thys/Paper/Paper.thy
author Christian Urban <christian dot urban at kcl dot ac dot uk>
Sat, 05 Mar 2016 05:41:51 +0000
changeset 114 8b41d01b5e5d
parent 113 90fe1a1d7d0e
child 115 15ef2af1a6f2
permissions -rw-r--r--
updated
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
95
a33d3040bf7e started a paper and moved cruft to Attic
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
     1
(*<*)
a33d3040bf7e started a paper and moved cruft to Attic
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
     2
theory Paper
a33d3040bf7e started a paper and moved cruft to Attic
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
     3
imports "../ReStar" "~~/src/HOL/Library/LaTeXsugar"
a33d3040bf7e started a paper and moved cruft to Attic
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
     4
begin
97
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
     5
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
     6
declare [[show_question_marks = false]]
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
     7
108
73f7dc60c285 updated paper
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 107
diff changeset
     8
abbreviation 
73f7dc60c285 updated paper
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 107
diff changeset
     9
 "der_syn r c \<equiv> der c r"
73f7dc60c285 updated paper
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 107
diff changeset
    10
114
8b41d01b5e5d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
    11
abbreviation 
8b41d01b5e5d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
    12
 "ders_syn r s \<equiv> ders s r"
8b41d01b5e5d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
    13
97
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
    14
notation (latex output)
111
289728193164 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 110
diff changeset
    15
  If  ("(\<^raw:\textrm{>if\<^raw:}> (_)/ \<^raw:\textrm{>then\<^raw:}> (_)/ \<^raw:\textrm{>else\<^raw:}> (_))" 10) and
107
6adda4a667b1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 105
diff changeset
    16
  Cons ("_\<^raw:\mbox{$\,$}>::\<^raw:\mbox{$\,$}>_" [78,77] 73) and
111
289728193164 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 110
diff changeset
    17
  
109
2c38f10643ae updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 108
diff changeset
    18
  ZERO ("\<^bold>0" 80) and 
2c38f10643ae updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 108
diff changeset
    19
  ONE ("\<^bold>1" 80) and 
2c38f10643ae updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 108
diff changeset
    20
  CHAR ("_" [1000] 80) and
108
73f7dc60c285 updated paper
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 107
diff changeset
    21
  ALT ("_ + _" [77,77] 78) and
73f7dc60c285 updated paper
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 107
diff changeset
    22
  SEQ ("_ \<cdot> _" [77,77] 78) and
107
6adda4a667b1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 105
diff changeset
    23
  STAR ("_\<^sup>\<star>" [1000] 78) and
111
289728193164 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 110
diff changeset
    24
  
113
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
    25
  val.Void ("'(')" 79) and
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
    26
  val.Char ("Char _" [1000] 79) and
97
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
    27
  val.Left ("Left _" [1000] 78) and
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
    28
  val.Right ("Right _" [1000] 78) and
111
289728193164 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 110
diff changeset
    29
  
108
73f7dc60c285 updated paper
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 107
diff changeset
    30
  L ("L'(_')" [10] 78) and
114
8b41d01b5e5d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
    31
  der_syn ("_\\_" [79, 1000] 76) and  
8b41d01b5e5d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
    32
  ders_syn ("_\\_" [79, 1000] 76) and
113
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
    33
  flat ("|_|" [75] 73) and
97
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
    34
  Sequ ("_ @ _" [78,77] 63) and
113
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
    35
  injval ("inj _ _ _" [78,77,78] 77) and 
102
7f589bfecffa updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 101
diff changeset
    36
  projval ("proj _ _ _" [1000,77,1000] 77) and 
113
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
    37
  length ("len _" [78] 73) and
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
    38
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
    39
  Prf ("\<triangleright> _ : _" [75,75] 75) and  
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
    40
  PMatch ("_ : _ \<rightarrow> _" [75,75,75] 75)
105
80218dddbb15 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 103
diff changeset
    41
  (* and ValOrd ("_ \<succeq>\<^bsub>_\<^esub> _" [78,77,77] 73) *)
114
8b41d01b5e5d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
    42
8b41d01b5e5d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
    43
definition 
8b41d01b5e5d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
    44
  "match r s \<equiv> nullable (ders s r)"
8b41d01b5e5d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
    45
95
a33d3040bf7e started a paper and moved cruft to Attic
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    46
(*>*)
a33d3040bf7e started a paper and moved cruft to Attic
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    47
a33d3040bf7e started a paper and moved cruft to Attic
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    48
section {* Introduction *}
a33d3040bf7e started a paper and moved cruft to Attic
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    49
113
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
    50
97
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
    51
text {*
108
73f7dc60c285 updated paper
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 107
diff changeset
    52
73f7dc60c285 updated paper
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 107
diff changeset
    53
Brzozowski \cite{Brzozowski1964} introduced the notion of the {\em
73f7dc60c285 updated paper
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 107
diff changeset
    54
derivative} @{term "der c r"} of a regular expression @{text r} w.r.t.\ a
73f7dc60c285 updated paper
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 107
diff changeset
    55
character~@{text c}, and showed that it gave a simple solution to the
73f7dc60c285 updated paper
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 107
diff changeset
    56
problem of matching a string @{term s} with a regular expression @{term r}:
73f7dc60c285 updated paper
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 107
diff changeset
    57
if the derivative of @{term r} w.r.t.\ (in succession) all the characters of
110
267afb7fb700 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 109
diff changeset
    58
the string matches the empty string, then @{term r} matches @{term s}
108
73f7dc60c285 updated paper
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 107
diff changeset
    59
(and {\em vice versa}). The derivative has the property (which may be
73f7dc60c285 updated paper
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 107
diff changeset
    60
regarded as its specification) that, for every string @{term s} and regular
73f7dc60c285 updated paper
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 107
diff changeset
    61
expression @{term r} and character @{term c}, one has @{term "cs \<in> L(r)"} if
73f7dc60c285 updated paper
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 107
diff changeset
    62
and only if \mbox{@{term "s \<in> L(der c r)"}}. The beauty of Brzozowski's
109
2c38f10643ae updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 108
diff changeset
    63
derivatives is that they are neatly expressible in any functional language,
2c38f10643ae updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 108
diff changeset
    64
and easily definable and reasoned about in theorem provers---the definitions
2c38f10643ae updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 108
diff changeset
    65
just consist of inductive datatypes and simple recursive functions. A
2c38f10643ae updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 108
diff changeset
    66
completely formalised correctness proof of this matcher in for example HOL4
2c38f10643ae updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 108
diff changeset
    67
has been given in~\cite{Owens2008}.
