iff insert_iff list.discI rdistinct.simps(2))
+ − 444
+ − 445
lemma distinct_early_app1:
+ − 446
shows "rset1 \<subseteq> rset \<Longrightarrow> rdistinct rs rset = rdistinct (rdistinct rs rset1) rset"
+ − 447
apply(induct rs arbitrary: rset rset1)
+ − 448
apply simp
+ − 449
apply simp
+ − 450
apply(case_tac "a \<in> rset1")
+ − 451
apply simp
+ − 452
apply(case_tac "a \<in> rset")
+ − 453
apply simp+
+ − 454
+ − 455
apply blast
+ − 456
apply(case_tac "a \<in> rset1")
+ − 457
apply simp+
+ − 458
apply(case_tac "a \<in> rset")
+ − 459
apply simp
+ − 460
apply (metis insert_subsetI)
+ − 461
apply simp
+ − 462
by (meson insert_mono)
+ − 463
+ − 464
+ − 465
lemma distinct_early_app:
+ − 466
shows " rdistinct (rs @ rsb) rset = rdistinct (rdistinct rs {} @ rsb) rset"
+ − 467
apply(induct rsb)
+ − 468
apply simp
+ − 469
using distinct_early_app1 apply blast
+ − 470
by (metis distinct_early_app1 distinct_once_enough empty_subsetI)
+ − 471
+ − 472
+ − 473
lemma distinct_eq_interesting1:
+ − 474
shows "a \<in> rset \<Longrightarrow> rdistinct (rs @ rsb) rset = rdistinct (rdistinct (a # rs) {} @ rsb) rset"
+ − 475
apply(subgoal_tac "rdistinct (rdistinct (a # rs) {} @ rsb) rset = rdistinct (rdistinct rs {} @ rsb) rset")
+ − 476
apply(simp only:)
+ − 477
using distinct_early_app apply blast
+ − 478
by (metis append_Cons distinct_early_app rdistinct.simps(2))
+ − 479
+ − 480
+ − 481
+ − 482
lemma good_flatten_aux_aux1:
+ − 483
shows "\<lbrakk> size rs \<ge>2;
+ − 484
\<forall>r \<in> set rs. good r \<and> r \<noteq> RZERO \<and> nonalt r; \<forall>r \<in> set rsb. good r \<and> r \<noteq> RZERO \<and> nonalt r \<rbrakk>
+ − 485
\<Longrightarrow> rdistinct (rs @ rsb) rset =
+ − 486
rdistinct (rflts [rsimp_ALTs (rdistinct rs {})] @ rsb) rset"
+ − 487
apply(induct rs arbitrary: rset)
+ − 488
apply simp
+ − 489
apply(case_tac "a \<in> rset")
+ − 490
apply simp
+ − 491
apply(case_tac "rdistinct rs {a}")
+ − 492
apply simp
+ − 493
apply(subst good_singleton)
+ − 494
apply force
+ − 495
apply simp
+ − 496
apply (meson all_that_same_elem)
+ − 497
apply(subgoal_tac "rflts [rsimp_ALTs (a # rdistinct rs {a})] = a # rdistinct rs {a} ")
+ − 498
prefer 2
+ − 499
using k0a rsimp_ALTs.simps(3) apply presburger
+ − 500
apply(simp only:)
+ − 501
apply(subgoal_tac "rdistinct (rs @ rsb) rset = rdistinct ((rdistinct (a # rs) {}) @ rsb) rset ")
+ − 502
apply (metis insert_absorb insert_is_Un insert_not_empty rdistinct.simps(2))
+ − 503
apply (meson distinct_eq_interesting1)
+ − 504
apply simp
+ − 505
apply(case_tac "rdistinct rs {a}")
+ − 506
prefer 2
+ − 507
apply(subgoal_tac "rsimp_ALTs (a # rdistinct rs {a}) = RALTS (a # rdistinct rs {a})")
+ − 508
apply(simp only:)
+ − 509
apply(subgoal_tac "a # rdistinct (rs @ rsb) (insert a rset) =
+ − 510
rdistinct (rflts [RALTS (a # rdistinct rs {a})] @ rsb) rset")
+ − 511
apply simp
+ − 512
apply (metis append_Cons distinct_early_app empty_iff insert_is_Un k0a rdistinct.simps(2))
+ − 513
using rsimp_ALTs.simps(3) apply presburger
+ − 514
by (metis Un_insert_left append_Cons distinct_early_app empty_iff good_singleton rdistinct.simps(2) rsimp_ALTs.simps(2) sup_bot_left)
+ − 515
+ − 516
+ − 517
+ − 518
+ − 519
+ − 520
lemma good_flatten_aux_aux:
+ − 521
shows "\<lbrakk>\<exists>a aa lista list. rs = a # list \<and> list = aa # lista;
+ − 522
\<forall>r \<in> set rs. good r \<and> r \<noteq> RZERO \<and> nonalt r; \<forall>r \<in> set rsb. good r \<and> r \<noteq> RZERO \<and> nonalt r \<rbrakk>
+ − 523
\<Longrightarrow> rdistinct (rs @ rsb) rset =
+ − 524
rdistinct (rflts [rsimp_ALTs (rdistinct rs {})] @ rsb) rset"
+ − 525
apply(erule exE)+
+ − 526
apply(subgoal_tac "size rs \<ge> 2")
+ − 527
apply (metis good_flatten_aux_aux1)
+ − 528
by (simp add: Suc_leI length_Cons less_add_Suc1)
+ − 529
+ − 530
+ − 531
+ − 532
lemma good_flatten_aux:
491
+ − 533
shows " \<lbrakk>\<forall>r\<in>set rs. good r \<or> r = RZERO; \<forall>r\<in>set rsa . good r \<or> r = RZERO;
+ − 534
\<forall>r\<in>set rsb. good r \<or> r = RZERO;
490
+ − 535
rsimp (RALTS (rsa @ rs @ rsb)) = rsimp_ALTs (rdistinct (rflts (rsa @ rs @ rsb)) {});
+ − 536
rsimp (RALTS (rsa @ [RALTS rs] @ rsb)) =
+ − 537
rsimp_ALTs (rdistinct (rflts (rsa @ [rsimp (RALTS rs)] @ rsb)) {});
+ − 538
map rsimp rsa = rsa; map rsimp rsb = rsb; map rsimp rs = rs;
+ − 539
rdistinct (rflts rsa @ rflts rs @ rflts rsb) {} =
+ − 540
rdistinct (rflts rsa) {} @ rdistinct (rflts rs @ rflts rsb) (set (rflts rsa));
+ − 541
rdistinct (rflts rsa @ rflts [rsimp (RALTS rs)] @ rflts rsb) {} =
+ − 542
rdistinct (rflts rsa) {} @ rdistinct (rflts [rsimp (RALTS rs)] @ rflts rsb) (set (rflts rsa))\<rbrakk>
+ − 543
\<Longrightarrow> rdistinct (rflts rs @ rflts rsb) rset =
+ − 544
rdistinct (rflts [rsimp (RALTS rs)] @ rflts rsb) rset"
+ − 545
apply simp
+ − 546
apply(case_tac "rflts rs ")
+ − 547
apply simp
+ − 548
apply(case_tac "list")
+ − 549
apply simp
+ − 550
apply(case_tac "a \<in> rset")
+ − 551
apply simp
+ − 552
apply (metis append_Cons append_Nil flts_append list.set(1) list.simps(15) nonalt.simps(1) nonalt0_flts_keeps nonalt_flts_rd qqq1 rdistinct.simps(2) rdistinct_set_equality singleton_iff)
+ − 553
apply simp
+ − 554
apply (metis Un_insert_left append_Cons append_Nil ex_in_conv flts_single1 insertI1 list.simps(15) nonalt_flts_rd nonazero.elims(3) qqq1 rdistinct.simps(2) sup_bot_left)
+ − 555
apply(subgoal_tac "\<forall>r \<in> set (rflts rs). good r \<and> r \<noteq> RZERO \<and> nonalt r")
+ − 556
prefer 2
491
+ − 557
apply (metis flts3 nonalt_flts_rd qqq1 rdistinct_set_equality)
490
+ − 558
apply(subgoal_tac "\<forall>r \<in> set (rflts rsb). good r \<and> r \<noteq> RZERO \<and> nonalt r")
+ − 559
prefer 2
491
+ − 560
apply (metis flts3 nonalt_flts_rd qqq1 rdistinct_set_equality)
490
+ − 561
by (smt (verit, ccfv_threshold) good_flatten_aux_aux)
+ − 562
+ − 563
+ − 564
+ − 565
+ − 566
lemma good_flatten_middle:
491
+ − 567
shows "\<lbrakk>\<forall>r \<in> set rs. good r \<or> r = RZERO; \<forall>r \<in> set rsa. good r \<or> r = RZERO; \<forall>r \<in> set rsb. good r \<or> r = RZERO\<rbrakk> \<Longrightarrow>
490
+ − 568
rsimp (RALTS (rsa @ rs @ rsb)) = rsimp (RALTS (rsa @ [RALTS rs] @ rsb))"
+ − 569
apply(subgoal_tac "rsimp (RALTS (rsa @ rs @ rsb)) = rsimp_ALTs (rdistinct (rflts (map rsimp rsa @
+ − 570
map rsimp rs @ map rsimp rsb)) {})")
+ − 571
prefer 2
+ − 572
apply simp
+ − 573
apply(simp only:)
+ − 574
apply(subgoal_tac "rsimp (RALTS (rsa @ [RALTS rs] @ rsb)) = rsimp_ALTs (rdistinct (rflts (map rsimp rsa @
+ − 575
[rsimp (RALTS rs)] @ map rsimp rsb)) {})")
+ − 576
prefer 2
+ − 577
apply simp
+ − 578
apply(simp only:)
+ − 579
apply(subgoal_tac "map rsimp rsa = rsa")
+ − 580
prefer 2
491
+ − 581
apply (metis map_idI rsimp.simps(3) test)
490
+ − 582
apply(simp only:)
+ − 583
apply(subgoal_tac "map rsimp rsb = rsb")
+ − 584
prefer 2
491
+ − 585
apply (metis map_idI rsimp.simps(3) test)
490
+ − 586
apply(simp only:)
+ − 587
apply(subst k00)+
+ − 588
apply(subgoal_tac "map rsimp rs = rs")
+ − 589
apply(simp only:)
+ − 590
prefer 2
491
+ − 591
apply (metis map_idI rsimp.simps(3) test)
490
+ − 592
apply(subgoal_tac "rdistinct (rflts rsa @ rflts rs @ rflts rsb) {} =
+ − 593
rdistinct (rflts rsa) {} @ rdistinct (rflts rs @ rflts rsb) (set (rflts rsa))")
+ − 594
apply(simp only:)
+ − 595
prefer 2
+ − 596
using rdistinct_concat_general apply blast
+ − 597
apply(subgoal_tac "rdistinct (rflts rsa @ rflts [rsimp (RALTS rs)] @ rflts rsb) {} =
+ − 598
rdistinct (rflts rsa) {} @ rdistinct (rflts [rsimp (RALTS rs)] @ rflts rsb) (set (rflts rsa))")
+ − 599
apply(simp only:)
+ − 600
prefer 2
+ − 601
using rdistinct_concat_general apply blast
+ − 602
apply(subgoal_tac "rdistinct (rflts rs @ rflts rsb) (set (rflts rsa)) =
+ − 603
rdistinct (rflts [rsimp (RALTS rs)] @ rflts rsb) (set (rflts rsa))")
491
+ − 604
apply presburger
490
+ − 605
using good_flatten_aux by blast
+ − 606
+ − 607
+ − 608
lemma simp_flatten3:
+ − 609
shows "rsimp (RALTS (rsa @ [RALTS rs] @ rsb)) = rsimp (RALTS (rsa @ rs @ rsb))"
+ − 610
apply(subgoal_tac "rsimp (RALTS (rsa @ [RALTS rs] @ rsb)) =
+ − 611
rsimp (RALTS (map rsimp rsa @ [rsimp (RALTS rs)] @ map rsimp rsb)) ")
+ − 612
prefer 2
+ − 613
apply (metis append.left_neutral append_Cons list.simps(9) map_append simp_flatten_aux0)
+ − 614
apply (simp only:)
+ − 615
apply(subgoal_tac "rsimp (RALTS (rsa @ rs @ rsb)) =
+ − 616
rsimp (RALTS (map rsimp rsa @ map rsimp rs @ map rsimp rsb))")
+ − 617
prefer 2
+ − 618
apply (metis map_append simp_flatten_aux0)
+ − 619
apply(simp only:)
+ − 620
apply(subgoal_tac "rsimp (RALTS (map rsimp rsa @ map rsimp rs @ map rsimp rsb)) =
+ − 621
rsimp (RALTS (map rsimp rsa @ [RALTS (map rsimp rs)] @ map rsimp rsb))")
+ − 622
+ − 623
apply (metis (no_types, lifting) head_one_more_simp map_append simp_flatten_aux0)
491
+ − 624
apply(subgoal_tac "\<forall>r \<in> set (map rsimp rsa). good r \<or> r = RZERO")
+ − 625
apply(subgoal_tac "\<forall>r \<in> set (map rsimp rs). good r \<or> r = RZERO")
+ − 626
apply(subgoal_tac "\<forall>r \<in> set (map rsimp rsb). good r \<or> r = RZERO")
490
+ − 627
+ − 628
using good_flatten_middle apply presburger
+ − 629
491
+ − 630
apply (simp add: good1)
+ − 631
apply (simp add: good1)
+ − 632
apply (simp add: good1)
+ − 633
+ − 634
done
490
+ − 635
+ − 636
+ − 637
+ − 638
+ − 639
476
+ − 640
lemma grewrite_equal_rsimp:
+ − 641
shows "rs1 \<leadsto>g rs2 \<Longrightarrow> rsimp (RALTS rs1) = rsimp (RALTS rs2)"
478
+ − 642
apply(frule grewrite_cases_middle)
+ − 643
apply(case_tac "(\<exists>rsa rsb rsc. rs1 = rsa @ [RALTS rsb] @ rsc \<and> rs2 = rsa @ rsb @ rsc)")
+ − 644
using simp_flatten3 apply auto[1]
+ − 645
apply(case_tac "(\<exists>rsa rsc. rs1 = rsa @ [RZERO] @ rsc \<and> rs2 = rsa @ rsc)")
+ − 646
apply (metis (mono_tags, opaque_lifting) append_Cons append_Nil list.set_intros(1) list.simps(9) rflts.simps(2) rsimp.simps(2) rsimp.simps(3) simp_removes_duplicate3)
+ − 647
by (smt (verit) append.assoc append_Cons append_Nil in_set_conv_decomp simp_removes_duplicate3)
476
+ − 648
+ − 649
475
+ − 650
lemma grewrites_equal_rsimp:
+ − 651
shows "rs1 \<leadsto>g* rs2 \<Longrightarrow> rsimp (RALTS rs1) = rsimp (RALTS rs2)"
476
+ − 652
apply (induct rs1 rs2 rule: grewrites.induct)
475
+ − 653
apply simp
476
+ − 654
using grewrite_equal_rsimp by presburger
+ − 655
+ − 656
+ − 657
+ − 658
+ − 659
lemma grewrites_equal_simp_2:
+ − 660
shows "rsimp (RALTS rs1) = rsimp (RALTS rs2) \<Longrightarrow> rs1 \<leadsto>g* rs2"
478
+ − 661
oops
+ − 662
+ − 663
+ − 664
475
+ − 665
476
+ − 666
lemma grewrites_last:
+ − 667
shows "r # [RALTS rs] \<leadsto>g* r # rs"
+ − 668
by (metis gr_in_rstar grewrite.intros(2) grewrite.intros(3) self_append_conv)
+ − 669
+ − 670
lemma simp_flatten2:
+ − 671
shows "rsimp (RALTS (r # [RALTS rs])) = rsimp (RALTS (r # rs))"
+ − 672
using grewrites_equal_rsimp grewrites_last by blast
475
+ − 673
473
+ − 674
lemma frewrites_middle:
+ − 675
shows "rs1 \<leadsto>f* rs2 \<Longrightarrow> r # (RALTS rs # rs1) \<leadsto>f* r # (rs @ rs1)"
+ − 676
by (simp add: fr_in_rstar frewrite.intros(2) frewrite.intros(3))
471
+ − 677
473
+ − 678
lemma frewrites_alt:
+ − 679
shows "rs1 \<leadsto>f* rs2 \<Longrightarrow> (RALT r1 r2) # rs1 \<leadsto>f* r1 # r2 # rs2"
+ − 680
by (metis Cons_eq_appendI append_self_conv2 frewrite.intros(2) frewrites_cons many_steps_later)
471
+ − 681
+ − 682
lemma early_late_der_frewrites:
+ − 683
shows "map (rder x) (rflts rs) \<leadsto>f* rflts (map (rder x) rs)"
+ − 684
apply(induct rs)
+ − 685
apply simp
+ − 686
apply(case_tac a)
+ − 687
apply simp+
+ − 688
using frewrite.intros(1) many_steps_later apply blast
+ − 689
apply(case_tac "x = x3")
472
+ − 690
apply simp
+ − 691
using frewrites_cons apply presburger
+ − 692
using frewrite.intros(1) many_steps_later apply fastforce
+ − 693
apply(case_tac "rnullable x41")
473
+ − 694
apply simp+
+ − 695
apply (simp add: frewrites_alt)