108
73f7dc60c285 updated paper
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 107
diff changeset
    68
73f7dc60c285 updated paper
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 107
diff changeset
    69
One limitation of Brzozowski's matcher is that it only generates a YES/NO
109
2c38f10643ae updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 108
diff changeset
    70
answer for whether a string is being matched by a regular expression.
2c38f10643ae updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 108
diff changeset
    71
Sulzmann and Lu \cite{Sulzmann2014} extended this matcher to allow
2c38f10643ae updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 108
diff changeset
    72
generation not just of a YES/NO answer but of an actual matching, called a
2c38f10643ae updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 108
diff changeset
    73
[lexical] {\em value}. They give a simple algorithm to calculate a value
113
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
    74
that appears to be the value associated with POSIX matching
109
2c38f10643ae updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 108
diff changeset
    75
\cite{Kuklewicz,Vansummeren2006}. The challenge then is to specify that
2c38f10643ae updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 108
diff changeset
    76
value, in an algorithm-independent fashion, and to show that Sulzamann and
2c38f10643ae updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 108
diff changeset
    77
Lu's derivative-based algorithm does indeed calculate a value that is
2c38f10643ae updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 108
diff changeset
    78
correct according to the specification.
2c38f10643ae updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 108
diff changeset
    79
2c38f10643ae updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 108
diff changeset
    80
The answer given by Sulzmann and Lu \cite{Sulzmann2014} is to define a
2c38f10643ae updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 108
diff changeset
    81
relation (called an ``Order Relation'') on the set of values of @{term r},
2c38f10643ae updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 108
diff changeset
    82
and to show that (once a string to be matched is chosen) there is a maximum
2c38f10643ae updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 108
diff changeset
    83
element and that it is computed by their derivative-based algorithm. This
2c38f10643ae updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 108
diff changeset
    84
proof idea is inspired by work of Frisch and Cardelli \cite{Frisch2004} on a
2c38f10643ae updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 108
diff changeset
    85
GREEDY regular expression matching algorithm. Beginning with our
2c38f10643ae updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 108
diff changeset
    86
observations that, without evidence that it is transitive, it cannot be
2c38f10643ae updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 108
diff changeset
    87
called an ``order relation'', and that the relation is called a ``total
2c38f10643ae updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 108
diff changeset
    88
order'' despite being evidently not total\footnote{\textcolor{green}{We
2c38f10643ae updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 108
diff changeset
    89
should give an argument as footnote}}, we identify problems with this
2c38f10643ae updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 108
diff changeset
    90
approach (of which some of the proofs are not published in
2c38f10643ae updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 108
diff changeset
    91
\cite{Sulzmann2014}); perhaps more importantly, we give a simple inductive
2c38f10643ae updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 108
diff changeset
    92
(and algorithm-independent) definition of what we call being a {\em POSIX
2c38f10643ae updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 108
diff changeset
    93
value} for a regular expression @{term r} and a string @{term s}; we show
2c38f10643ae updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 108
diff changeset
    94
that the algorithm computes such a value and that such a value is unique.
110
267afb7fb700 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 109
diff changeset
    95
Proofs are both done by hand and checked in Isabelle/HOL. The
109
2c38f10643ae updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 108
diff changeset
    96
experience of doing our proofs has been that this mechanical checking was
2c38f10643ae updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 108
diff changeset
    97
absolutely essential: this subject area has hidden snares. This was also
2c38f10643ae updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 108
diff changeset
    98
noted by Kuklewitz \cite{Kuklewicz} who found that nearly all POSIX matching
2c38f10643ae updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 108
diff changeset
    99
implementations are ``buggy'' \cite[Page 203]{Sulzmann2014}.
108
73f7dc60c285 updated paper
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 107
diff changeset
   100
113
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   101
If a regular expression matches a string, then in general there is more than
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   102
one way of how the string is matched. There are two commonly used
110
267afb7fb700 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 109
diff changeset
   103
disambiguation strategies to generate a unique answer: one is called GREEDY
267afb7fb700 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 109
diff changeset
   104
matching \cite{Frisch2004} and the other is POSIX
113
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   105
matching~\cite{Kuklewicz,Sulzmann2014,Vansummeren2006}. For example consider
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   106
the string @{term xy} and the regular expression \mbox{@{term "STAR (ALT
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   107
(ALT x y) xy)"}}. Either the string can be matched in two `iterations' by
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   108
the single letter-regular expressions @{term x} and @{term y}, or directly
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   109
in one iteration by @{term xy}. The first case corresponds to GREEDY
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   110
matching, which first matches with the left-most symbol and only matches the
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   111
next symbol in case of a mismatch (this is greedy in the sense of preferring
110
267afb7fb700 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 109
diff changeset
   112
instant gratification to delayed repletion). The second case is POSIX
267afb7fb700 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 109
diff changeset
   113
matching, which prefers the longest match.
109
2c38f10643ae updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 108
diff changeset
   114
112
698967eceaf1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 111
diff changeset
   115
In the context of lexing, where an input string needs to be split up into a
110
267afb7fb700 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 109
diff changeset
   116
sequence of tokens, POSIX is the more natural disambiguation strategy for
267afb7fb700 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 109
diff changeset
   117
what programmers consider basic syntactic building blocks in their programs.
112
698967eceaf1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 111
diff changeset
   118
These building blocks are often specified by some regular expressions, say
698967eceaf1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 111
diff changeset
   119
@{text "r\<^bsub>key\<^esub>"} and @{text "r\<^bsub>id\<^esub>"} for recognising keywords and
698967eceaf1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 111
diff changeset
   120
identifiers, respectively. There are two underlying (informal) rules behind
698967eceaf1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 111
diff changeset
   121
tokenising a string in a POSIX fashion:
109
2c38f10643ae updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 108
diff changeset
   122
2c38f10643ae updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 108
diff changeset
   123
\begin{itemize} 
2c38f10643ae updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 108
diff changeset
   124
\item[$\bullet$] \underline{The Longest Match Rule (or ``maximal munch rule''):}
2c38f10643ae updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 108
diff changeset
   125
2c38f10643ae updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 108
diff changeset
   126
The longest initial substring matched by any regular expression is taken as
2c38f10643ae updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 108
diff changeset
   127
next token.\smallskip
2c38f10643ae updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 108
diff changeset
   128
2c38f10643ae updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 108
diff changeset
   129
\item[$\bullet$] \underline{Rule Priority:}
108
73f7dc60c285 updated paper
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 107
diff changeset
   130
109
2c38f10643ae updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 108
diff changeset
   131
For a particular longest initial substring, the first regular expression
2c38f10643ae updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 108
diff changeset
   132
that can match determines the token.
2c38f10643ae updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 108
diff changeset
   133
\end{itemize}
2c38f10643ae updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 108
diff changeset
   134
 
113
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   135
\noindent Consider for example @{text "r\<^bsub>key\<^esub>"} recognising keywords such as
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   136
@{text "if"}, @{text "then"} and so on; and @{text "r\<^bsub>id\<^esub>"} recognising
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   137
identifiers (a single character followed by characters or numbers). Then we
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   138
can form the regular expression @{text "(r\<^bsub>key\<^esub> + r\<^bsub>id\<^esub>)\<^sup>\<star>"} and use POSIX
110
267afb7fb700 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 109
diff changeset
   139
matching to tokenise strings, say @{text "iffoo"} and @{text "if"}. In the
267afb7fb700 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 109
diff changeset
   140
first case we obtain by the longest match rule a single identifier token,
113
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   141
not a keyword followed by an identifier. In the second case we obtain by rule
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   142
priority a keyword token, not an identifier token---even if @{text "r\<^bsub>id\<^esub>"}
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   143
matches also.\bigskip
109
2c38f10643ae updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 108
diff changeset
   144
113
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   145
\noindent {\bf Contributions:} We have implemented in Isabelle/HOL the
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   146
derivative-based regular expression matching algorithm as described by
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   147
Sulzmann and Lu \cite{Sulzmann2014}. We have proved the correctness of this
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   148
algorithms according to our specification what a POSIX value is. The
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   149
informal correctness proof given in \cite{Sulzmann2014} is in final
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   150
form\footnote{} and to us contains unfillable gaps. Our specification of a
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   151
POSIX value consists of a simple inductive definition that given a string
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   152
and a regular expression uniquely determines this value. Derivatives as
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   153
calculated by Brzozowski's method are usually more complex regular
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   154
expressions than the initial one; various optimisations are possible, such
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   155
as the simplifications of @{term "ALT ZERO r"}, @{term "ALT r ZERO"}, @{term
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   156
"SEQ ONE r"} and @{term "SEQ r ONE"} to @{term r}. One of the advantages of
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   157
having a simple specification and correctness proof is that the latter can
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   158
be refined to allow for such optimisations and simple correctness proof.
108
73f7dc60c285 updated paper
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 107
diff changeset
   159
113
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   160
An extended version of \cite{Sulzmann2014} is available at the website of
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   161
its first author; this includes some ``proofs'', claimed in
108
73f7dc60c285 updated paper
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 107
diff changeset
   162
\cite{Sulzmann2014} to be ``rigorous''. Since these are evidently not in
113
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   163
final form, we make no comment thereon, preferring to give general reasons
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   164
for our belief that the approach of \cite{Sulzmann2014} is problematic
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   165
rather than to discuss details of unpublished work.