+ − 696
apply (simp add: frewrites_cons)
+ − 697
apply (simp add: frewrites_append)
+ − 698
by (simp add: frewrites_cons)
471
+ − 699
+ − 700
+ − 701
+ − 702
473
+ − 703
lemma with_wo0_distinct:
+ − 704
shows "rdistinct rs rset \<leadsto>f* rdistinct rs (insert RZERO rset)"
+ − 705
apply(induct rs arbitrary: rset)
+ − 706
apply simp
+ − 707
apply(case_tac a)
+ − 708
apply(case_tac "RZERO \<in> rset")
+ − 709
apply simp+
+ − 710
using fr_in_rstar frewrite.intros(1) apply presburger
+ − 711
apply (case_tac "RONE \<in> rset")
+ − 712
apply simp+
+ − 713
using frewrites_cons apply presburger
+ − 714
apply(case_tac "a \<in> rset")
+ − 715
apply simp
+ − 716
apply (simp add: frewrites_cons)
+ − 717
apply(case_tac "a \<in> rset")
+ − 718
apply simp
+ − 719
apply (simp add: frewrites_cons)
+ − 720
apply(case_tac "a \<in> rset")
+ − 721
apply simp
+ − 722
apply (simp add: frewrites_cons)
+ − 723
apply(case_tac "a \<in> rset")
+ − 724
apply simp
+ − 725
apply (simp add: frewrites_cons)
+ − 726
done
+ − 727
476
+ − 728
(*Interesting lemma: not obvious but easily proven by sledgehammer*)
473
+ − 729
476
+ − 730
+ − 731
+ − 732
+ − 733
(*lemma induction last rule not go through
+ − 734
example:
+ − 735
r #
+ − 736
rdistinct rs1
+ − 737
(insert RZERO
+ − 738
(insert r
+ − 739
(rset \<union>
+ − 740
\<Union> (alt_set `
+ − 741
rset)))) \<leadsto>g* r #
+ − 742
rdistinct rs2
+ − 743
(insert RZERO (insert r (rset \<union> \<Union> (alt_set ` rset))))
+ − 744
rs2 = [+rs] rs3 = rs,
+ − 745
r = +rs
+ − 746
[] \<leadsto>g* rs which is wrong
+ − 747
*)
+ − 748
469
+ − 749
+ − 750
476
+ − 751
+ − 752
+ − 753
+ − 754
+ − 755
lemma frewrite_simpeq:
+ − 756
shows "rs1 \<leadsto>f rs2 \<Longrightarrow> rsimp (RALTS rs1) = rsimp (RALTS rs2)"
+ − 757
apply(induct rs1 rs2 rule: frewrite.induct)
+ − 758
apply simp
+ − 759
using simp_flatten apply presburger
478
+ − 760
by (metis (no_types, opaque_lifting) grewrites_equal_rsimp grewrites_last list.simps(9) rsimp.simps(2))
+ − 761
+ − 762
lemma gstar0:
+ − 763
shows "rsa @ (rdistinct rs (set rsa)) \<leadsto>g* rsa @ (rdistinct rs (insert RZERO (set rsa)))"
+ − 764
apply(induct rs arbitrary: rsa)
+ − 765
apply simp
+ − 766
apply(case_tac "a = RZERO")
+ − 767
apply simp
+ − 768
+ − 769
using gr_in_rstar grewrite.intros(1) grewrites_append apply presburger
+ − 770
apply(case_tac "a \<in> set rsa")
+ − 771
apply simp+
+ − 772
apply(drule_tac x = "rsa @ [a]" in meta_spec)
+ − 773
by simp
+ − 774
+ − 775
lemma gstar01:
+ − 776
shows "rdistinct rs {} \<leadsto>g* rdistinct rs {RZERO}"
+ − 777
by (metis empty_set gstar0 self_append_conv2)
+ − 778
+ − 779
+ − 780
lemma grewrite_rdistinct_aux:
+ − 781
shows "rs @ rdistinct rsa rset \<leadsto>g* rs @ rdistinct rsa (rset \<union> set rs)"
480
+ − 782
apply(induct rsa arbitrary: rs rset)
+ − 783
apply simp
+ − 784
apply(case_tac " a \<in> rset")
+ − 785
apply simp
+ − 786
apply(case_tac "a \<in> set rs")
+ − 787
apply simp
+ − 788
apply (metis Un_insert_left Un_insert_right gmany_steps_later grewrite_variant1 insert_absorb)
+ − 789
apply simp
+ − 790
apply(drule_tac x = "rs @ [a]" in meta_spec)
+ − 791
by (metis Un_insert_left Un_insert_right append.assoc append.right_neutral append_Cons append_Nil insert_absorb2 list.simps(15) set_append)
+ − 792
478
+ − 793
+ − 794
lemma grewrite_rdistinct_worth1:
+ − 795
shows "(rsb @ [a]) @ rdistinct rs set1 \<leadsto>g* (rsb @ [a]) @ rdistinct rs (insert a set1)"
+ − 796
by (metis append.assoc empty_set grewrite_rdistinct_aux grewrites_append inf_sup_aci(5) insert_is_Un list.simps(15))
+ − 797
+ − 798
lemma grewrite_rdisitinct:
+ − 799
shows "rs @ rdistinct rsa {RALTS rs} \<leadsto>g* rs @ rdistinct rsa (insert (RALTS rs) (set rs))"
+ − 800
apply(induct rsa arbitrary: rs)
+ − 801
apply simp
+ − 802
apply(case_tac "a = RALTS rs")
+ − 803
apply simp
+ − 804
apply(case_tac "a \<in> set rs")
+ − 805
apply simp
+ − 806
apply(subgoal_tac "rs @
+ − 807
a # rdistinct rsa {RALTS rs, a} \<leadsto>g rs @ rdistinct rsa {RALTS rs, a}")
+ − 808
apply(subgoal_tac
+ − 809
"rs @ rdistinct rsa {RALTS rs, a} \<leadsto>g* rs @ rdistinct rsa (insert (RALTS rs) (set rs))")
+ − 810
using gmany_steps_later apply blast
+ − 811
apply(subgoal_tac
+ − 812
" rs @ rdistinct rsa {RALTS rs, a} \<leadsto>g* rs @ rdistinct rsa ({RALTS rs, a} \<union> set rs)")
+ − 813
apply (simp add: insert_absorb)
+ − 814
using grewrite_rdistinct_aux apply blast
+ − 815
using grewrite_variant1 apply blast
+ − 816
by (metis grewrite_rdistinct_aux insert_is_Un)
+ − 817
+ − 818
+ − 819
lemma frewrite_rd_grewrites_general:
+ − 820
shows "\<lbrakk>rs1 \<leadsto>f rs2; \<And>rs. \<exists>rs3.
+ − 821
(rs @ (rdistinct rs1 (set rs)) \<leadsto>g* rs3) \<and> (rs @ (rdistinct rs2 (set rs)) \<leadsto>g* rs3)\<rbrakk>
+ − 822
\<Longrightarrow>
+ − 823
\<exists>rs3. (rs @ (r # rdistinct rs1 (set rs \<union> {r})) \<leadsto>g* rs3) \<and> (rs @ (r # rdistinct rs2 (set rs \<union> {r})) \<leadsto>g* rs3)"
+ − 824
apply(drule_tac x = "rs @ [r]" in meta_spec )
+ − 825
by simp
+ − 826
+ − 827
479
+ − 828
lemma alts_g_can_flts:
+ − 829
shows "RALTS rs \<in> set rsb \<Longrightarrow> \<exists>rs1 rs2.( rflts rsb = rs1 @ rs @ rs2)"
+ − 830
by (metis flts_append rflts.simps(3) split_list_last)
+ − 831
+ − 832
lemma flts_gstar:
+ − 833
shows "rs \<leadsto>g* rflts rs"
480
+ − 834
apply(induct rs)
+ − 835
apply simp
+ − 836
apply(case_tac "a = RZERO")
+ − 837
apply simp
+ − 838
using gmany_steps_later grewrite.intros(1) apply blast
+ − 839
apply(case_tac "\<exists>rsa. a = RALTS rsa")
+ − 840
apply(erule exE)
+ − 841
apply simp
+ − 842
apply (meson grewrite.intros(2) grewrites.simps grewrites_cons)
+ − 843
by (simp add: grewrites_cons rflts_def_idiot)
+ − 844
479
+ − 845
480
+ − 846
lemma wrong1:
479
+ − 847
shows "a \<in> set rs1 \<Longrightarrow> rs1 @ (rdistinct rs (insert a rset)) \<leadsto>g* rs1 @ (rdistinct rs (rset))"
480
+ − 848
+ − 849
oops
+ − 850
+ − 851
lemma more_distinct1:
+ − 852
shows " \<lbrakk>\<And>rsb rset rset2.
+ − 853
rset2 \<subseteq> set rsb \<Longrightarrow> rsb @ rdistinct rs rset \<leadsto>g* rsb @ rdistinct rs (rset \<union> rset2);
+ − 854
rset2 \<subseteq> set rsb; a \<notin> rset; a \<in> rset2\<rbrakk>
+ − 855
\<Longrightarrow> rsb @ a # rdistinct rs (insert a rset) \<leadsto>g* rsb @ rdistinct rs (rset \<union> rset2)"
+ − 856
apply(subgoal_tac "rsb @ a # rdistinct rs (insert a rset) \<leadsto>g* rsb @ rdistinct rs (insert a rset)")
+ − 857
apply(subgoal_tac "rsb @ rdistinct rs (insert a rset) \<leadsto>g* rsb @ rdistinct rs (rset \<union> rset2)")
+ − 858
apply (meson greal_trans)
+ − 859
apply (metis Un_iff Un_insert_left insert_absorb)
+ − 860
by (simp add: gr_in_rstar grewrite_variant1 in_mono)
+ − 861
+ − 862
+ − 863
+ − 864
478
+ − 865
479
+ − 866
lemma grewrites_in_distinct0:
+ − 867
shows "a \<in> set rs1 \<Longrightarrow> rs1 @ (rdistinct (a # rs) rset) \<leadsto>g* rs1 @ (rdistinct rs rset)"
+ − 868
apply(case_tac "a \<in> rset")
+ − 869
apply simp
+ − 870
apply simp
+ − 871
oops
+ − 872
+ − 873
+ − 874
+ − 875
+ − 876
+ − 877
+ − 878
478
+ − 879
+ − 880
+ − 881
lemma frewrite_rd_grewrites_aux:
480
+ − 882
shows " RALTS rs \<notin> set rsb \<Longrightarrow>
+ − 883
rsb @
+ − 884
RALTS rs #
+ − 885
rdistinct rsa
+ − 886
(insert (RALTS rs)
+ − 887
(set rsb)) \<leadsto>g* rflts rsb @
+ − 888
rdistinct rs (set rsb) @ rdistinct rsa (set rs \<union> set rsb \<union> {RALTS rs})"
478
+ − 889
480
+ − 890
apply simp
+ − 891
apply(subgoal_tac "rsb @
+ − 892
RALTS rs #
+ − 893
rdistinct rsa
+ − 894
(insert (RALTS rs)
+ − 895
(set rsb)) \<leadsto>g* rsb @
+ − 896
rs @
+ − 897
rdistinct rsa
+ − 898
(insert (RALTS rs)
+ − 899
(set rsb)) ")
+ − 900
apply(subgoal_tac " rsb @
+ − 901
rs @
+ − 902
rdistinct rsa
+ − 903
(insert (RALTS rs)
+ − 904
(set rsb)) \<leadsto>g*
+ − 905
rsb @
+ − 906
rdistinct rs (set rsb) @
+ − 907
rdistinct rsa
+ − 908
(insert (RALTS rs)
+ − 909
(set rsb)) ")
+ − 910
apply (smt (verit, ccfv_SIG) Un_insert_left flts_gstar greal_trans grewrite_rdistinct_aux grewritess_concat inf_sup_aci(5) rdistinct_concat_general rdistinct_set_equality set_append)
+ − 911
apply (metis append_assoc grewrites.intros(1) grewritess_concat gstar_rdistinct_general)
+ − 912
by (simp add: gr_in_rstar grewrite.intros(2) grewrites_append)
478
+ − 913
+ − 914
479
+ − 915
478
+ − 916
+ − 917
lemma list_dlist_union:
+ − 918
shows "set rs \<subseteq> set rsb \<union> set (rdistinct rs (set rsb))"
+ − 919
by (metis rdistinct_concat_general rdistinct_set_equality set_append sup_ge2)
+ − 920
+ − 921
lemma subset_distinct_rewrite1:
+ − 922
shows "set1 \<subseteq> set rsb \<Longrightarrow> rsb @ rs \<leadsto>g* rsb @ (rdistinct rs set1)"
+ − 923
apply(induct rs arbitrary: rsb)
+ − 924
apply simp
+ − 925
apply(case_tac "a \<in> set1")
+ − 926
apply simp
+ − 927
+ − 928
using gmany_steps_later grewrite_variant1 apply blast
+ − 929
apply simp
+ − 930
apply(drule_tac x = "rsb @ [a]" in meta_spec)
+ − 931
apply(subgoal_tac "set1 \<subseteq> set (rsb @ [a])")
+ − 932
apply (simp only:)
+ − 933
apply(subgoal_tac "(rsb @ [a]) @ rdistinct rs set1 \<leadsto>g* (rsb @ [a]) @ rdistinct rs (insert a set1)")
+ − 934
apply (metis (no_types, opaque_lifting) append.assoc append_Cons append_Nil greal_trans)
+ − 935
apply (metis append.assoc empty_set grewrite_rdistinct_aux grewrites_append inf_sup_aci(5) insert_is_Un list.simps(15))
+ − 936
by auto
+ − 937
+ − 938
+ − 939
lemma subset_distinct_rewrite:
+ − 940
shows "set rsb' \<subseteq> set rsb \<Longrightarrow> rsb @ rs \<leadsto>g* rsb @ (rdistinct rs (set rsb'))"
+ − 941
by (simp add: subset_distinct_rewrite1)
+ − 942
+ − 943
+ − 944
+ − 945
lemma distinct_3list:
+ − 946
shows "rsb @ (rdistinct rs (set rsb)) @ rsa \<leadsto>g*
+ − 947
rsb @ (rdistinct rs (set rsb)) @ (rdistinct rsa (set rs))"
+ − 948
by (metis append.assoc list_dlist_union set_append subset_distinct_rewrite)
+ − 949
+ − 950
+ − 951
+ − 952
+ − 953
lemma grewrites_shape1:
+ − 954
shows " RALTS rs \<notin> set rsb \<Longrightarrow>
+ − 955
rsb @
+ − 956
RALTS rs #
+ − 957
rdistinct rsa
+ − 958
(
+ − 959
(set rsb)) \<leadsto>g* rsb @
+ − 960
rdistinct rs (set rsb) @
+ − 961
rdistinct (rflts (rdistinct rsa ( (set rsb \<union> set rs)))) (set rs)"
+ − 962
+ − 963
+ − 964
apply (subgoal_tac " rsb @
+ − 965
RALTS rs #
+ − 966
rdistinct rsa
+ − 967
(
+ − 968
(set rsb)) \<leadsto>g* rsb @
+ − 969
rs @
+ − 970
rdistinct rsa
+ − 971
(
+ − 972
(set rsb)) ")
+ − 973
prefer 2
+ − 974
using gr_in_rstar grewrite.intros(2) grewrites_append apply presburger
+ − 975
apply(subgoal_tac "rsb @ rs @ rdistinct rsa ( (set rsb)) \<leadsto>g* rsb @
+ − 976
(rdistinct rs (set rsb) @ rdistinct rsa ( (set rsb)))")
+ − 977
prefer 2
+ − 978
apply (metis append_assoc grewrites.intros(1) grewritess_concat gstar_rdistinct_general)
+ − 979
apply(subgoal_tac " rsb @ rdistinct rs (set rsb) @ rdistinct rsa ( (set rsb))
+ − 980
\<leadsto>g* rsb @ rdistinct rs (set rsb) @ rdistinct rsa ( (set rsb) \<union> (set rs))")
+ − 981
prefer 2
+ − 982
apply (smt (verit, best) append.assoc append_assoc boolean_algebra_cancel.sup2 grewrite_rdistinct_aux inf_sup_aci(5) insert_is_Un rdistinct_concat_general rdistinct_set_equality set_append sup.commute sup.right_idem sup_commute)
+ − 983
apply(subgoal_tac "rdistinct rsa ( (set rsb) \<union> set rs) \<leadsto>g*
+ − 984
rflts (rdistinct rsa ( (set rsb) \<union> set rs))")
+ − 985
apply(subgoal_tac "rsb @ (rdistinct rs (set rsb)) @ rflts (rdistinct rsa ( (set rsb) \<union> set rs)) \<leadsto>g*
+ − 986
rsb @ (rdistinct rs (set rsb)) @ (rdistinct (rflts (rdistinct rsa ( (set rsb) \<union> set rs))) (set rs))")
+ − 987
apply (smt (verit, ccfv_SIG) Un_insert_left greal_trans grewrites_append)
+ − 988
using distinct_3list apply presburger
+ − 989
using flts_gstar apply blast
+ − 990
done
+ − 991
+ − 992
lemma r_finite1:
+ − 993
shows "r = RALTS (r # rs) = False"
+ − 994
apply(induct r)