107
6adda4a667b1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 105
diff changeset
   166
6adda4a667b1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 105
diff changeset
   167
*}
6adda4a667b1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 105
diff changeset
   168
6adda4a667b1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 105
diff changeset
   169
section {* Preliminaries *}
6adda4a667b1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 105
diff changeset
   170
111
289728193164 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 110
diff changeset
   171
text {* \noindent Strings in Isabelle/HOL are lists of characters with the
289728193164 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 110
diff changeset
   172
empty string being represented by the empty list, written @{term "[]"}, and
289728193164 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 110
diff changeset
   173
list-cons being written as @{term "DUMMY # DUMMY"}. Often we use the usual
113
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   174
bracket notation for lists also for strings; for example a string consisting
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   175
of just a single character @{term c} is written @{term "[c]"}. By using the
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   176
type @{type char} for characters we have a supply of finitely many
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   177
characters roughly corresponding to the ASCII character set. Regular
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   178
expressions are defined as usual as the following inductive datatype:
97
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   179
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   180
  \begin{center}
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   181
  @{text "r :="}
107
6adda4a667b1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 105
diff changeset
   182
  @{const "ZERO"} $\mid$
6adda4a667b1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 105
diff changeset
   183
  @{const "ONE"} $\mid$
97
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   184
  @{term "CHAR c"} $\mid$
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   185
  @{term "ALT r\<^sub>1 r\<^sub>2"} $\mid$
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   186
  @{term "SEQ r\<^sub>1 r\<^sub>2"} $\mid$
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   187
  @{term "STAR r"} 
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   188
  \end{center}
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   189
113
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   190
  \noindent where @{const ZERO} stands for the regular expression that does
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   191
  not match any string, @{const ONE} for the regular expression that matches
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   192
  only the empty string and @{term c} for matching a character literal. The
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   193
  language of a regular expression is again defined as usual by the
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   194
  recursive function @{term L} with the clauses:
108
73f7dc60c285 updated paper
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 107
diff changeset
   195
73f7dc60c285 updated paper
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 107
diff changeset
   196
  \begin{center}
73f7dc60c285 updated paper
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 107
diff changeset
   197
  \begin{tabular}{rcl}
73f7dc60c285 updated paper
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 107
diff changeset
   198
  @{thm (lhs) L.simps(1)} & $\dn$ & @{thm (rhs) L.simps(1)}\\
73f7dc60c285 updated paper
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 107
diff changeset
   199
  @{thm (lhs) L.simps(2)} & $\dn$ & @{thm (rhs) L.simps(2)}\\
73f7dc60c285 updated paper
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 107
diff changeset
   200
  @{thm (lhs) L.simps(3)} & $\dn$ & @{thm (rhs) L.simps(3)}\\
73f7dc60c285 updated paper
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 107
diff changeset
   201
  @{thm (lhs) L.simps(4)[of "r\<^sub>1" "r\<^sub>2"]} & $\dn$ & @{thm (rhs) L.simps(4)[of "r\<^sub>1" "r\<^sub>2"]}\\
73f7dc60c285 updated paper
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 107
diff changeset
   202
  @{thm (lhs) L.simps(5)[of "r\<^sub>1" "r\<^sub>2"]} & $\dn$ & @{thm (rhs) L.simps(5)[of "r\<^sub>1" "r\<^sub>2"]}\\
73f7dc60c285 updated paper
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 107
diff changeset
   203
  @{thm (lhs) L.simps(6)} & $\dn$ & @{thm (rhs) L.simps(6)}\\
73f7dc60c285 updated paper
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 107
diff changeset
   204
  \end{tabular}
73f7dc60c285 updated paper
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 107
diff changeset
   205
  \end{center}
73f7dc60c285 updated paper
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 107
diff changeset
   206
  
110
267afb7fb700 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 109
diff changeset
   207
  \noindent In the fourth clause we use @{term "DUMMY ;; DUMMY"} for the
112
698967eceaf1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 111
diff changeset
   208
  concatenation of two languages (it is also list-append for strings). We
113
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   209
  use the star-notation for regular expressions and languages (in the last
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   210
  clause above). The star on languages is defined inductively by two
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   211
  clauses: @{text "(i)"} for the empty string being in the star of a
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   212
  language and @{text "(ii)"} if @{term "s\<^sub>1"} is in a language and @{term
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   213
  "s\<^sub>2"} in the star of this language, then also @{term "s\<^sub>1 @ s\<^sub>2"} is in
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   214
  the star of this language. It will also be convenient to use the following
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   215
  notion of a \emph{semantic derivative} (or left quotient) of a language,
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   216
  say @{text A}, defined as:
108
73f7dc60c285 updated paper
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 107
diff changeset
   217
73f7dc60c285 updated paper
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 107
diff changeset
   218
  \begin{center}
73f7dc60c285 updated paper
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 107
diff changeset
   219
  \begin{tabular}{lcl}
73f7dc60c285 updated paper
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 107
diff changeset
   220
  @{thm (lhs) Der_def} & $\dn$ & @{thm (rhs) Der_def}\\
73f7dc60c285 updated paper
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 107