+ − 995
apply simp+
+ − 996
apply (metis list.set_intros(1))
+ − 997
by blast
+ − 998
+ − 999
+ − 1000
+ − 1001
lemma grewrite_singleton:
+ − 1002
shows "[r] \<leadsto>g r # rs \<Longrightarrow> rs = []"
+ − 1003
apply (induct "[r]" "r # rs" rule: grewrite.induct)
+ − 1004
apply simp
+ − 1005
apply (metis r_finite1)
+ − 1006
using grewrite.simps apply blast
+ − 1007
by simp
+ − 1008
+ − 1009
lemma impossible_grewrite1:
+ − 1010
shows "\<not>( [RONE] \<leadsto>g [])"
+ − 1011
using grewrite.cases by fastforce
+ − 1012
+ − 1013
+ − 1014
lemma impossible_grewrite2:
+ − 1015
shows "\<not> ([RALTS rs] \<leadsto>g (RALTS rs) # a # rs)"
+ − 1016
using grewrite_singleton by blast
+ − 1017
+ − 1018
+ − 1019
+ − 1020
479
+ − 1021
lemma wront_sublist_grewrites:
478
+ − 1022
shows "rs1 @ rs2 \<leadsto>g* rs1 @ rs3 \<Longrightarrow> rs2 \<leadsto>g* rs3"
+ − 1023
apply(induct rs1 arbitrary: rs2 rs3 rule: rev_induct)
+ − 1024
apply simp
+ − 1025
apply(drule_tac x = "[x] @ rs2" in meta_spec)
+ − 1026
apply(drule_tac x = "[x] @ rs3" in meta_spec)
+ − 1027
apply(simp)
+ − 1028
+ − 1029
oops
+ − 1030
+ − 1031
+ − 1032
+ − 1033
479
+ − 1034
lemma concat_rdistinct_equality1:
+ − 1035
shows "rdistinct (rs @ rsa) rset = rdistinct rs rset @ rdistinct rsa (rset \<union> (set rs))"
+ − 1036
apply(induct rs arbitrary: rsa rset)
478
+ − 1037
apply simp
479
+ − 1038
apply(case_tac "a \<in> rset")
+ − 1039
apply simp
+ − 1040
apply (simp add: insert_absorb)
+ − 1041
by auto
478
+ − 1042
480
+ − 1043
lemma middle_grewrites:
+ − 1044
"rs1 \<leadsto>g* rs2 \<Longrightarrow> rsa @ rs1 @ rsb \<leadsto>g* rsa @ rs2 @ rsb "
+ − 1045
by (simp add: grewritess_concat)
+ − 1046
+ − 1047
lemma rdistinct_removes_all:
+ − 1048
shows "set rs \<subseteq> rset \<Longrightarrow> rdistinct rs rset = []"
+ − 1049
+ − 1050
by (metis append.right_neutral rdistinct.simps(1) rdistinct_concat)
478
+ − 1051
479
+ − 1052
lemma ends_removal:
+ − 1053
shows " rsb @ rdistinct rs (set rsb) @ RALTS rs # rsc \<leadsto>g* rsb @ rdistinct rs (set rsb) @ rsc"
480
+ − 1054
apply(subgoal_tac "rsb @ rdistinct rs (set rsb) @ RALTS rs # rsc \<leadsto>g*
+ − 1055
rsb @ rdistinct rs (set rsb) @ rs @ rsc")
+ − 1056
apply(subgoal_tac "rsb @ rdistinct rs (set rsb) @ rs @ rsc \<leadsto>g*
+ − 1057
rsb @ rdistinct rs (set rsb) @ rdistinct rs (set (rsb @ rdistinct rs (set rsb))) @ rsc")
+ − 1058
apply (metis (full_types) append_Nil2 append_eq_appendI greal_trans list_dlist_union rdistinct_removes_all set_append)
+ − 1059
apply (metis append.assoc append_Nil gstar_rdistinct_general middle_grewrites)
+ − 1060
using gr_in_rstar grewrite.intros(2) grewrites_append by presburger
478
+ − 1061
479
+ − 1062
lemma grewrites_rev_append:
+ − 1063
shows "rs1 \<leadsto>g* rs2 \<Longrightarrow> rs1 @ [x] \<leadsto>g* rs2 @ [x]"
+ − 1064
using grewritess_concat by auto
478
+ − 1065
479
+ − 1066
lemma grewrites_inclusion:
+ − 1067
shows "set rs \<subseteq> set rs1 \<Longrightarrow> rs1 @ rs \<leadsto>g* rs1"
+ − 1068
apply(induct rs arbitrary: rs1)
+ − 1069
apply simp
+ − 1070
by (meson gmany_steps_later grewrite_variant1 list.set_intros(1) set_subset_Cons subset_code(1))
478
+ − 1071
479
+ − 1072
lemma distinct_keeps_last:
+ − 1073
shows "\<lbrakk>x \<notin> rset; x \<notin> set xs \<rbrakk> \<Longrightarrow> rdistinct (xs @ [x]) rset = rdistinct xs rset @ [x]"
+ − 1074
by (simp add: concat_rdistinct_equality1)
478
+ − 1075
480
+ − 1076
lemma grewrites_shape2_aux:
478
+ − 1077
shows " RALTS rs \<notin> set rsb \<Longrightarrow>
+ − 1078
rsb @
+ − 1079
rdistinct (rs @ rsa)
+ − 1080
(set rsb) \<leadsto>g* rsb @
+ − 1081
rdistinct rs (set rsb) @
479
+ − 1082
rdistinct rsa (set rs \<union> set rsb \<union> {RALTS rs})"
+ − 1083
apply(subgoal_tac " rdistinct (rs @ rsa) (set rsb) = rdistinct rs (set rsb) @ rdistinct rsa (set rs \<union> set rsb)")
+ − 1084
apply (simp only:)
+ − 1085
prefer 2
+ − 1086
apply (simp add: Un_commute concat_rdistinct_equality1)
+ − 1087
apply(induct rsa arbitrary: rs rsb rule: rev_induct)
+ − 1088
apply simp
+ − 1089
apply(case_tac "x \<in> set rs")
+ − 1090
apply (simp add: distinct_removes_middle3)
+ − 1091
apply(case_tac "x = RALTS rs")
+ − 1092
apply simp
+ − 1093
apply(case_tac "x \<in> set rsb")
+ − 1094
apply simp
+ − 1095
apply (simp add: concat_rdistinct_equality1)
+ − 1096
apply (simp add: concat_rdistinct_equality1)
+ − 1097
apply simp
+ − 1098
apply(drule_tac x = "rs " in meta_spec)
+ − 1099
apply(drule_tac x = rsb in meta_spec)
+ − 1100
apply simp
+ − 1101
apply(subgoal_tac " rsb @ rdistinct rs (set rsb) @ rdistinct xs (set rs \<union> set rsb) \<leadsto>g* rsb @ rdistinct rs (set rsb) @ rdistinct xs (insert (RALTS rs) (set rs \<union> set rsb))")
+ − 1102
prefer 2
+ − 1103
apply (simp add: concat_rdistinct_equality1)
+ − 1104
apply(case_tac "x \<in> set xs")
+ − 1105
apply simp
+ − 1106
apply (simp add: distinct_removes_last2)
+ − 1107
apply(case_tac "x \<in> set rsb")
+ − 1108
apply (smt (verit, ccfv_threshold) Un_iff append.right_neutral concat_rdistinct_equality1 insert_is_Un rdistinct.simps(2))
+ − 1109
apply(subgoal_tac "rsb @ rdistinct rs (set rsb) @ rdistinct (xs @ [x]) (set rs \<union> set rsb) = rsb @ rdistinct rs (set rsb) @ rdistinct xs (set rs \<union> set rsb) @ [x]")
+ − 1110
apply(simp only:)
+ − 1111
apply(case_tac "x = RALTS rs")
+ − 1112
apply(subgoal_tac "rsb @ rdistinct rs (set rsb) @ rdistinct xs (set rs \<union> set rsb) @ [x] \<leadsto>g* rsb @ rdistinct rs (set rsb) @ rdistinct xs (set rs \<union> set rsb) @ rs")
+ − 1113
apply(subgoal_tac "rsb @ rdistinct rs (set rsb) @ rdistinct xs (set rs \<union> set rsb) @ rs \<leadsto>g* rsb @ rdistinct rs (set rsb) @ rdistinct xs (set rs \<union> set rsb) ")
+ − 1114
apply (smt (verit, ccfv_SIG) Un_insert_left append.right_neutral concat_rdistinct_equality1 greal_trans insert_iff rdistinct.simps(2))
+ − 1115
apply(subgoal_tac "set rs \<subseteq> set ( rsb @ rdistinct rs (set rsb) @ rdistinct xs (set rs \<union> set rsb))")
+ − 1116
apply (metis append.assoc grewrites_inclusion)
+ − 1117
apply (metis Un_upper1 append.assoc dual_order.trans list_dlist_union set_append)
+ − 1118
apply (metis append_Nil2 gr_in_rstar grewrite.intros(2) grewrite_append)
+ − 1119
apply(subgoal_tac " rsb @ rdistinct rs (set rsb) @ rdistinct (xs @ [x]) (insert (RALTS rs) (set rs \<union> set rsb)) = rsb @ rdistinct rs (set rsb) @ rdistinct (xs) (insert (RALTS rs) (set rs \<union> set rsb)) @ [x]")
+ − 1120
apply(simp only:)
+ − 1121
apply (metis append.assoc grewrites_rev_append)
+ − 1122
apply (simp add: insert_absorb)
+ − 1123
apply (simp add: distinct_keeps_last)+
+ − 1124
done
478
+ − 1125
480
+ − 1126
lemma grewrites_shape2:
+ − 1127
shows " RALTS rs \<notin> set rsb \<Longrightarrow>
+ − 1128
rsb @
+ − 1129
rdistinct (rs @ rsa)
+ − 1130
(set rsb) \<leadsto>g* rflts rsb @
+ − 1131
rdistinct rs (set rsb) @
+ − 1132
rdistinct rsa (set rs \<union> set rsb \<union> {RALTS rs})"
+ − 1133
apply (meson flts_gstar greal_trans grewrites.simps grewrites_shape2_aux grewritess_concat)
+ − 1134
done
+ − 1135
479
+ − 1136
lemma rdistinct_add_acc:
+ − 1137
shows "rset2 \<subseteq> set rsb \<Longrightarrow> rsb @ rdistinct rs rset \<leadsto>g* rsb @ rdistinct rs (rset \<union> rset2)"
+ − 1138
apply(induct rs arbitrary: rsb rset rset2)
+ − 1139
apply simp
+ − 1140
apply (case_tac "a \<in> rset")
+ − 1141
apply simp
+ − 1142
apply(case_tac "a \<in> rset2")
480
+ − 1143
apply simp
+ − 1144
apply (simp add: more_distinct1)
479
+ − 1145
apply simp
+ − 1146
apply(drule_tac x = "rsb @ [a]" in meta_spec)
+ − 1147
by (metis Un_insert_left append.assoc append_Cons append_Nil set_append sup.coboundedI1)
+ − 1148
478
+ − 1149
479
+ − 1150
lemma frewrite_fun1:
+ − 1151
shows " RALTS rs \<in> set rsb \<Longrightarrow>
+ − 1152
rsb @ rdistinct rsa (set rsb) \<leadsto>g* rflts rsb @ rdistinct rsa (set rsb \<union> set rs)"
+ − 1153
apply(subgoal_tac "rsb @ rdistinct rsa (set rsb) \<leadsto>g* rflts rsb @ rdistinct rsa (set rsb)")
+ − 1154
apply(subgoal_tac " set rs \<subseteq> set (rflts rsb)")
+ − 1155
prefer 2
+ − 1156
using spilled_alts_contained apply blast
+ − 1157
apply(subgoal_tac "rflts rsb @ rdistinct rsa (set rsb) \<leadsto>g* rflts rsb @ rdistinct rsa (set rsb \<union> set rs)")
+ − 1158
using greal_trans apply blast
+ − 1159
using rdistinct_add_acc apply presburger
+ − 1160
using flts_gstar grewritess_concat by auto
+ − 1161
478
+ − 1162
+ − 1163
+ − 1164
476
+ − 1165
+ − 1166
lemma frewrite_rd_grewrites:
+ − 1167
shows "rs1 \<leadsto>f rs2 \<Longrightarrow>
478
+ − 1168
\<exists>rs3. (rs @ (rdistinct rs1 (set rs)) \<leadsto>g* rs3) \<and> (rs @ (rdistinct rs2 (set rs)) \<leadsto>g* rs3) "
+ − 1169
apply(induct rs1 rs2 arbitrary: rs rule: frewrite.induct)
+ − 1170
apply(rule_tac x = "rsa @ (rdistinct rs ({RZERO} \<union> set rsa))" in exI)
476
+ − 1171
apply(rule conjI)
478
+ − 1172
apply(case_tac "RZERO \<in> set rsa")
+ − 1173
apply simp+
+ − 1174
using gstar0 apply fastforce
+ − 1175
apply (simp add: gr_in_rstar grewrite.intros(1) grewrites_append)
+ − 1176
apply (simp add: gstar0)
+ − 1177
prefer 2
+ − 1178
apply(case_tac "r \<in> set rs")
+ − 1179
apply simp
+ − 1180
apply(drule_tac x = "rs @ [r]" in meta_spec)
+ − 1181
apply(erule exE)
+ − 1182
apply(rule_tac x = "rs3" in exI)
+ − 1183
apply simp
+ − 1184
apply(case_tac "RALTS rs \<in> set rsb")
+ − 1185
apply simp
479
+ − 1186
apply(rule_tac x = "rflts rsb @ rdistinct rsa (set rsb \<union> set rs)" in exI)
478
+ − 1187
apply(rule conjI)
479
+ − 1188
using frewrite_fun1 apply force
+ − 1189
apply (metis frewrite_fun1 rdistinct_concat sup_ge2)
478
+ − 1190
apply(simp)
+ − 1191
apply(rule_tac x =
480
+ − 1192
"rflts rsb @
479
+ − 1193
rdistinct rs (set rsb) @
+ − 1194
rdistinct rsa (set rs \<union> set rsb \<union> {RALTS rs})" in exI)
478
+ − 1195
apply(rule conjI)
+ − 1196
prefer 2
+ − 1197
using grewrites_shape2 apply force
480
+ − 1198
using frewrite_rd_grewrites_aux by blast
478
+ − 1199
473
+ − 1200
476
+ − 1201
+ − 1202
lemma frewrites_rd_grewrites:
+ − 1203
shows "rs1 \<leadsto>f* rs2 \<Longrightarrow>
478
+ − 1204
rsimp (RALTS rs1) = rsimp (RALTS rs2)"
476
+ − 1205
apply(induct rs1 rs2 rule: frewrites.induct)
+ − 1206
apply simp
479
+ − 1207
using frewrite_simpeq by presburger
476
+ − 1208
+ − 1209
lemma frewrite_simpeq2:
+ − 1210
shows "rs1 \<leadsto>f rs2 \<Longrightarrow> rsimp (RALTS (rdistinct rs1 {})) = rsimp (RALTS (rdistinct rs2 {}))"
478
+ − 1211
apply(subgoal_tac "\<exists> rs3. (rdistinct rs1 {} \<leadsto>g* rs3) \<and> (rdistinct rs2 {} \<leadsto>g* rs3)")
+ − 1212
using grewrites_equal_rsimp apply fastforce
479
+ − 1213
by (metis append_self_conv2 frewrite_rd_grewrites list.set(1))
+ − 1214
+ − 1215
+ − 1216
478
+ − 1217
492
+ − 1218
(*a more refined notion of h\<leadsto>* is needed,
473
+ − 1219
this lemma fails when rs1 contains some RALTS rs where elements
+ − 1220
of rs appear in later parts of rs1, which will be picked up by rs2
+ − 1221
and deduplicated*)
476
+ − 1222
lemma frewrites_simpeq:
473
+ − 1223
shows "rs1 \<leadsto>f* rs2 \<Longrightarrow>
476
+ − 1224
rsimp (RALTS (rdistinct rs1 {})) = rsimp (RALTS ( rdistinct rs2 {})) "
+ − 1225
apply(induct rs1 rs2 rule: frewrites.induct)
+ − 1226
apply simp
478
+ − 1227
using frewrite_simpeq2 by presburger
476
+ − 1228
473
+ − 1229
+ − 1230
lemma frewrite_single_step:
+ − 1231
shows " rs2 \<leadsto>f rs3 \<Longrightarrow> rsimp (RALTS rs2) = rsimp (RALTS rs3)"
+ − 1232
apply(induct rs2 rs3 rule: frewrite.induct)
+ − 1233
apply simp
+ − 1234
using simp_flatten apply blast
+ − 1235
by (metis (no_types, opaque_lifting) list.simps(9) rsimp.simps(2) simp_flatten2)
+ − 1236
+ − 1237
lemma frewrites_equivalent_simp:
+ − 1238
shows "rs1 \<leadsto>f* rs2 \<Longrightarrow> rsimp (RALTS rs1) = rsimp (RALTS rs2)"
+ − 1239
apply(induct rs1 rs2 rule: frewrites.induct)
+ − 1240
apply simp
+ − 1241
using frewrite_single_step by presburger
+ − 1242
476
+ − 1243
lemma grewrite_simpalts:
+ − 1244
shows " rs2 \<leadsto>g rs3 \<Longrightarrow> rsimp (rsimp_ALTs rs2) = rsimp (rsimp_ALTs rs3)"
+ − 1245
apply(induct rs2 rs3 rule : grewrite.induct)
+ − 1246
using identity_wwo0 apply presburger
+ − 1247
apply (metis frewrite.intros(1) frewrite_single_step identity_wwo0 rsimp_ALTs.simps(3) simp_flatten)
+ − 1248
apply (smt (verit, ccfv_SIG) gmany_steps_later grewrites.intros(1) grewrites_cons grewrites_equal_rsimp identity_wwo0 rsimp_ALTs.simps(3))
+ − 1249
apply simp
+ − 1250
apply(subst rsimp_alts_equal)
+ − 1251
apply(case_tac "rsa = [] \<and> rsb = [] \<and> rsc = []")
+ − 1252
apply(subgoal_tac "rsa @ a # rsb @ rsc = [a]")
+ − 1253
apply (simp only:)
+ − 1254
apply (metis append_Nil frewrite.intros(1) frewrite_single_step identity_wwo0 rsimp_ALTs.simps(3) simp_removes_duplicate1(2))
+ − 1255
apply simp
+ − 1256
by (smt (verit, best) append.assoc append_Cons frewrite.intros(1) frewrite_single_step identity_wwo0 in_set_conv_decomp rsimp_ALTs.simps(3) simp_removes_duplicate3)
+ − 1257
+ − 1258
+ − 1259
lemma grewrites_simpalts:
+ − 1260
shows " rs2 \<leadsto>g* rs3 \<Longrightarrow> rsimp (rsimp_ALTs rs2) = rsimp (rsimp_ALTs rs3)"
+ − 1261
apply(induct rs2 rs3 rule: grewrites.induct)
+ − 1262
apply simp
+ − 1263
using grewrite_simpalts by presburger
473
+ − 1264
476
+ − 1265
473
+ − 1266
+ − 1267
+ − 1268
467
+ − 1269
lemma simp_der_flts:
471
+ − 1270
shows "rsimp (RALTS (rdistinct (map (rder x) (rflts rs)) {})) =
+ − 1271
rsimp (RALTS (rdistinct (rflts (map (rder x) rs)) {}))"
473
+ − 1272
apply(subgoal_tac "map (rder x) (rflts rs) \<leadsto>f* rflts (map (rder x) rs)")
478
+ − 1273
using frewrites_simpeq apply presburger
+ − 1274
using early_late_der_frewrites by auto
+ − 1275
+ − 1276
476
+ − 1277
+ − 1278
+ − 1279
+ − 1280
+ − 1281
+ − 1282
+ − 1283
+ − 1284
+ − 1285
lemma simp_der_pierce_flts_prelim:
+ − 1286
shows "rsimp (rsimp_ALTs (rdistinct (map (rder x) (rflts rs)) {}))
+ − 1287
= rsimp (rsimp_ALTs (rdistinct (rflts (map (rder x) rs)) {}))"
478
+ − 1288
by (metis append.right_neutral grewrite.intros(2) grewrite_simpalts rsimp_ALTs.simps(2) simp_der_flts)
467
+ − 1289
+ − 1290
465
+ − 1291
lemma simp_der_pierce_flts:
471
+ − 1292
shows " rsimp (
+ − 1293
rsimp_ALTs (rdistinct (map (rder x) (rflts (map (rsimp \<circ> (\<lambda>r. rders_simp r xs)) rs))) {})
+ − 1294
) =
+ − 1295
rsimp (
+ − 1296
rsimp_ALTs (rdistinct (rflts (map (rder x) (map (rsimp \<circ> (\<lambda>r. rders_simp r xs)) rs))) {})
+ − 1297
)"
476
+ − 1298
using simp_der_pierce_flts_prelim by presburger
465
+ − 1299
453
+ − 1300
+ − 1301
+ − 1302
lemma simp_more_distinct:
465
+ − 1303
shows "rsimp (rsimp_ALTs (rsa @ rs)) = rsimp (rsimp_ALTs (rsa @ (rdistinct rs (set rsa)))) "
480
+ − 1304
oops
465
+ − 1305
453
+ − 1306
+ − 1307
lemma non_empty_list:
+ − 1308
shows "a \<in> set as \<Longrightarrow> as \<noteq> []"
+ − 1309
by (metis empty_iff empty_set)
+ − 1310
456
+ − 1311
lemma distinct_comp:
+ − 1312
shows "rdistinct (rs1@rs2) {} = (rdistinct rs1 {}) @ (rdistinct rs2 (set rs1))"
+ − 1313
apply(induct rs2 arbitrary: rs1)
+ − 1314
apply simp
+ − 1315
apply(subgoal_tac "rs1 @ a # rs2 = (rs1 @ [a]) @ rs2")
+ − 1316
apply(simp only:)
+ − 1317
apply(case_tac "a \<in> set rs1")
+ − 1318
apply simp
+ − 1319
oops
453
+ − 1320
456
+ − 1321
lemma instantiate1:
+ − 1322
shows "\<lbrakk>\<And>ab rset1. rdistinct (ab # as) rset1 = rdistinct (ab # as @ [ab]) rset1\<rbrakk> \<Longrightarrow>
+ − 1323
rdistinct (aa # as) rset = rdistinct (aa # as @ [aa]) rset"
+ − 1324
apply(drule_tac x = "aa" in meta_spec)
+ − 1325
apply(drule_tac x = "rset" in meta_spec)
453
+ − 1326
apply simp
456
+ − 1327
done
+ − 1328
+ − 1329
+ − 1330
lemma not_head_elem:
+ − 1331
shows " \<lbrakk>aa \<in> set (a # as); aa \<notin> (set as)\<rbrakk> \<Longrightarrow> a = aa"
+ − 1332
+ − 1333
by fastforce
+ − 1334
+ − 1335
(*
+ − 1336
apply simp
+ − 1337
apply (metis append_Cons)
+ − 1338
apply(case_tac "ab \<in> rset1")
+ − 1339
apply (metis (no_types, opaque_lifting) Un_insert_left append_Cons insert_iff rdistinct.simps(2) sup_bot_left)
+ − 1340
apply(subgoal_tac "rdistinct (ab # (aa # as) @ [ab]) rset1 =
+ − 1341
ab # (rdistinct ((aa # as) @ [ab]) (insert ab rset1))")
+ − 1342
apply(simp only:)
+ − 1343
apply(subgoal_tac "rdistinct (ab # aa # as) rset1 = ab # (rdistinct (aa # as) (insert ab rset1))")
+ − 1344
apply(simp only:)
+ − 1345
apply(subgoal_tac "rdistinct ((aa # as) @ [ab]) (insert ab rset1) = rdistinct (aa # as) (insert ab rset1)")
+ − 1346
apply blast
+ − 1347
*)
+ − 1348
453
+ − 1349
+ − 1350
lemma flts_identity1:
+ − 1351
shows "rflts (rs @ [RONE]) = rflts rs @ [RONE] "
+ − 1352
apply(induct rs)
+ − 1353
apply simp+
+ − 1354
apply(case_tac a)
+ − 1355
apply simp
+ − 1356
apply simp+
+ − 1357
done
+ − 1358
+ − 1359
lemma flts_identity10:
+ − 1360
shows " rflts (rs @ [RCHAR c]) = rflts rs @ [RCHAR c]"
+ − 1361
apply(induct rs)
+ − 1362
apply simp+
+ − 1363
apply(case_tac a)
+ − 1364
apply simp+
+ − 1365
done
+ − 1366
+ − 1367
lemma flts_identity11:
+ − 1368
shows " rflts (rs @ [RSEQ r1 r2]) = rflts rs @ [RSEQ r1 r2]"
+ − 1369
apply(induct rs)
+ − 1370
apply simp+
+ − 1371
apply(case_tac a)
+ − 1372
apply simp+
+ − 1373
done
+ − 1374
+ − 1375
lemma flts_identity12:
+ − 1376
shows " rflts (rs @ [RSTAR r0]) = rflts rs @ [RSTAR r0]"
+ − 1377
apply(induct rs)
+ − 1378
apply simp+
+ − 1379
apply(case_tac a)
+ − 1380
apply simp+
+ − 1381
done
+ − 1382
+ − 1383
lemma flts_identity2:
+ − 1384
shows "a \<noteq> RZERO \<and> (\<forall>rs. a \<noteq> RALTS rs) \<Longrightarrow> rflts (rs @ [a]) = rflts rs @ [a]"
+ − 1385
apply(case_tac a)
+ − 1386
apply simp
+ − 1387
using flts_identity1 apply auto[1]
+ − 1388
using flts_identity10 apply blast
+ − 1389
using flts_identity11 apply auto[1]
+ − 1390
apply blast
+ − 1391
using flts_identity12 by presburger
456
+ − 1392
+ − 1393
lemma flts_identity3:
+ − 1394
shows "a = RZERO \<Longrightarrow> rflts (rs @ [a]) = rflts rs"
+ − 1395
apply simp
+ − 1396
apply(induct rs)
+ − 1397
apply simp+
+ − 1398
apply(case_tac aa)
+ − 1399
apply simp+
+ − 1400
done
+ − 1401
+ − 1402
lemma distinct_removes_last3:
465
+ − 1403
shows "\<lbrakk>a \<in> set as\<rbrakk>
456
+ − 1404
\<Longrightarrow> rdistinct as {} = rdistinct (as @ [a]) {}"
465
+ − 1405
by (simp add: distinct_removes_last2)
456
+ − 1406
+ − 1407
lemma set_inclusion_with_flts1:
+ − 1408
shows " \<lbrakk>RONE \<in> set rs\<rbrakk> \<Longrightarrow> RONE \<in> set (rflts rs)"
+ − 1409
apply(induct rs)
+ − 1410
apply simp
+ − 1411
apply(case_tac " RONE \<in> set rs")
+ − 1412
apply simp
+ − 1413
apply (metis Un_upper2 insert_absorb insert_subset list.set_intros(2) rflts.simps(2) rflts.simps(3) rflts_def_idiot set_append)
+ − 1414
apply(case_tac "RONE = a")
+ − 1415
apply simp
+ − 1416
apply simp
+ − 1417
done
+ − 1418
+ − 1419
lemma set_inclusion_with_flts10:
+ − 1420
shows " \<lbrakk>RCHAR x \<in> set rs\<rbrakk> \<Longrightarrow> RCHAR x \<in> set (rflts rs)"
+ − 1421
apply(induct rs)
+ − 1422
apply simp
+ − 1423
apply(case_tac " RCHAR x \<in> set rs")
+ − 1424
apply simp
+ − 1425
apply (metis Un_upper2 insert_absorb insert_subset rflts.simps(2) rflts.simps(3) rflts_def_idiot set_append set_subset_Cons)
+ − 1426
apply(case_tac "RCHAR x = a")
+ − 1427
apply simp
+ − 1428
apply fastforce
+ − 1429
apply simp
+ − 1430
done
+ − 1431
+ − 1432
lemma set_inclusion_with_flts11:
+ − 1433
shows " \<lbrakk>RSEQ r1 r2 \<in> set rs\<rbrakk> \<Longrightarrow> RSEQ r1 r2 \<in> set (rflts rs)"
+ − 1434
apply(induct rs)
+ − 1435
apply simp
+ − 1436
apply(case_tac " RSEQ r1 r2 \<in> set rs")
+ − 1437
apply simp
+ − 1438
apply (metis Un_upper2 insert_absorb insert_subset rflts.simps(2) rflts.simps(3) rflts_def_idiot set_append set_subset_Cons)
+ − 1439
apply(case_tac "RSEQ r1 r2 = a")
+ − 1440
apply simp
+ − 1441
apply fastforce
+ − 1442
apply simp
+ − 1443
done
+ − 1444
+ − 1445
+ − 1446
lemma set_inclusion_with_flts:
+ − 1447
shows " \<lbrakk>a \<in> set as; rsimp a \<in> set (map rsimp as); rsimp a = RONE\<rbrakk> \<Longrightarrow> rsimp a \<in> set (rflts (map rsimp as))"
+ − 1448
by (simp add: set_inclusion_with_flts1)
453
+ − 1449
480
+ − 1450
lemma can_spill_lst:"\<And>x5. \<lbrakk>a \<in> set as; rsimp a \<in> set (map rsimp as); rsimp a = RALTS x5\<rbrakk>
456
+ − 1451
\<Longrightarrow> rsimp_ALTs (rdistinct (rflts (map rsimp as @ [rsimp a])) {}) =
+ − 1452
rsimp_ALTs (rdistinct (rflts (map rsimp as @ x5)) {})"
480
+ − 1453
+ − 1454
using flts_append rflts_spills_last rsimp_inner_idem4 by presburger
+ − 1455
+ − 1456
+ − 1457
+ − 1458
+ − 1459
+ − 1460
lemma common_rewrites_equal:
+ − 1461
shows "(rs1 \<leadsto>g* rs3) \<and> (rs2 \<leadsto>g* rs3) \<Longrightarrow> rsimp (rsimp_ALTs rs1 ) = rsimp (rsimp_ALTs rs2)"
+ − 1462
using grewrites_simpalts by force
+ − 1463
+ − 1464
+ − 1465
lemma basic_regex_property1:
+ − 1466
shows "rnullable r \<Longrightarrow> rsimp r \<noteq> RZERO"
484
+ − 1467
apply(induct r rule: rsimp.induct)
+ − 1468
apply(auto)
+ − 1469
apply (metis idiot idiot2 rrexp.distinct(5))
+ − 1470
by (metis der_simp_nullability rnullable.simps(1) rnullable.simps(4) rsimp.simps(2))
480
+ − 1471
+ − 1472
+ − 1473
thm rsimp_SEQ.elims
+ − 1474
+ − 1475
+ − 1476
lemma basic_rsimp_SEQ_property2:
+ − 1477
shows "\<lbrakk>r1 \<noteq> RZERO ; r1 \<noteq> RONE; r2 \<noteq> RZERO\<rbrakk> \<Longrightarrow>rsimp_SEQ r1 r2 = RSEQ r1 r2"
+ − 1478
apply(case_tac r1)
+ − 1479
apply simp+
+ − 1480
apply (simp add: idiot2)
+ − 1481
using idiot2 apply blast
+ − 1482
using idiot2 apply auto[1]
+ − 1483
using idiot2 by blast
+ − 1484
+ − 1485
+ − 1486
(*
+ − 1487
lemma rderssimp_same_rewrites_rder_induct1:
+ − 1488
shows "\<lbrakk> ([rder x (rsimp r1)] \<leadsto>g* rs1) \<and> ([rder x r1] \<leadsto>g* rs1) ;
+ − 1489
([rder x (rsimp r2)] \<leadsto>g* rs2) \<and> ([rder x r2] \<leadsto>g* rs2) \<rbrakk> \<Longrightarrow>
+ − 1490
\<exists>rs3. ([rder x (rsimp (RSEQ r1 r2))] \<leadsto>g* rs3) \<and> ([rder x (RSEQ r1 r2)] \<leadsto>g* rs3) "
+ − 1491
sorry
+ − 1492
+ − 1493
lemma rderssimp_same_rewrites_rder_induct2:
+ − 1494
shows "\<lbrakk> ([rder x (rsimp r1)] \<leadsto>g* rs1) \<and> ([rder x r1] \<leadsto>g* rs1) \<rbrakk> \<Longrightarrow>
+ − 1495
\<exists>rs3. ([rder x (rsimp (RSTAR r1))] \<leadsto>g* rs3) \<and> ([rder x (RSTAR r1)] \<leadsto>g* rs3) "
+ − 1496
sorry
+ − 1497
+ − 1498
lemma rderssimp_same_rewrites_rder_induct3:
+ − 1499
shows "\<lbrakk> ([rder x (rsimp r1)] \<leadsto>g* rs1) \<and> ([rder x r1] \<leadsto>g* rs1) ;
+ − 1500
([rder x (rsimp r2)] \<leadsto>g* rs2) \<and> ([rder x r2] \<leadsto>g* rs2) \<rbrakk> \<Longrightarrow>
+ − 1501
\<exists>rs3. ([rder x (rsimp (RALT r1 r2))] \<leadsto>g* rs3) \<and> ([rder x (RALT r1 r2)] \<leadsto>g* rs3) "
+ − 1502
sorry
+ − 1503
+ − 1504
lemma rderssimp_same_rewrites_rder_induct4:
+ − 1505
shows "\<lbrakk>\<forall>r \<in> set rs. \<exists> rsa. ([rder x (rsimp r)] \<leadsto>g* rsa ) \<and> ([rder x r] \<leadsto>g* rsa) \<rbrakk> \<Longrightarrow>
+ − 1506
\<exists>rsb. ([rder x (rsimp (RALTS rs))] \<leadsto>g* rsb) \<and> ([rder x (RALTS rs)] \<leadsto>g* rsb) "
+ − 1507
sorry
+ − 1508
+ − 1509
lemma rderssimp_same_rewrites_rder_base1:
+ − 1510
shows "([rder x (rsimp RONE)] \<leadsto>g* [] ) \<and> ([rder x RONE] \<leadsto>g* [])"
+ − 1511
by (simp add: gr_in_rstar grewrite.intros(1))
+ − 1512
+ − 1513
lemma rderssimp_same_rewrites_rder_base2:
+ − 1514
shows " ([rder x (rsimp RZERO)] \<leadsto>g* [] ) \<and> ([rder x RZERO] \<leadsto>g* [])"
+ − 1515
using rderssimp_same_rewrites_rder_base1 by auto
+ − 1516
+ − 1517
lemma rderssimp_same_rewrites_rder_base3:
+ − 1518
shows " ([rder x (rsimp (RCHAR c))] \<leadsto>g* [] ) \<and> ([rder x (RCHAR c)] \<leadsto>g* [])"
+ − 1519
sorry
+ − 1520
*)
+ − 1521
+ − 1522
lemma inside_simp_seq_nullable:
+ − 1523
shows
+ − 1524
"\<And>r1 r2.