diff changeset
   221
  \end{tabular}
73f7dc60c285 updated paper
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 107
diff changeset
   222
  \end{center}
73f7dc60c285 updated paper
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 107
diff changeset
   223
  
113
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   224
  \noindent 
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   225
  For semantic derivatives we have the following equations (for example
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   226
  \cite{Krauss2011}):
108
73f7dc60c285 updated paper
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 107
diff changeset
   227
114
8b41d01b5e5d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
   228
  \begin{equation}\label{SemDer}
113
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   229
  \begin{array}{lcl}
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   230
  @{thm (lhs) Der_null}  & \dn & @{thm (rhs) Der_null}\\
114
8b41d01b5e5d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
   231
  @{thm (lhs) Der_empty}  & \dn & @{thm (rhs) Der_empty}\\
8b41d01b5e5d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
   232
  @{thm (lhs) Der_char}  & \dn & @{thm (rhs) Der_char}\\
8b41d01b5e5d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
   233
  @{thm (lhs) Der_union}  & \dn & @{thm (rhs) Der_union}\\
8b41d01b5e5d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
   234
  @{thm (lhs) Der_Sequ}  & \dn & @{thm (rhs) Der_Sequ}\\
8b41d01b5e5d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
   235
  @{thm (lhs) Der_star}  & \dn & @{thm (rhs) Der_star}
113
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   236
  \end{array}
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   237
  \end{equation}
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   238
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   239
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   240
  \noindent \emph{\Brz's derivatives} of regular expressions
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   241
  \cite{Brzozowski1964} can be easily defined by two recursive functions:
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   242
  the first is from regular expressions to booleans (implementing a test
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   243
  when a regular expression can match the empty string), and the second
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   244
  takes a regular expression and a character to a (derivative) regular
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   245
  expression:
108
73f7dc60c285 updated paper
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 107
diff changeset
   246
73f7dc60c285 updated paper
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 107
diff changeset
   247
  \begin{center}
73f7dc60c285 updated paper
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 107
diff changeset
   248
  \begin{tabular}{lcl}
73f7dc60c285 updated paper
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 107
diff changeset
   249
  @{thm (lhs) nullable.simps(1)} & $\dn$ & @{thm (rhs) nullable.simps(1)}\\
73f7dc60c285 updated paper
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 107
diff changeset
   250
  @{thm (lhs) nullable.simps(2)} & $\dn$ & @{thm (rhs) nullable.simps(2)}\\
73f7dc60c285 updated paper
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 107
diff changeset
   251
  @{thm (lhs) nullable.simps(3)} & $\dn$ & @{thm (rhs) nullable.simps(3)}\\
73f7dc60c285 updated paper
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 107
diff changeset
   252
  @{thm (lhs) nullable.simps(4)[of "r\<^sub>1" "r\<^sub>2"]} & $\dn$ & @{thm (rhs) nullable.simps(4)[of "r\<^sub>1" "r\<^sub>2"]}\\
73f7dc60c285 updated paper
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 107
diff changeset
   253
  @{thm (lhs) nullable.simps(5)[of "r\<^sub>1" "r\<^sub>2"]} & $\dn$ & @{thm (rhs) nullable.simps(5)[of "r\<^sub>1" "r\<^sub>2"]}\\
113
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   254
  @{thm (lhs) nullable.simps(6)} & $\dn$ & @{thm (rhs) nullable.simps(6)}\medskip\\
108
73f7dc60c285 updated paper
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 107
diff changeset
   255
  @{thm (lhs) der.simps(1)} & $\dn$ & @{thm (rhs) der.simps(1)}\\
73f7dc60c285 updated paper
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 107
diff changeset
   256
  @{thm (lhs) der.simps(2)} & $\dn$ & @{thm (rhs) der.simps(2)}\\
73f7dc60c285 updated paper
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 107
diff changeset
   257
  @{thm (lhs) der.simps(3)} & $\dn$ & @{thm (rhs) der.simps(3)}\\
73f7dc60c285 updated paper
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 107
diff changeset
   258
  @{thm (lhs) der.simps(4)[of c "r\<^sub>1" "r\<^sub>2"]} & $\dn$ & @{thm (rhs) der.simps(4)[of c "r\<^sub>1" "r\<^sub>2"]}\\
73f7dc60c285 updated paper
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 107
diff changeset
   259
  @{thm (lhs) der.simps(5)[of c "r\<^sub>1" "r\<^sub>2"]} & $\dn$ & @{thm (rhs) der.simps(5)[of c "r\<^sub>1" "r\<^sub>2"]}\\
110
267afb7fb700 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 109
diff changeset
   260
  @{thm (lhs) der.simps(6)} & $\dn$ & @{thm (rhs) der.simps(6)}
108
73f7dc60c285 updated paper
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 107
diff changeset
   261
  \end{tabular}
73f7dc60c285 updated paper
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 107
diff changeset
   262
  \end{center}
114
8b41d01b5e5d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
   263
 
113
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   264
  \noindent
114
8b41d01b5e5d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
   265
  We may extend this definition to give derivatives w.r.t.~strings:
113
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   266
114
8b41d01b5e5d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
   267
  \begin{center}
8b41d01b5e5d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
   268
  \begin{tabular}{lcl}
8b41d01b5e5d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
   269
  @{thm (lhs) ders.simps(1)} & $\dn$ & @{thm (rhs) ders.simps(1)}\\
8b41d01b5e5d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
   270
  @{thm (lhs) ders.simps(2)} & $\dn$ & @{thm (rhs) ders.simps(2)}\\
8b41d01b5e5d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
   271
  \end{tabular}
8b41d01b5e5d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
   272
  \end{center}
8b41d01b5e5d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
   273
8b41d01b5e5d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
   274
  \noindent Given the equations in \eqref{SemDer}, it is a relatively easy
8b41d01b5e5d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
   275
  exercise in mechanical reasoning to establish that
8b41d01b5e5d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
   276
8b41d01b5e5d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
   277
  \begin{proposition}\mbox{}\\ 