+ − 1525
\<lbrakk>rsimp (rder x (rsimp r1)) = rsimp (rder x r1); rsimp (rder x (rsimp r2)) = rsimp (rder x r2);
+ − 1526
rnullable r1\<rbrakk>
+ − 1527
\<Longrightarrow> rsimp (rder x (rsimp_SEQ (rsimp r1) (rsimp r2))) =
+ − 1528
rsimp_ALTs (rdistinct (rflts [rsimp_SEQ (rsimp (rder x r1)) (rsimp r2), rsimp (rder x r2)]) {})"
+ − 1529
apply(case_tac "rsimp r1 = RONE")
+ − 1530
apply(simp)
+ − 1531
apply(subst basic_rsimp_SEQ_property1)
+ − 1532
apply (simp add: idem_after_simp1)
+ − 1533
apply(case_tac "rsimp r1 = RZERO")
+ − 1534
+ − 1535
using basic_regex_property1 apply blast
+ − 1536
apply(case_tac "rsimp r2 = RZERO")
+ − 1537
+ − 1538
apply (simp add: basic_rsimp_SEQ_property3)
+ − 1539
apply(subst basic_rsimp_SEQ_property2)
+ − 1540
apply simp+
+ − 1541
apply(subgoal_tac "rnullable (rsimp r1)")
+ − 1542
apply simp
+ − 1543
using rsimp_idem apply presburger
482
+ − 1544
using der_simp_nullability by presburger
+ − 1545
456
+ − 1546
482
+ − 1547
+ − 1548
lemma grewrite_ralts:
492
+ − 1549
shows "rs \<leadsto>g rs' \<Longrightarrow> RALTS rs h\<leadsto>* RALTS rs'"
482
+ − 1550
by (smt (verit) grewrite_cases_middle hr_in_rstar hrewrite.intros(11) hrewrite.intros(7) hrewrite.intros(8))
+ − 1551
+ − 1552
lemma grewrites_ralts:
492
+ − 1553
shows "rs \<leadsto>g* rs' \<Longrightarrow> RALTS rs h\<leadsto>* RALTS rs'"
488
+ − 1554
apply(induct rule: grewrites.induct)
482
+ − 1555
apply simp
+ − 1556
using grewrite_ralts hreal_trans by blast
488
+ − 1557
+ − 1558
+ − 1559
lemma distinct_grewrites_subgoal1:
+ − 1560
shows "
492
+ − 1561
\<lbrakk>rs1 \<leadsto>g* [a]; RALTS rs1 h\<leadsto>* a; [a] \<leadsto>g rs3\<rbrakk> \<Longrightarrow> RALTS rs1 h\<leadsto>* rsimp_ALTs rs3"
+ − 1562
apply(subgoal_tac "RALTS rs1 h\<leadsto>* RALTS rs3")
488
+ − 1563
apply (metis hrewrite.intros(10) hrewrite.intros(9) rs2 rsimp_ALTs.cases rsimp_ALTs.simps(1) rsimp_ALTs.simps(2) rsimp_ALTs.simps(3))
+ − 1564
apply(subgoal_tac "rs1 \<leadsto>g* rs3")
+ − 1565
using grewrites_ralts apply blast
+ − 1566
using grewrites.intros(2) by presburger
+ − 1567
+ − 1568
+ − 1569
+ − 1570
482
+ − 1571
+ − 1572
+ − 1573
lemma grewrites_ralts_rsimpalts:
492
+ − 1574
shows "rs \<leadsto>g* rs' \<Longrightarrow> RALTS rs h\<leadsto>* rsimp_ALTs rs' "
482
+ − 1575
apply(induct rs rs' rule: grewrites.induct)
+ − 1576
apply(case_tac rs)
+ − 1577
using hrewrite.intros(9) apply force
+ − 1578
apply(case_tac list)
+ − 1579
apply simp
+ − 1580
using hr_in_rstar hrewrite.intros(10) rsimp_ALTs.simps(2) apply presburger
+ − 1581
apply simp
+ − 1582
apply(case_tac rs2)
+ − 1583
apply simp
+ − 1584
apply (metis grewrite.intros(3) grewrite_singleton rsimp_ALTs.simps(1))
+ − 1585
apply(case_tac list)
+ − 1586
apply(simp)
+ − 1587
using distinct_grewrites_subgoal1 apply blast
+ − 1588
apply simp
+ − 1589
apply(case_tac rs3)
+ − 1590
apply simp
+ − 1591
using grewrites_ralts hrewrite.intros(9) apply blast
+ − 1592
by (metis (no_types, opaque_lifting) grewrite_ralts hr_in_rstar hreal_trans hrewrite.intros(10) neq_Nil_conv rsimp_ALTs.simps(2) rsimp_ALTs.simps(3))
+ − 1593
484
+ − 1594
lemma hrewrites_alts:
492
+ − 1595
shows " r h\<leadsto>* r' \<Longrightarrow> (RALTS (rs1 @ [r] @ rs2)) h\<leadsto>* (RALTS (rs1 @ [r'] @ rs2))"
484
+ − 1596
apply(induct r r' rule: hrewrites.induct)
+ − 1597
apply simp
+ − 1598
using hrewrite.intros(6) by blast
+ − 1599
+ − 1600
inductive
+ − 1601
srewritescf:: "rrexp list \<Rightarrow> rrexp list \<Rightarrow> bool" (" _ scf\<leadsto>* _" [100, 100] 100)
+ − 1602
where
+ − 1603
ss1: "[] scf\<leadsto>* []"
492
+ − 1604
| ss2: "\<lbrakk>r h\<leadsto>* r'; rs scf\<leadsto>* rs'\<rbrakk> \<Longrightarrow> (r#rs) scf\<leadsto>* (r'#rs')"
484
+ − 1605
+ − 1606
+ − 1607
lemma hrewrites_alts_cons:
492
+ − 1608
shows " RALTS rs h\<leadsto>* RALTS rs' \<Longrightarrow> RALTS (r # rs) h\<leadsto>* RALTS (r # rs')"
484
+ − 1609
+ − 1610
+ − 1611
oops
+ − 1612
+ − 1613
492
+ − 1614
lemma srewritescf_alt: "rs1 scf\<leadsto>* rs2 \<Longrightarrow> (RALTS (rs@rs1)) h\<leadsto>* (RALTS (rs@rs2))"
484
+ − 1615
+ − 1616
apply(induct rs1 rs2 arbitrary: rs rule: srewritescf.induct)
+ − 1617
apply(rule rs1)
+ − 1618
apply(drule_tac x = "rsa@[r']" in meta_spec)
+ − 1619
apply simp
+ − 1620
apply(rule hreal_trans)
+ − 1621
prefer 2
+ − 1622
apply(assumption)
+ − 1623
apply(drule hrewrites_alts)
+ − 1624
by auto
+ − 1625
+ − 1626
+ − 1627
corollary srewritescf_alt1:
+ − 1628
assumes "rs1 scf\<leadsto>* rs2"
492
+ − 1629
shows "RALTS rs1 h\<leadsto>* RALTS rs2"
484
+ − 1630
using assms
+ − 1631
by (metis append_Nil srewritescf_alt)
+ − 1632
+ − 1633
+ − 1634
+ − 1635
+ − 1636
lemma trivialrsimp_srewrites:
492
+ − 1637
"\<lbrakk>\<And>x. x \<in> set rs \<Longrightarrow> x h\<leadsto>* f x \<rbrakk> \<Longrightarrow> rs scf\<leadsto>* (map f rs)"
484
+ − 1638
+ − 1639
apply(induction rs)
+ − 1640
apply simp
+ − 1641
apply(rule ss1)
+ − 1642
by (metis insert_iff list.simps(15) list.simps(9) srewritescf.simps)
+ − 1643
+ − 1644
lemma hrewrites_list:
+ − 1645
shows
492
+ − 1646
" (\<And>xa. xa \<in> set x \<Longrightarrow> xa h\<leadsto>* rsimp xa) \<Longrightarrow> RALTS x h\<leadsto>* RALTS (map rsimp x)"
484
+ − 1647
apply(induct x)
+ − 1648
apply(simp)+
+ − 1649
by (simp add: srewritescf_alt1 ss2 trivialrsimp_srewrites)
492
+ − 1650
(* apply(subgoal_tac "RALTS x h\<leadsto>* RALTS (map rsimp x)")*)
484
+ − 1651
+ − 1652
489
+ − 1653
lemma hrewrite_simpeq:
492
+ − 1654
shows "r1 h\<leadsto> r2 \<Longrightarrow> rsimp r1 = rsimp r2"
489
+ − 1655
apply(induct rule: hrewrite.induct)
+ − 1656
apply simp+
+ − 1657
apply (simp add: basic_rsimp_SEQ_property3)
+ − 1658
apply (simp add: basic_rsimp_SEQ_property1)
+ − 1659
using rsimp.simps(1) apply presburger
+ − 1660
apply simp+
+ − 1661
using flts_middle0 apply force
+ − 1662
+ − 1663
+ − 1664
using simp_flatten3 apply presburger
+ − 1665
+ − 1666
apply simp+
+ − 1667
apply (simp add: idem_after_simp1)
+ − 1668
using grewrite.intros(4) grewrite_equal_rsimp by presburger
+ − 1669
+ − 1670
lemma hrewrites_simpeq:
492
+ − 1671
shows "r1 h\<leadsto>* r2 \<Longrightarrow> rsimp r1 = rsimp r2"
489
+ − 1672
apply(induct rule: hrewrites.induct)
+ − 1673
apply simp
+ − 1674
apply(subgoal_tac "rsimp r2 = rsimp r3")
+ − 1675
apply auto[1]
+ − 1676
using hrewrite_simpeq by presburger
+ − 1677
482
+ − 1678
+ − 1679
+ − 1680
lemma simp_hrewrites:
492
+ − 1681
shows "r1 h\<leadsto>* rsimp r1"
482
+ − 1682
apply(induct r1)
+ − 1683
apply simp+
+ − 1684
apply(case_tac "rsimp r11 = RONE")
+ − 1685
apply simp
+ − 1686
apply(subst basic_rsimp_SEQ_property1)
492
+ − 1687
apply(subgoal_tac "RSEQ r11 r12 h\<leadsto>* RSEQ RONE r12")
482
+ − 1688
using hreal_trans hrewrite.intros(3) apply blast
+ − 1689
using hrewrites_seq_context apply presburger
+ − 1690
apply(case_tac "rsimp r11 = RZERO")
+ − 1691
apply simp
+ − 1692
using hrewrite.intros(1) hrewrites_seq_context apply blast
+ − 1693
apply(case_tac "rsimp r12 = RZERO")
+ − 1694
apply simp
+ − 1695
apply(subst basic_rsimp_SEQ_property3)
+ − 1696
apply (meson hrewrite.intros(2) hrewrites.simps hrewrites_seq_context2)
+ − 1697
apply(subst basic_rsimp_SEQ_property2)
+ − 1698
apply simp+
+ − 1699
using hrewrites_seq_contexts apply presburger
+ − 1700
apply simp
492
+ − 1701
apply(subgoal_tac "RALTS x h\<leadsto>* RALTS (map rsimp x)")
+ − 1702
apply(subgoal_tac "RALTS (map rsimp x) h\<leadsto>* rsimp_ALTs (rdistinct (rflts (map rsimp x)) {}) ")
482
+ − 1703
using hreal_trans apply blast
+ − 1704
apply (meson flts_gstar greal_trans grewrites_ralts_rsimpalts gstar_rdistinct)
484
+ − 1705
+ − 1706
apply (simp add: grewrites_ralts hrewrites_list)
+ − 1707
by simp
+ − 1708
+ − 1709
lemma interleave_aux1:
492
+ − 1710
shows " RALT (RSEQ RZERO r1) r h\<leadsto>* r"
+ − 1711
apply(subgoal_tac "RSEQ RZERO r1 h\<leadsto>* RZERO")
+ − 1712
apply(subgoal_tac "RALT (RSEQ RZERO r1) r h\<leadsto>* RALT RZERO r")
485
+ − 1713
apply (meson grewrite.intros(1) grewrite_ralts hreal_trans hrewrite.intros(10) hrewrites.simps)
+ − 1714
using rs1 srewritescf_alt1 ss1 ss2 apply presburger
484
+ − 1715
by (simp add: hr_in_rstar hrewrite.intros(1))
+ − 1716
485
+ − 1717
+ − 1718
484
+ − 1719
lemma rnullable_hrewrite:
492
+ − 1720
shows "r1 h\<leadsto> r2 \<Longrightarrow> rnullable r1 = rnullable r2"
488
+ − 1721
apply(induct rule: hrewrite.induct)
+ − 1722
apply simp+
+ − 1723
apply blast
+ − 1724
apply simp+
+ − 1725
done
465
+ − 1726
453
+ − 1727
484
+ − 1728
lemma interleave1:
492
+ − 1729
shows "r h\<leadsto> r' \<Longrightarrow> rder c r h\<leadsto>* rder c r'"
484
+ − 1730
apply(induct r r' rule: hrewrite.induct)
+ − 1731
apply (simp add: hr_in_rstar hrewrite.intros(1))
+ − 1732
apply (metis (no_types, lifting) basic_rsimp_SEQ_property3 list.simps(8) list.simps(9) rder.simps(1) rder.simps(5) rdistinct.simps(1) rflts.simps(1) rflts.simps(2) rsimp.simps(1) rsimp.simps(2) rsimp.simps(3) rsimp_ALTs.simps(1) simp_hrewrites)
+ − 1733
apply simp
+ − 1734
apply(subst interleave_aux1)
+ − 1735
apply simp
+ − 1736
apply(case_tac "rnullable r1")
488
+ − 1737
apply simp
+ − 1738
+ − 1739
apply (simp add: hrewrites_seq_context rnullable_hrewrite srewritescf_alt1 ss1 ss2)
+ − 1740
+ − 1741
apply (simp add: hrewrites_seq_context rnullable_hrewrite)
+ − 1742
apply(case_tac "rnullable r1")
+ − 1743
apply simp
+ − 1744
+ − 1745
using hr_in_rstar hrewrites_seq_context2 srewritescf_alt1 ss1 ss2 apply presburger
+ − 1746
apply simp
+ − 1747
using hr_in_rstar hrewrites_seq_context2 apply blast
+ − 1748
apply simp
484
+ − 1749
488
+ − 1750
using hrewrites_alts apply auto[1]
+ − 1751
apply simp
+ − 1752
using grewrite.intros(1) grewrite_append grewrite_ralts apply auto[1]
+ − 1753
apply simp
+ − 1754
apply (simp add: grewrite.intros(2) grewrite_append grewrite_ralts)
+ − 1755
apply (simp add: hr_in_rstar hrewrite.intros(9))
+ − 1756
apply (simp add: hr_in_rstar hrewrite.intros(10))
+ − 1757
apply simp
+ − 1758
using hrewrite.intros(11) by auto
+ − 1759
+ − 1760
lemma interleave_star1:
492
+ − 1761
shows "r h\<leadsto>* r' \<Longrightarrow> rder c r h\<leadsto>* rder c r'"
488
+ − 1762
apply(induct rule : hrewrites.induct)
+ − 1763
apply simp
+ − 1764
by (meson hreal_trans interleave1)
+ − 1765
484
+ − 1766
+ − 1767
480
+ − 1768
lemma inside_simp_removal:
+ − 1769
shows " rsimp (rder x (rsimp r)) = rsimp (rder x r)"
+ − 1770
apply(induct r)
+ − 1771
apply simp+
+ − 1772
apply(case_tac "rnullable r1")
+ − 1773
apply simp
456
+ − 1774
480
+ − 1775
using inside_simp_seq_nullable apply blast
482
+ − 1776
apply simp
+ − 1777
apply (smt (verit, del_insts) basic_rsimp_SEQ_property2 basic_rsimp_SEQ_property3 der_simp_nullability rder.simps(1) rder.simps(5) rnullable.simps(2) rsimp.simps(1) rsimp_SEQ.simps(1) rsimp_idem)
492
+ − 1778
apply(subgoal_tac "rder x (RALTS xa) h\<leadsto>* rder x (rsimp (RALTS xa))")
488
+ − 1779
using hrewrites_simpeq apply presburger
+ − 1780
using interleave_star1 simp_hrewrites apply presburger
+ − 1781
by simp
482
+ − 1782
451
+ − 1783
+ − 1784
482
+ − 1785
480
+ − 1786
lemma rders_simp_same_simpders:
+ − 1787
shows "s \<noteq> [] \<Longrightarrow> rders_simp r s = rsimp (rders r s)"
+ − 1788
apply(induct s rule: rev_induct)
453
+ − 1789
apply simp
480
+ − 1790
apply(case_tac "xs = []")
453
+ − 1791
apply simp
480
+ − 1792
apply(simp add: rders_append rders_simp_append)
+ − 1793
using inside_simp_removal by blast
453
+ − 1794
480
+ − 1795
453
+ − 1796
+ − 1797
451
+ − 1798
lemma distinct_der:
480
+ − 1799
shows "rsimp (rsimp_ALTs (map (rder x) (rdistinct rs {}))) =
+ − 1800
rsimp (rsimp_ALTs (rdistinct (map (rder x) rs) {}))"
+ − 1801
by (metis grewrites_simpalts gstar_rdistinct inside_simp_removal rder_rsimp_ALTs_commute)
+ − 1802
451
+ − 1803
453
+ − 1804
+ − 1805
+ − 1806
+ − 1807
lemma rders_simp_lambda:
+ − 1808
shows " rsimp \<circ> rder x \<circ> (\<lambda>r. rders_simp r xs) = (\<lambda>r. rders_simp r (xs @ [x]))"
+ − 1809
using rders_simp_append by auto
451
+ − 1810
453
+ − 1811
lemma rders_simp_nonempty_simped:
+ − 1812
shows "xs \<noteq> [] \<Longrightarrow> rsimp \<circ> (\<lambda>r. rders_simp r xs) = (\<lambda>r. rders_simp r xs)"
+ − 1813
using rders_simp_same_simpders rsimp_idem by auto
+ − 1814
+ − 1815
lemma repeated_altssimp:
+ − 1816
shows "\<forall>r \<in> set rs. rsimp r = r \<Longrightarrow> rsimp (rsimp_ALTs (rdistinct (rflts rs) {})) =
+ − 1817
rsimp_ALTs (rdistinct (rflts rs) {})"
+ − 1818
by (metis map_idI rsimp.simps(2) rsimp_idem)
451
+ − 1819
465
+ − 1820
+ − 1821
lemma add0_isomorphic:
+ − 1822
shows "rsimp_ALTs (rdistinct (rflts [rsimp r, RZERO]) {}) = rsimp r"
484
+ − 1823
by (metis append.left_neutral append_Cons flts_removes0 idem_after_simp1)
465
+ − 1824
+ − 1825
484
+ − 1826
465
+ − 1827
444
+ − 1828
lemma alts_closed_form: shows
+ − 1829
"rsimp (rders_simp (RALTS rs) s) =
+ − 1830
rsimp (RALTS (map (\<lambda>r. rders_simp r s) rs))"
+ − 1831
apply(induct s rule: rev_induct)
+ − 1832
apply simp
+ − 1833
apply simp
+ − 1834
apply(subst rders_simp_append)
+ − 1835
apply(subgoal_tac " rsimp (rders_simp (rders_simp (RALTS rs) xs) [x]) =
+ − 1836
rsimp(rders_simp (rsimp_ALTs (rdistinct (rflts (map (rsimp \<circ> (\<lambda>r. rders_simp r xs)) rs)) {})) [x])")
+ − 1837
prefer 2
+ − 1838
apply (metis inside_simp_removal rders_simp_one_char)
+ − 1839
apply(simp only: )
451
+ − 1840
apply(subst rders_simp_one_char)
+ − 1841
apply(subst rsimp_idem)
+ − 1842
apply(subgoal_tac "rsimp (rder x (rsimp_ALTs (rdistinct (rflts (map (rsimp \<circ> (\<lambda>r. rders_simp r xs)) rs)) {}))) =
+ − 1843
rsimp ((rsimp_ALTs (map (rder x) (rdistinct (rflts (map (rsimp \<circ> (\<lambda>r. rders_simp r xs)) rs)) {})))) ")
+ − 1844
prefer 2
+ − 1845
using rder_rsimp_ALTs_commute apply presburger
+ − 1846
apply(simp only:)
+ − 1847
apply(subgoal_tac "rsimp (rsimp_ALTs (map (rder x) (rdistinct (rflts (map (rsimp \<circ> (\<lambda>r. rders_simp r xs)) rs)) {})))
+ − 1848
= rsimp (rsimp_ALTs (rdistinct (map (rder x) (rflts (map (rsimp \<circ> (\<lambda>r. rders_simp r xs)) rs))) {}))")
+ − 1849
prefer 2
+ − 1850
+ − 1851
using distinct_der apply presburger
+ − 1852
apply(simp only:)
453
+ − 1853
apply(subgoal_tac " rsimp (rsimp_ALTs (rdistinct (map (rder x) (rflts (map (rsimp \<circ> (\<lambda>r. rders_simp r xs)) rs))) {})) =
+ − 1854
rsimp (rsimp_ALTs (rdistinct ( (rflts (map (rder x) (map (rsimp \<circ> (\<lambda>r. rders_simp r xs)) rs)))) {}))")
+ − 1855
apply(simp only:)
+ − 1856
apply(subgoal_tac " rsimp (rsimp_ALTs (rdistinct (rflts (map (rder x) (map (rsimp \<circ> (\<lambda>r. rders_simp r xs)) rs))) {})) =
+ − 1857
rsimp (rsimp_ALTs (rdistinct (rflts ( (map (rsimp \<circ> (rder x) \<circ> (\<lambda>r. rders_simp r xs)) rs))) {}))")
+ − 1858
apply(simp only:)
+ − 1859
apply(subst rders_simp_lambda)
+ − 1860
apply(subst rders_simp_nonempty_simped)
+ − 1861
apply simp
+ − 1862
apply(subgoal_tac "\<forall>r \<in> set (map (\<lambda>r. rders_simp r (xs @ [x])) rs). rsimp r = r")
+ − 1863
prefer 2
+ − 1864
apply (simp add: rders_simp_same_simpders rsimp_idem)
+ − 1865
apply(subst repeated_altssimp)
+ − 1866
apply simp
+ − 1867
apply fastforce
465
+ − 1868
apply (metis inside_simp_removal list.map_comp rder.simps(4) rsimp.simps(2) rsimp_idem)
476
+ − 1869
using simp_der_pierce_flts by blast
443
+ − 1870
444
+ − 1871
lemma alts_closed_form_variant: shows
+ − 1872
"s \<noteq> [] \<Longrightarrow> rders_simp (RALTS rs) s =
+ − 1873
rsimp (RALTS (map (\<lambda>r. rders_simp r s) rs))"
478
+ − 1874
by (metis alts_closed_form comp_apply rders_simp_nonempty_simped)
443
+ − 1875
482
+ − 1876
thm vsuf.simps
443
+ − 1877
+ − 1878
482
+ − 1879
+ − 1880
lemma rsimp_seq_equal1:
+ − 1881
shows "rsimp_SEQ (rsimp r1) (rsimp r2) = rsimp_ALTs (rdistinct (rflts [rsimp_SEQ (rsimp r1) (rsimp r2)]) {})"
+ − 1882
by (metis idem_after_simp1 rsimp.simps(1))
+ − 1883
+ − 1884
+ − 1885
483
+ − 1886
+ − 1887
485
+ − 1888
fun sflat_aux :: "rrexp \<Rightarrow> rrexp list " where
+ − 1889
"sflat_aux (RALTS (r # rs)) = sflat_aux r @ rs"
+ − 1890
| "sflat_aux (RALTS []) = []"
+ − 1891
| "sflat_aux r = [r]"
+ − 1892
+ − 1893
+ − 1894
fun sflat :: "rrexp \<Rightarrow> rrexp" where
+ − 1895
"sflat (RALTS (r # [])) = r"
+ − 1896
| "sflat (RALTS (r # rs)) = RALTS (sflat_aux r @ rs)"
+ − 1897
| "sflat r = r"
+ − 1898
+ − 1899
inductive created_by_seq:: "rrexp \<Rightarrow> bool" where
+ − 1900
"created_by_seq (RSEQ r1 r2) "
+ − 1901
| "created_by_seq r1 \<Longrightarrow> created_by_seq (RALT r1 r2)"
+ − 1902
+ − 1903
(*Why \<and> rnullable case would be provable.....?*)
+ − 1904
lemma seq_der_shape:
+ − 1905
shows "\<forall>r1 r2. \<exists>r3 r4. (rder c (RSEQ r1 r2) = RSEQ r3 r4 \<or> rder c (RSEQ r1 r2) = RALT r3 r4)"
+ − 1906
by (meson rder.simps(5))
+ − 1907
+ − 1908
lemma alt_der_shape:
+ − 1909
shows "\<forall>rs. \<exists> rs'. (rder c (RALTS rs)) = RALTS (map (rder c) rs)"
+ − 1910
by force
+ − 1911
+ − 1912
lemma seq_ders_shape1:
+ − 1913
shows "\<forall>r1 r2. \<exists>r3 r4. (rders (RSEQ r1 r2) s) = RSEQ r3 r4 \<or> (rders (RSEQ r1 r2) s) = RALT r3 r4"
+ − 1914
apply(induct s rule: rev_induct)
+ − 1915
apply auto[1]
+ − 1916
apply(rule allI)+
+ − 1917
apply(subst rders_append)+
+ − 1918
apply(subgoal_tac " \<exists>r3 r4. rders (RSEQ r1 r2) xs = RSEQ r3 r4 \<or> rders (RSEQ r1 r2) xs = RALT r3 r4 ")
+ − 1919
apply(erule exE)+
+ − 1920
apply(erule disjE)
+ − 1921
apply simp+
+ − 1922
done
+ − 1923
+ − 1924
+ − 1925
lemma seq_ders_shape2:
+ − 1926
shows "rders (RSEQ r1 r2) s = RALTS (ra # rb # rs) \<Longrightarrow> rs = []"
+ − 1927
using seq_ders_shape1
+ − 1928
by (metis list.inject rrexp.distinct(25) rrexp.inject(3))
+ − 1929
+ − 1930
lemma created_by_seq_der:
+ − 1931
shows "created_by_seq r \<Longrightarrow> created_by_seq (rder c r)"
+ − 1932
apply(induct r)
+ − 1933
apply simp+
+ − 1934
+ − 1935
using created_by_seq.cases apply blast
+ − 1936
+ − 1937
apply (meson created_by_seq.cases rrexp.distinct(19) rrexp.distinct(21))
+ − 1938
apply (metis created_by_seq.simps rder.simps(5))
+ − 1939
apply (smt (verit, ccfv_threshold) created_by_seq.simps list.set_intros(1) list.simps(8) list.simps(9) rder.simps(4) rrexp.distinct(25) rrexp.inject(3))
+ − 1940
using created_by_seq.intros(1) by force
+ − 1941
+ − 1942
lemma createdbyseq_left_creatable:
+ − 1943
shows "created_by_seq (RALT r1 r2) \<Longrightarrow> created_by_seq r1"
+ − 1944
using created_by_seq.cases by blast
+ − 1945
+ − 1946
+ − 1947
+ − 1948
lemma recursively_derseq:
+ − 1949
shows " created_by_seq (rders (RSEQ r1 r2) s)"
+ − 1950
apply(induct s rule: rev_induct)
+ − 1951
apply simp
+ − 1952
using created_by_seq.intros(1) apply force
+ − 1953
apply(subgoal_tac "created_by_seq (rders (RSEQ r1 r2) (xs @ [x]))")
+ − 1954
apply blast
+ − 1955
apply(subst rders_append)
+ − 1956
apply(subgoal_tac "\<exists>r3 r4. rders (RSEQ r1 r2) xs = RSEQ r3 r4 \<or>
+ − 1957
rders (RSEQ r1 r2) xs = RALT r3 r4")
+ − 1958
prefer 2
+ − 1959
using seq_ders_shape1 apply presburger
+ − 1960
apply(erule exE)+
+ − 1961
apply(erule disjE)
+ − 1962
apply(subgoal_tac "created_by_seq (rders (RSEQ r3 r4) [x])")
+ − 1963
apply presburger
+ − 1964
apply simp
+ − 1965
using created_by_seq.intros(1) created_by_seq.intros(2) apply presburger
+ − 1966
apply simp
+ − 1967
apply(subgoal_tac "created_by_seq r3")
+ − 1968
prefer 2
+ − 1969
using createdbyseq_left_creatable apply blast
+ − 1970
using created_by_seq.intros(2) created_by_seq_der by blast
482
+ − 1971
485
+ − 1972
+ − 1973
lemma recursively_derseq1:
+ − 1974
shows "r = rders (RSEQ r1 r2) s \<Longrightarrow> created_by_seq r"
+ − 1975
using recursively_derseq by blast
+ − 1976
+ − 1977
lemma recursively_derseq2:
+ − 1978
shows "r = rders (RSEQ r1 r2) s \<Longrightarrow> \<exists>r1 r2. r = RSEQ r1 r2 \<or> (r = RALT r1 r2 \<and> created_by_seq r1) "
+ − 1979
by (meson created_by_seq.cases recursively_derseq)
+ − 1980
+ − 1981
lemma recursively_derseq3:
+ − 1982
shows "created_by_seq r \<Longrightarrow> \<exists>r1 r2. r = RSEQ r1 r2 \<or> (r = RALT r1 r2 \<and> created_by_seq r1) "
+ − 1983
by (meson created_by_seq.cases recursively_derseq)
+ − 1984
+ − 1985
lemma createdbyseq_prop1:
+ − 1986
shows "created_by_seq (RALTS xs) \<Longrightarrow> \<exists> ra rb. xs = [ra, rb]"
+ − 1987
by (metis created_by_seq.cases rrexp.inject(3) rrexp.simps(30))
+ − 1988
+ − 1989
+ − 1990
lemma sfau_head:
+ − 1991
shows " created_by_seq r \<Longrightarrow> \<exists>ra rb rs. sflat_aux r = RSEQ ra rb # rs"
+ − 1992
apply(induction r rule: created_by_seq.induct)
+ − 1993
apply simp
+ − 1994
by fastforce
+ − 1995
+ − 1996
+ − 1997
+ − 1998
+ − 1999
lemma sfaux_eq10:
+ − 2000
shows "created_by_seq r3 \<Longrightarrow>
+ − 2001
rs \<noteq> [] \<Longrightarrow> sflat (RALTS ((map (rder c) (sflat_aux r3)) @ (map (rder c) rs))) =
+ − 2002