113
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   278
  \begin{tabular}{ll}
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   279
  @{text "(1)"} & @{thm (lhs) nullable_correctness} if and only if
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   280
  @{thm (rhs) nullable_correctness} \\ 
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   281
  @{text "(2)"} & @{thm[mode=IfThen] der_correctness}
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   282
  \end{tabular}
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   283
  \end{proposition}
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   284
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   285
  \noindent With this in place it is also very routine to prove that the
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   286
  regular expression matcher defined as
108
73f7dc60c285 updated paper
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 107
diff changeset
   287
73f7dc60c285 updated paper
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 107
diff changeset
   288
  \begin{center}
114
8b41d01b5e5d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
   289
  @{thm match_def}
108
73f7dc60c285 updated paper
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 107
diff changeset
   290
  \end{center}
113
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   291
114
8b41d01b5e5d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
   292
  \noindent gives a positive answer if and only if @{term "s \<in> L r"}. While
8b41d01b5e5d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
   293
  the matcher above calculates a provably correct a YES/NO answer for
113
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   294
  whether a regular expression matches a string, the novel idea of Sulzmann
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   295
  and Lu \cite{Sulzmann2014} is to append another phase to calculate a
114
8b41d01b5e5d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
   296
  value. We will explain the details next.
113
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   297
107
6adda4a667b1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 105
diff changeset
   298
*}
6adda4a667b1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 105
diff changeset
   299
6adda4a667b1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 105
diff changeset
   300
section {* POSIX Regular Expression Matching *}
6adda4a667b1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 105
diff changeset
   301
111
289728193164 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 110
diff changeset
   302
text {* 
289728193164 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 110
diff changeset
   303
113
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   304
The clever idea in \cite{Sulzmann2014} is to introduce values for encoding
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   305
\emph{how} a regular expression matches a string and then define a function
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   306
on values that mirrors (but inverts) the construction of the derivative on
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   307
regular expressions. Values are defined as the inductive datatype
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   308
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   309
  \begin{center}
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   310
  @{text "v :="}
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   311
  @{const "Void"} $\mid$
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   312
  @{term "val.Char c"} $\mid$
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   313
  @{term "Left v"} $\mid$
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   314
  @{term "Right v"} $\mid$
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   315
  @{term "Seq v\<^sub>1 v\<^sub>2"} $\mid$ 
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   316
  @{term "Stars vs"} 
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   317
  \end{center}  
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   318
114
8b41d01b5e5d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
   319
  \noindent where we use @{term vs} standing for a list of values. The string
8b41d01b5e5d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
   320
  underlying a values can be calculated by the @{const flat} function, written
8b41d01b5e5d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
   321
  @{term "flat DUMMY"} and defined as:
8b41d01b5e5d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
   322
8b41d01b5e5d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
   323
  \begin{center}
8b41d01b5e5d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
   324
  \begin{tabular}{lcl}
8b41d01b5e5d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
   325
  @{thm (lhs) flat.simps(1)} & $\dn$ & @{thm (rhs) flat.simps(1)}\\
8b41d01b5e5d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
   326
  @{thm (lhs) flat.simps(2)} & $\dn$ & @{thm (rhs) flat.simps(2)}\\
8b41d01b5e5d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
   327
  @{thm (lhs) flat.simps(3)} & $\dn$ & @{thm (rhs) flat.simps(3)}\\
8b41d01b5e5d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
   328
  @{thm (lhs) flat.simps(4)} & $\dn$ & @{thm (rhs) flat.simps(4)}\\
8b41d01b5e5d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
   329
  @{thm (lhs) flat.simps(5)[of "v\<^sub>1" "v\<^sub>2"]} & $\dn$ & @{thm (rhs) flat.simps(5)[of "v\<^sub>1" "v\<^sub>2"]}\\
8b41d01b5e5d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
   330
  @{thm (lhs) flat.simps(6)} & $\dn$ & @{thm (rhs) flat.simps(6)}\\
8b41d01b5e5d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
   331
  @{thm (lhs) flat.simps(7)} & $\dn$ & @{thm (rhs) flat.simps(7)}\\
8b41d01b5e5d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
   332
  \end{tabular}
8b41d01b5e5d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
   333
  \end{center}
8b41d01b5e5d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
   334
8b41d01b5e5d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
   335
  \noindent Sulzmann and Lu also define inductively an inhabitation relation
8b41d01b5e5d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
   336
  that associates values to regular expressions:
113
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   337
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   338
  \begin{center}
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   339
  \begin{tabular}{c}
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   340
  @{thm[mode=Rule] Prf.intros(1)[of "v\<^sub>1" "r\<^sub>1" "v\<^sub>2" "r\<^sub>2"]}\medskip\\ 
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   341
  @{thm[mode=Rule] Prf.intros(2)[of "v\<^sub>1" "r\<^sub>1" "r\<^sub>2"]} \qquad 
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   342
  @{thm[mode=Rule] Prf.intros(3)[of "v\<^sub>2" "r\<^sub>1" "r\<^sub>2"]}\medskip\\