RALTS (sflat_aux (rder c r3) @ (map (rder c ) rs) )"
+ − 2003
apply(induction r3 arbitrary: rs rule: created_by_seq.induct)
+ − 2004
apply simp
+ − 2005
apply(case_tac "rnullable r1")
+ − 2006
apply simp
+ − 2007
+ − 2008
apply (metis append_Cons list.exhaust map_is_Nil_conv self_append_conv2 sflat.simps(2) sflat_aux.simps(1) sflat_aux.simps(6))
+ − 2009
apply simp
+ − 2010
+ − 2011
apply (metis Nil_is_map_conv append_Cons append_Nil list.exhaust sflat.simps(2) sflat_aux.simps(6))
+ − 2012
apply simp
+ − 2013
by force
484
+ − 2014
485
+ − 2015
lemma sfaux_keeps_tail:
+ − 2016
shows "created_by_seq r3 \<Longrightarrow>
+ − 2017
sflat_aux (RALTS (map (rder c) (sflat_aux r3) @ xs )) =
+ − 2018
sflat_aux (RALTS (map (rder c) (sflat_aux r3))) @ xs "
+ − 2019
using sfau_head by fastforce
+ − 2020
+ − 2021
+ − 2022
484
+ − 2023
485
+ − 2024
lemma sfaux_eq00:
+ − 2025
shows "created_by_seq r3 \<Longrightarrow>
+ − 2026
sflat_aux (RALTS ((map (rder c) (sflat_aux r3)) @ (map (rder c) rs))) =
+ − 2027
(sflat_aux (rder c r3) @ (map (rder c ) rs) )"
+ − 2028
apply(induct rs rule: rev_induct)
+ − 2029
apply simp
+ − 2030
apply (smt (verit, del_insts) append_Cons created_by_seq.simps list.distinct(1) list.simps(9) map_append rder.simps(4) rrexp.inject(3) self_append_conv self_append_conv2 sfau_head sfaux_eq10 sflat_aux.simps(1) sflat_aux.simps(6))
+ − 2031
apply simp
+ − 2032
apply(subst sfaux_keeps_tail)
+ − 2033
apply simp
+ − 2034
apply(subst (asm) sfaux_keeps_tail)
+ − 2035
apply simp+
+ − 2036
done
+ − 2037
+ − 2038
+ − 2039
lemma sfaux_eq1:
+ − 2040
shows "created_by_seq r3 \<Longrightarrow> sflat (RALTS ((map (rder c) (sflat_aux r3)) @ [rder c r4])) = RALTS (sflat_aux (rder c r3) @ [rder c r4] )"
+ − 2041
by (metis (no_types, lifting) list.distinct(1) list.simps(9) map_append map_concat_cons self_append_conv sfaux_eq10)
+ − 2042
+ − 2043
lemma sflat_seq_induct:
+ − 2044
shows "sflat (rder c (sflat (rders (RSEQ r1 r2) s) )) = sflat (rders (RSEQ r1 r2) (s @ [c]))"
+ − 2045
apply(subst rders_append)
+ − 2046
apply(case_tac "rders (RSEQ r1 r2) s ")
+ − 2047
prefer 6
+ − 2048
apply simp+
+ − 2049
apply(subgoal_tac "\<exists>r3 r4. x5 = [r3, r4]")
+ − 2050
apply(erule exE)+
+ − 2051
apply(subgoal_tac "sflat (rder c (sflat (RALT r3 r4))) = sflat (RALTS (map (rder c) [r3, r4]))")
+ − 2052
apply meson
+ − 2053
apply simp
+ − 2054
+ − 2055
apply (metis createdbyseq_left_creatable recursively_derseq sfaux_eq1)
+ − 2056
by (metis created_by_seq.simps recursively_derseq rrexp.distinct(25) rrexp.inject(3))
484
+ − 2057
+ − 2058
483
+ − 2059
482
+ − 2060
+ − 2061
485
+ − 2062
lemma vsuf_prop1:
+ − 2063
shows "vsuf (xs @ [x]) r = (if (rnullable (rders r xs))
+ − 2064
then [x] # (map (\<lambda>s. s @ [x]) (vsuf xs r) )
+ − 2065
else (map (\<lambda>s. s @ [x]) (vsuf xs r)) )
+ − 2066
"
+ − 2067
apply(induct xs arbitrary: r)
+ − 2068
apply simp
+ − 2069
apply(case_tac "rnullable r")
+ − 2070
apply simp
+ − 2071
apply simp
+ − 2072
done
483
+ − 2073
485
+ − 2074
fun breakHead :: "rrexp list \<Rightarrow> rrexp list" where
+ − 2075
"breakHead [] = [] "
+ − 2076
| "breakHead (RALT r1 r2 # rs) = r1 # r2 # rs"
+ − 2077
| "breakHead (r # rs) = r # rs"
+ − 2078
+ − 2079
+ − 2080
lemma sfau_idem_der:
+ − 2081
shows "created_by_seq r \<Longrightarrow> sflat_aux (rder c r) = breakHead (map (rder c) (sflat_aux r))"
+ − 2082
apply(induct rule: created_by_seq.induct)
+ − 2083
apply simp+
+ − 2084
using sfau_head by fastforce
483
+ − 2085
485
+ − 2086
lemma vsuf_compose1:
+ − 2087
shows " \<not> rnullable (rders r1 xs)
+ − 2088
\<Longrightarrow> map (rder x \<circ> rders r2) (vsuf xs r1) = map (rders r2) (vsuf (xs @ [x]) r1)"
+ − 2089
apply(subst vsuf_prop1)
+ − 2090
apply simp
+ − 2091
by (simp add: rders_append)
483
+ − 2092
485
+ − 2093
+ − 2094
483
+ − 2095
485
+ − 2096
lemma seq_sfau0:
+ − 2097
shows "sflat_aux (rders (RSEQ r1 r2) s) = (RSEQ (rders r1 s) r2) #
+ − 2098
(map (rders r2) (vsuf s r1)) "
+ − 2099
apply(induct s rule: rev_induct)
483
+ − 2100
apply simp
485
+ − 2101
apply(subst rders_append)+
+ − 2102
apply(subgoal_tac "created_by_seq (rders (RSEQ r1 r2) xs)")
+ − 2103
prefer 2
+ − 2104
using recursively_derseq1 apply blast
+ − 2105
apply simp
+ − 2106
apply(subst sfau_idem_der)
+ − 2107
+ − 2108
apply blast
+ − 2109
apply(case_tac "rnullable (rders r1 xs)")
483
+ − 2110
apply simp
485
+ − 2111
apply(subst vsuf_prop1)
483
+ − 2112
apply simp
485
+ − 2113
apply (simp add: rders_append)
+ − 2114
apply simp
+ − 2115
using vsuf_compose1 by blast
+ − 2116
+ − 2117
+ − 2118
+ − 2119
+ − 2120
+ − 2121
+ − 2122
+ − 2123
483
+ − 2124
+ − 2125
thm sflat.elims
+ − 2126
+ − 2127
+ − 2128
482
+ − 2129
+ − 2130
+ − 2131
lemma sflat_rsimpeq:
486
+ − 2132
shows "created_by_seq r1 \<Longrightarrow> sflat_aux r1 = rs \<Longrightarrow> rsimp r1 = rsimp (RALTS rs)"
+ − 2133
apply(induct r1 arbitrary: rs rule: created_by_seq.induct)
+ − 2134
apply simp
+ − 2135
using rsimp_seq_equal1 apply force
+ − 2136
by (metis head_one_more_simp rsimp.simps(2) sflat_aux.simps(1) simp_flatten)
482
+ − 2137
+ − 2138
+ − 2139
+ − 2140
lemma seq_closed_form_general:
+ − 2141
shows "rsimp (rders (RSEQ r1 r2) s) =
+ − 2142
rsimp ( (RALTS ( (RSEQ (rders r1 s) r2 # (map (rders r2) (vsuf s r1))))))"
485
+ − 2143
apply(case_tac "s \<noteq> []")
486
+ − 2144
apply(subgoal_tac "created_by_seq (rders (RSEQ r1 r2) s)")
+ − 2145
apply(subgoal_tac "sflat_aux (rders (RSEQ r1 r2) s) = RSEQ (rders r1 s) r2 # (map (rders r2) (vsuf s r1))")
482
+ − 2146
using sflat_rsimpeq apply blast
486
+ − 2147
apply (simp add: seq_sfau0)
+ − 2148
using recursively_derseq1 apply blast
485
+ − 2149
apply simp
+ − 2150
by (metis idem_after_simp1 rsimp.simps(1))
482
+ − 2151
485
+ − 2152
486
+ − 2153
482
+ − 2154
lemma seq_closed_form_aux1:
+ − 2155
shows "rsimp ( (RALTS ( (RSEQ (rders r1 s) r2 # (map (rders r2) (vsuf s r1)))))) =
+ − 2156
rsimp ( (RALTS ( (RSEQ (rders_simp r1 s) r2 # (map (rders r2) (vsuf s r1))))))"
+ − 2157
by (smt (verit, best) list.simps(9) rders.simps(1) rders_simp.simps(1) rders_simp_same_simpders rsimp.simps(1) rsimp.simps(2) rsimp_idem)
+ − 2158
+ − 2159
lemma add_simp_to_rest:
+ − 2160
shows "rsimp (RALTS (r # rs)) = rsimp (RALTS (r # map rsimp rs))"
+ − 2161
by (metis append_Nil2 grewrite.intros(2) grewrite_simpalts head_one_more_simp list.simps(9) rsimp_ALTs.simps(2) spawn_simp_rsimpalts)
+ − 2162
+ − 2163
lemma rsimp_compose_der:
+ − 2164
shows "map rsimp (map (rders r) ss) = map (\<lambda>s. rsimp (rders r s)) ss"
+ − 2165
apply simp
+ − 2166
done
+ − 2167
+ − 2168
lemma rsimp_compose_der2:
+ − 2169
shows "\<forall>s \<in> set ss. s \<noteq> [] \<Longrightarrow> map rsimp (map (rders r) ss) = map (\<lambda>s. (rders_simp r s)) ss"
+ − 2170
by (simp add: rders_simp_same_simpders)
+ − 2171
+ − 2172
lemma vsuf_nonempty:
+ − 2173
shows "\<forall>s \<in> set ( vsuf s1 r). s \<noteq> []"
+ − 2174
apply(induct s1 arbitrary: r)
+ − 2175
apply simp
+ − 2176
apply simp
+ − 2177
done
+ − 2178
+ − 2179
lemma rsimp_compose_der3:
+ − 2180
shows " map rsimp (map (rders r) (vsuf s1 r')) = map (\<lambda>s. rsimp (rders_simp r s)) (vsuf s1 r')"
+ − 2181
by (simp add: rders_simp_same_simpders rsimp_idem vsuf_nonempty)
+ − 2182
+ − 2183
thm rders_simp_same_simpders
+ − 2184
+ − 2185
+ − 2186
+ − 2187
lemma seq_closed_form_aux2:
+ − 2188
shows "s \<noteq> [] \<Longrightarrow> rsimp ( (RALTS ( (RSEQ (rders_simp r1 s) r2 # (map (rders r2) (vsuf s r1)))))) =
+ − 2189
rsimp ( (RALTS ( (RSEQ (rders_simp r1 s) r2 # (map (rders_simp r2) (vsuf s r1))))))"
+ − 2190
+ − 2191
by (metis add_simp_to_rest rsimp_compose_der2 vsuf_nonempty)
+ − 2192
+ − 2193
443
+ − 2194
lemma seq_closed_form: shows
+ − 2195
"rsimp (rders_simp (RSEQ r1 r2) s) =
+ − 2196
rsimp ( RALTS ( (RSEQ (rders_simp r1 s) r2) #
445
+ − 2197
(map (rders_simp r2) (vsuf s r1))
443
+ − 2198
)
+ − 2199
)"
482
+ − 2200
apply(case_tac s )
+ − 2201
apply simp
+ − 2202
apply (metis idem_after_simp1 rsimp.simps(1))
+ − 2203
apply(subgoal_tac " s \<noteq> []")
+ − 2204
using rders_simp_same_simpders rsimp_idem seq_closed_form_aux1 seq_closed_form_aux2 seq_closed_form_general apply presburger
+ − 2205
by fastforce
+ − 2206
+ − 2207
+ − 2208
443
+ − 2209
+ − 2210
444
+ − 2211
lemma seq_closed_form_variant: shows
+ − 2212
"s \<noteq> [] \<Longrightarrow> (rders_simp (RSEQ r1 r2) s) =
+ − 2213
rsimp (RALTS ((RSEQ (rders_simp r1 s) r2) # (map (rders_simp r2) (vsuf s r1))))"
445
+ − 2214
apply(induct s rule: rev_induct)
+ − 2215
apply simp
+ − 2216
apply(subst rders_simp_append)
+ − 2217
apply(subst rders_simp_one_char)
+ − 2218
apply(subst rsimp_idem[symmetric])
+ − 2219
apply(subst rders_simp_one_char[symmetric])
+ − 2220
apply(subst rders_simp_append[symmetric])
+ − 2221
apply(insert seq_closed_form)
+ − 2222
apply(subgoal_tac "rsimp (rders_simp (RSEQ r1 r2) (xs @ [x]))
+ − 2223
= rsimp (RALTS (RSEQ (rders_simp r1 (xs @ [x])) r2 # map (rders_simp r2) (vsuf (xs @ [x]) r1)))")
+ − 2224
apply force
+ − 2225
by presburger
443
+ − 2226
486
+ − 2227
+ − 2228
lemma star_closed_form_seq1:
+ − 2229
shows "sflat_aux (rders (RSTAR r0) (c # s)) =
+ − 2230
RSEQ (rders (rder c r0) s) (RSTAR r0) #
+ − 2231
map (rders (RSTAR r0)) (vsuf s (rder c r0))"
+ − 2232
apply simp
+ − 2233
using seq_sfau0 by blast
+ − 2234
+ − 2235
fun hflat_aux :: "rrexp \<Rightarrow> rrexp list" where
+ − 2236
"hflat_aux (RALT r1 r2) = hflat_aux r1 @ hflat_aux r2"
+ − 2237
| "hflat_aux r = [r]"
+ − 2238
+ − 2239
+ − 2240
fun hflat :: "rrexp \<Rightarrow> rrexp" where
+ − 2241
"hflat (RALT r1 r2) = RALTS ((hflat_aux r1) @ (hflat_aux r2))"
+ − 2242
| "hflat r = r"
+ − 2243
+ − 2244
inductive created_by_star :: "rrexp \<Rightarrow> bool" where
+ − 2245
"created_by_star (RSEQ ra (RSTAR rb))"
+ − 2246
| "\<lbrakk>created_by_star r1; created_by_star r2\<rbrakk> \<Longrightarrow> created_by_star (RALT r1 r2)"
+ − 2247
+ − 2248
fun hElem :: "rrexp \<Rightarrow> rrexp list" where
+ − 2249
"hElem (RALT r1 r2) = (hElem r1 ) @ (hElem r2)"
+ − 2250
| "hElem r = [r]"
+ − 2251
+ − 2252
+ − 2253
+ − 2254
+ − 2255
lemma cbs_ders_cbs:
+ − 2256
shows "created_by_star r \<Longrightarrow> created_by_star (rder c r)"
+ − 2257
apply(induct r rule: created_by_star.induct)
+ − 2258
apply simp
+ − 2259
using created_by_star.intros(1) created_by_star.intros(2) apply auto[1]
+ − 2260
by (metis (mono_tags, lifting) created_by_star.simps list.simps(8) list.simps(9) rder.simps(4))
+ − 2261
+ − 2262
lemma star_ders_cbs:
+ − 2263
shows "created_by_star (rders (RSEQ r1 (RSTAR r2)) s)"
+ − 2264
apply(induct s rule: rev_induct)
+ − 2265
apply simp
+ − 2266
apply (simp add: created_by_star.intros(1))
+ − 2267
apply(subst rders_append)
+ − 2268
apply simp
+ − 2269
using cbs_ders_cbs by auto
+ − 2270
+ − 2271
lemma created_by_star_cases:
+ − 2272
shows "created_by_star r \<Longrightarrow> \<exists>ra rb. (r = RALT ra rb \<and> created_by_star ra \<and> created_by_star rb) \<or> r = RSEQ ra rb "
+ − 2273
by (meson created_by_star.cases)
+ − 2274
+ − 2275
+ − 2276
+ − 2277
lemma hfau_pushin:
+ − 2278
shows "created_by_star r \<Longrightarrow> hflat_aux (rder c r) = concat (map hElem (map (rder c) (hflat_aux r)))"
+ − 2279
apply(induct r rule: created_by_star.induct)
+ − 2280
apply simp
+ − 2281
apply(subgoal_tac "created_by_star (rder c r1)")
+ − 2282
prefer 2
+ − 2283
apply(subgoal_tac "created_by_star (rder c r2)")
+ − 2284
using cbs_ders_cbs apply blast
+ − 2285
using cbs_ders_cbs apply auto[1]
+ − 2286
apply simp
+ − 2287
done
+ − 2288
+ − 2289
lemma stupdate_induct1:
+ − 2290
shows " concat (map (hElem \<circ> (rder x \<circ> (\<lambda>s1. RSEQ (rders r0 s1) (RSTAR r0)))) Ss) =
+ − 2291
map (\<lambda>s1. RSEQ (rders r0 s1) (RSTAR r0)) (star_update x r0 Ss)"
+ − 2292
apply(induct Ss)
+ − 2293
apply simp+
+ − 2294
by (simp add: rders_append)
+ − 2295
+ − 2296
+ − 2297
+ − 2298
lemma stupdates_join_general:
+ − 2299
shows "concat (map hElem (map (rder x) (map (\<lambda>s1. RSEQ (rders r0 s1) (RSTAR r0)) (star_updates xs r0 Ss)))) =
+ − 2300
map (\<lambda>s1. RSEQ (rders r0 s1) (RSTAR r0)) (star_updates (xs @ [x]) r0 Ss)"
+ − 2301
apply(induct xs arbitrary: Ss)
+ − 2302
apply (simp)
+ − 2303
prefer 2
+ − 2304
apply auto[1]
+ − 2305
using stupdate_induct1 by blast
+ − 2306
+ − 2307
+ − 2308
+ − 2309
+ − 2310
lemma stupdates_join:
+ − 2311
shows "concat (map hElem (map (rder x) (map (\<lambda>s1. RSEQ (rders r0 s1) (RSTAR r0)) (star_updates xs r0 [[c]])))) =
+ − 2312
map (\<lambda>s1. RSEQ (rders r0 s1) (RSTAR r0)) (star_updates (xs @ [x]) r0 [[c]])"
+ − 2313
using stupdates_join_general by auto
+ − 2314
+ − 2315
+ − 2316
+ − 2317
lemma star_hfau_induct:
+ − 2318
shows "hflat_aux (rders (RSEQ (rder c r0) (RSTAR r0)) s) =
+ − 2319
map (\<lambda>s1. RSEQ (rders r0 s1) (RSTAR r0)) (star_updates s r0 [[c]])"
+ − 2320
apply(induct s rule: rev_induct)
+ − 2321
apply simp
+ − 2322
apply(subst rders_append)+
+ − 2323
apply simp
+ − 2324
apply(subst stupdates_append)
+ − 2325
apply(subgoal_tac "created_by_star (rders (RSEQ (rder c r0) (RSTAR r0)) xs)")
+ − 2326
prefer 2
+ − 2327
apply (simp add: star_ders_cbs)
+ − 2328
apply(subst hfau_pushin)
+ − 2329
apply simp
+ − 2330
apply(subgoal_tac "concat (map hElem (map (rder x) (hflat_aux (rders (RSEQ (rder c r0) (RSTAR r0)) xs)))) =
+ − 2331
concat (map hElem (map (rder x) ( map (\<lambda>s1. RSEQ (rders r0 s1) (RSTAR r0)) (star_updates xs r0 [[c]])))) ")
+ − 2332
apply(simp only:)
+ − 2333
prefer 2
+ − 2334
apply presburger
+ − 2335
apply(subst stupdates_append[symmetric])
+ − 2336
using stupdates_join_general by blast
+ − 2337
487
+ − 2338
lemma starders_hfau_also1:
+ − 2339
shows "hflat_aux (rders (RSTAR r) (c # xs)) = map (\<lambda>s1. RSEQ (rders r s1) (RSTAR r)) (star_updates xs r [[c]])"
+ − 2340
using star_hfau_induct by force
+ − 2341
+ − 2342
lemma hflat_aux_grewrites:
+ − 2343
shows "a # rs \<leadsto>g* hflat_aux a @ rs"
+ − 2344
apply(induct a arbitrary: rs)
+ − 2345
apply simp+
+ − 2346
apply(case_tac x)
+ − 2347
apply simp
+ − 2348
apply(case_tac list)
+ − 2349
+ − 2350
apply (metis append.right_neutral append_Cons append_eq_append_conv2 grewrites.simps hflat_aux.simps(7) same_append_eq)
+ − 2351
apply(case_tac lista)
+ − 2352
apply simp
+ − 2353
apply (metis (no_types, lifting) append_Cons append_eq_append_conv2 gmany_steps_later greal_trans grewrite.intros(2) grewrites_append self_append_conv)
+ − 2354
apply simp
+ − 2355
by simp
+ − 2356
+ − 2357
+ − 2358
+ − 2359
+ − 2360
lemma cbs_hfau_rsimpeq1:
+ − 2361
shows "rsimp (RALT a b) = rsimp (RALTS ((hflat_aux a) @ (hflat_aux b)))"
+ − 2362
apply(subgoal_tac "[a, b] \<leadsto>g* hflat_aux a @ hflat_aux b")
+ − 2363
using grewrites_equal_rsimp apply presburger
488
+ − 2364
by (metis append.right_neutral greal_trans grewrites_cons hflat_aux_grewrites)
487
+ − 2365
+ − 2366
+ − 2367
lemma hfau_rsimpeq2:
+ − 2368
shows "created_by_star r \<Longrightarrow> rsimp r = rsimp ( (RALTS (hflat_aux r)))"
+ − 2369
apply(induct r)
+ − 2370
apply simp+
+ − 2371
+ − 2372
apply (metis rsimp_seq_equal1)
+ − 2373
prefer 2
486
+ − 2374
apply simp
487
+ − 2375
apply(case_tac x)
+ − 2376
apply simp
+ − 2377
apply(case_tac "list")
486
+ − 2378
apply simp
+ − 2379
487
+ − 2380
apply (metis idem_after_simp1)
+ − 2381
apply(case_tac "lista")
+ − 2382
prefer 2
+ − 2383
apply (metis hflat_aux.simps(8) idem_after_simp1 list.simps(8) list.simps(9) rsimp.simps(2))
+ − 2384
apply(subgoal_tac "rsimp (RALT a aa) = rsimp (RALTS (hflat_aux (RALT a aa)))")
+ − 2385
apply simp
+ − 2386
apply(subgoal_tac "rsimp (RALT a aa) = rsimp (RALTS (hflat_aux a @ hflat_aux aa))")
+ − 2387
using hflat_aux.simps(1) apply presburger
+ − 2388
apply simp
+ − 2389
using cbs_hfau_rsimpeq1 by fastforce
+ − 2390
+ − 2391
+ − 2392
lemma hfau_rsimpeq1:
+ − 2393
shows "created_by_star r \<Longrightarrow> hflat_aux r = rs \<Longrightarrow> rsimp r = rsimp (RALTS rs)"
+ − 2394
apply(induct r arbitrary: rs rule: created_by_star.induct )
+ − 2395
apply (metis created_by_seq.intros(1) hflat_aux.simps(5) sflat_aux.simps(6) sflat_rsimpeq)
+ − 2396
apply simp
+ − 2397
oops
+ − 2398
+ − 2399
+ − 2400
+ − 2401
486
+ − 2402
+ − 2403
+ − 2404
lemma star_closed_form1:
487
+ − 2405
shows "rsimp (rders (RSTAR r0) (c#s)) =
+ − 2406
rsimp ( ( RALTS ( (map (\<lambda>s1. RSEQ (rders r0 s1) (RSTAR r0) ) (star_updates s r0 [[c]]) ) )))"
+ − 2407
using hfau_rsimpeq2 rder.simps(6) rders.simps(2) star_ders_cbs starders_hfau_also1 by presburger
+ − 2408
+ − 2409
lemma star_closed_form2:
+ − 2410
shows "rsimp (rders_simp (RSTAR r0) (c#s)) =
+ − 2411
rsimp ( ( RALTS ( (map (\<lambda>s1. RSEQ (rders r0 s1) (RSTAR r0) ) (star_updates s r0 [[c]]) ) )))"
+ − 2412
by (metis list.distinct(1) rders_simp_same_simpders rsimp_idem star_closed_form1)
+ − 2413
+ − 2414
lemma star_closed_form3:
+ − 2415
shows "rsimp (rders_simp (RSTAR r0) (c#s)) = (rders_simp (RSTAR r0) (c#s))"
+ − 2416
by (metis list.distinct(1) rders_simp_same_simpders star_closed_form1 star_closed_form2)
+ − 2417
+ − 2418
lemma star_closed_form4:
+ − 2419
shows " (rders_simp (RSTAR r0) (c#s)) =
+ − 2420
rsimp ( ( RALTS ( (map (\<lambda>s1. RSEQ (rders r0 s1) (RSTAR r0) ) (star_updates s r0 [[c]]) ) )))"
+ − 2421
using star_closed_form2 star_closed_form3 by presburger
+ − 2422
+ − 2423
lemma star_closed_form5:
+ − 2424
shows " rsimp ( ( RALTS ( (map (\<lambda>s1. RSEQ (rders r0 s1) (RSTAR r0) ) Ss )))) =
+ − 2425
rsimp ( ( RALTS ( (map (\<lambda>s1. rsimp (RSEQ (rders r0 s1) (RSTAR r0)) ) Ss ))))"
+ − 2426
by (metis (mono_tags, lifting) list.map_comp map_eq_conv o_apply rsimp.simps(2) rsimp_idem)
+ − 2427
+ − 2428
lemma star_closed_form6_hrewrites:
+ − 2429
shows "
+ − 2430
(map (\<lambda>s1. (RSEQ (rsimp (rders r0 s1)) (RSTAR r0)) ) Ss )
+ − 2431
scf\<leadsto>*
+ − 2432
(map (\<lambda>s1. rsimp (RSEQ (rders r0 s1) (RSTAR r0)) ) Ss )"
+ − 2433
apply(induct Ss)
+ − 2434
apply simp
+ − 2435
apply (simp add: ss1)
+ − 2436
by (metis (no_types, lifting) list.simps(9) rsimp.simps(1) rsimp_idem simp_hrewrites ss2)
+ − 2437
+ − 2438
lemma star_closed_form6:
+ − 2439
shows " rsimp ( ( RALTS ( (map (\<lambda>s1. rsimp (RSEQ (rders r0 s1) (RSTAR r0)) ) Ss )))) =
+ − 2440
rsimp ( ( RALTS ( (map (\<lambda>s1. (RSEQ (rsimp (rders r0 s1)) (RSTAR r0)) ) Ss ))))"
+ − 2441
apply(subgoal_tac " map (\<lambda>s1. (RSEQ (rsimp (rders r0 s1)) (RSTAR r0)) ) Ss scf\<leadsto>*
+ − 2442
map (\<lambda>s1. rsimp (RSEQ (rders r0 s1) (RSTAR r0)) ) Ss ")
+ − 2443
using hrewrites_simpeq srewritescf_alt1 apply fastforce
+ − 2444
using star_closed_form6_hrewrites by blast
+ − 2445
+ − 2446
lemma star_closed_form7:
+ − 2447
shows " (rders_simp (RSTAR r0) (c#s)) =
+ − 2448
rsimp ( ( RALTS ( (map (\<lambda>s1. RSEQ (rsimp (rders r0 s1)) (RSTAR r0) ) (star_updates s r0 [[c]]) ) )))"
+ − 2449
using star_closed_form4 star_closed_form5 star_closed_form6 by presburger
+ − 2450
+ − 2451
lemma derssimp_nonempty_list:
+ − 2452
shows "\<forall>s \<in> set Ss. s \<noteq> [] \<Longrightarrow>
+ − 2453
rsimp ( ( RALTS ( (map (\<lambda>s1. RSEQ (rsimp (rders r0 s1)) (RSTAR r0) ) Ss)))) =
+ − 2454
rsimp ( ( RALTS ( (map (\<lambda>s1. RSEQ (rders_simp r0 s1) (RSTAR r0) ) Ss)))) "
486
+ − 2455
487
+ − 2456
by (metis (no_types, lifting) map_eq_conv rders_simp_same_simpders)
+ − 2457
+ − 2458
lemma stupdate_nonempty:
+ − 2459
shows "\<forall>s \<in> set Ss. s \<noteq> [] \<Longrightarrow> \<forall>s \<in> set (star_update c r Ss). s \<noteq> []"
+ − 2460
apply(induct Ss)
+ − 2461
apply simp
+ − 2462
apply(case_tac "rnullable (rders r a)")
+ − 2463
apply simp+
+ − 2464
done
+ − 2465
+ − 2466
+ − 2467
lemma stupdates_nonempty:
+ − 2468
shows "\<forall>s \<in> set Ss. s\<noteq> [] \<Longrightarrow> \<forall>s \<in> set (star_updates s r Ss). s \<noteq> []"
+ − 2469
apply(induct s arbitrary: Ss)
+ − 2470
apply simp
+ − 2471
apply simp
+ − 2472
using stupdate_nonempty by presburger
+ − 2473
+ − 2474
+ − 2475
+ − 2476
+ − 2477
lemma star_closed_form8:
+ − 2478
shows
+ − 2479
"rsimp ( ( RALTS ( (map (\<lambda>s1. RSEQ (rsimp (rders r0 s1)) (RSTAR r0) ) (star_updates s r0 [[c]]) ) ))) =
+ − 2480
rsimp ( ( RALTS ( (map (\<lambda>s1. RSEQ ( (rders_simp r0 s1)) (RSTAR r0) ) (star_updates s r0 [[c]]) ) )))"
+ − 2481
by (metis derssimp_nonempty_list neq_Nil_conv non_empty_list set_ConsD stupdates_nonempty)
+ − 2482
+ − 2483
486
+ − 2484
+ − 2485
lemma star_closed_form:
+ − 2486
shows "rders_simp (RSTAR r0) (c#s) =
+ − 2487
rsimp ( RALTS ( (map (\<lambda>s1. RSEQ (rders_simp r0 s1) (RSTAR r0) ) (star_updates s r0 [[c]]) ) ))"
+ − 2488
apply(induct s)
+ − 2489
apply simp
+ − 2490
apply (metis idem_after_simp1 rsimp.simps(1) rsimp.simps(6) rsimp_idem)
487
+ − 2491
using star_closed_form4 star_closed_form5 star_closed_form6 star_closed_form8 by presburger
486
+ − 2492
+ − 2493
476
+ − 2494
489
+ − 2495
444
+ − 2496
end