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   343
  @{thm[mode=Axiom] Prf.intros(4)} \qquad 
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   344
  @{thm[mode=Axiom] Prf.intros(5)[of "c"]}\medskip\\
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   345
  @{thm[mode=Axiom] Prf.intros(6)[of "r"]} \qquad 
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   346
  @{thm[mode=Rule] Prf.intros(7)[of "v" "r" "vs"]}\medskip\\
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   347
  \end{tabular}
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   348
  \end{center}
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   349
114
8b41d01b5e5d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
   350
  \noindent Note that no values are associated with the regular expression
8b41d01b5e5d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
   351
  @{term ZERO}, and that the only value associated with the regular
8b41d01b5e5d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
   352
  expression @{term ONE} is @{term Void}, pronounced (if one must) as {\em
8b41d01b5e5d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
   353
  ``Void''}. It is routine to stablish how values `inhabitated' by a regular
8b41d01b5e5d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
   354
  expression correspond to the language of a regular expression, namely
113
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   355
114
8b41d01b5e5d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
   356
  \begin{proposition}
8b41d01b5e5d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
   357
  @{thm L_flat_Prf}
8b41d01b5e5d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
   358
  \end{proposition}
8b41d01b5e5d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
   359
8b41d01b5e5d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
   360
  Graphically the algorithm by Sulzmann \& Lu can be illustrated by the
8b41d01b5e5d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
   361
  picture in Figure~\ref{Sulz} where the path from the left to the right
8b41d01b5e5d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
   362
  involving $der/nullable$ is the first phase of the algorithm and
8b41d01b5e5d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
   363
  $mkeps/inj$, the path from right to left, the second phase. This picture
8b41d01b5e5d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
   364
  shows the steps required when a regular expression, say $r_1$, matches the
8b41d01b5e5d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
   365
  string $abc$. We first build the three derivatives (according to $a$, $b$
8b41d01b5e5d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
   366
  and $c$). We then use $nullable$ to find out whether the resulting regular
8b41d01b5e5d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
   367
  expression can match the empty string. If yes, we call the function
8b41d01b5e5d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
   368
  $mkeps$.
113
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   369
114
8b41d01b5e5d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
   370
\begin{figure}[t]
8b41d01b5e5d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
   371
\begin{center}
8b41d01b5e5d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
   372
\begin{tikzpicture}[scale=2,node distance=1.2cm,
8b41d01b5e5d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
   373
                    every node/.style={minimum size=7mm}]
8b41d01b5e5d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
   374
\node (r1)  {@{term "r\<^sub>1"}};
8b41d01b5e5d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
   375
\node (r2) [right=of r1]{@{term "r\<^sub>2"}};
8b41d01b5e5d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
   376
\draw[->,line width=1mm](r1)--(r2) node[above,midway] {@{term "der a DUMMY"}};
8b41d01b5e5d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
   377
\node (r3) [right=of r2]{@{term "r\<^sub>3"}};
8b41d01b5e5d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
   378
\draw[->,line width=1mm](r2)--(r3) node[above,midway] {@{term "der b DUMMY"}};
8b41d01b5e5d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
   379
\node (r4) [right=of r3]{@{term "r\<^sub>4"}};
8b41d01b5e5d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
   380
\draw[->,line width=1mm](r3)--(r4) node[above,midway] {@{term "der c DUMMY"}};
8b41d01b5e5d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
   381
\draw (r4) node[anchor=west] {\;\raisebox{3mm}{@{term nullable}}};
8b41d01b5e5d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
   382
\node (v4) [below=of r4]{@{term "v\<^sub>4"}};
8b41d01b5e5d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
   383
\draw[->,line width=1mm](r4) -- (v4);
8b41d01b5e5d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
   384
\node (v3) [left=of v4] {@{term "v\<^sub>3"}};
8b41d01b5e5d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
   385
\draw[->,line width=1mm](v4)--(v3) node[below,midway] {@{term "inj c"}};
8b41d01b5e5d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
   386
\node (v2) [left=of v3]{@{term "v\<^sub>2"}};
8b41d01b5e5d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
   387
\draw[->,line width=1mm](v3)--(v2) node[below,midway] {@{term "inj b"}};
8b41d01b5e5d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
   388
\node (v1) [left=of v2] {@{term "v\<^sub>1"}};
8b41d01b5e5d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
   389
\draw[->,line width=1mm](v2)--(v1) node[below,midway] {@{term "inj a"}};
8b41d01b5e5d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
   390
\draw (r4) node[anchor=north west] {\;\raisebox{-8mm}{@{term "mkeps"}}};
8b41d01b5e5d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
   391
\end{tikzpicture}
8b41d01b5e5d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
   392
\end{center}
8b41d01b5e5d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
   393
\caption{The two phases of the algorithm by Sulzmann \& Lu \cite{Sulzmann2014}
8b41d01b5e5d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
   394
analysing the string @{term "[a,b,c]"}. The first phase (the arrows from 
8b41d01b5e5d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
   395
left to right) is \Brz's matcher building succesive derivatives. If at the 
8b41d01b5e5d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
   396
last regular expression is @{term nullable}, then functions of the 
8b41d01b5e5d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
   397
second phase are called: first @{term mkeps} calculates a value witnessing
8b41d01b5e5d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
   398
how the empty string has been recognised by @{term "r\<^sub>4"}. After
8b41d01b5e5d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
   399
that the function @{term inj} `injects back' the characters of the string into
8b41d01b5e5d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
   400
the values (the arrows from right to left).
8b41d01b5e5d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
   401
\label{Sulz}}
8b41d01b5e5d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
   402
\end{figure} 
8b41d01b5e5d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
   403
8b41d01b5e5d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
   404
 NOT DONE YET 
8b41d01b5e5d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
   405
8b41d01b5e5d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
   406
  We begin with the case of a nullable regular expression: from the
8b41d01b5e5d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
   407
  nullability we need to construct a value that witnesses the nullability.
8b41d01b5e5d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
   408
  The @{const mkeps} function (from \cite{Sulzmann2014}) is a partial (but
8b41d01b5e5d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
   409
  unambiguous) function from regular expressions to values, total on exactly
8b41d01b5e5d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
   410
  the set of nullable regular expressions.
111
289728193164 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 110
diff changeset
   411
289728193164 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 110
diff changeset
   412
 \begin{center}
289728193164 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 110
diff changeset
   413
  \begin{tabular}{lcl}
289728193164 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 110
diff changeset
   414
  @{thm (lhs) mkeps.simps(1)} & $\dn$ & @{thm (rhs) mkeps.simps(1)}\\
289728193164 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 110
diff changeset
   415
  @{thm (lhs) mkeps.simps(2)[of "r\<^sub>1" "r\<^sub>2"]} & $\dn$ & @{thm (rhs) mkeps.simps(2)[of "r\<^sub>1" "r\<^sub>2"]}\\
289728193164 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 110
diff changeset
   416
  @{thm (lhs) mkeps.simps(3)[of "r\<^sub>1" "r\<^sub>2"]} & $\dn$ & @{thm (rhs) mkeps.simps(3)[of "r\<^sub>1" "r\<^sub>2"]}\\
289728193164 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 110
diff changeset
   417
  @{thm (lhs) mkeps.simps(4)} & $\dn$ & @{thm (rhs) mkeps.simps(4)}\\
289728193164 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 110
diff changeset
   418
  \end{tabular}
289728193164 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 110
diff changeset
   419
  \end{center}
289728193164 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 110
diff changeset
   420
289728193164 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 110
diff changeset
   421
The well-known idea of POSIX lexing is informally defined in (for example)
289728193164 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 110
diff changeset
   422
\cite{posix}; as correctly argued in \cite{Sulzmann2014}, this needs formal
289728193164 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 110
diff changeset
   423
specification. The rough idea is that, in contrast to the so-called GREEDY
289728193164 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 110
diff changeset
   424
algorithm, POSIX lexing chooses to match more deeply and using left choices
289728193164 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 110
diff changeset
   425
rather than a right choices. For example, note that to match the string 
289728193164 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 110
diff changeset
   426
@{term "[a, b]"} with the regular expression $(a + \mts)\circ (b+ab)$ the matching
289728193164 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 110
diff changeset
   427
will return $( Void, Right(ab))$ rather than $(Left\ a, Left\ b)$. [The
289728193164 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 110
diff changeset
   428
regular expression $ab$ is short for $(Lit\ a) \circ (Lit\ b)$.] Similarly,
289728193164 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 110
diff changeset
   429
to match {\em ``a''} with $(a+a)$ the leftmost $a$ will be chosen.
289728193164 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 110
diff changeset
   430
289728193164 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 110
diff changeset
   431
We use a simple inductive definition to specify this notion, incorporating
289728193164 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 110
diff changeset
   432
the POSIX-specific choices into the side-conditions for the rules $R tl
289728193164 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 110
diff changeset
   433
+_2$, $R tl\circ$ and $R tl*$ (as they are now called). By contrast,
289728193164 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 110
diff changeset
   434
\cite{Sulzmann2014} defines a relation between values and argues that there is a
289728193164 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 110
diff changeset
   435
maximum value, as given by the derivative-based algorithm yet to be spelt
289728193164 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 110
diff changeset
   436
out. The relation we define is ternary, relating strings, values and regular
289728193164 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 110
diff changeset
   437
expressions.
289728193164 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 110
diff changeset
   438
112
698967eceaf1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 111
diff changeset
   439
Our Posix relation @{term "s \<in> r \<rightarrow> v"}
698967eceaf1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 111
diff changeset
   440
698967eceaf1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 111
diff changeset
   441
  \begin{center}
698967eceaf1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 111
diff changeset
   442
  \begin{tabular}{c}
698967eceaf1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 111
diff changeset
   443
  @{thm[mode=Axiom] PMatch.intros(1)} \qquad
698967eceaf1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 111
diff changeset
   444
  @{thm[mode=Axiom] PMatch.intros(2)}\medskip\\
698967eceaf1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 111
diff changeset
   445
  @{thm[mode=Rule] PMatch.intros(3)[of "s" "r\<^sub>1" "v" "r\<^sub>2"]}\qquad
698967eceaf1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 111
diff changeset
   446
  @{thm[mode=Rule] PMatch.intros(4)[of "s" "r\<^sub>2" "v" "r\<^sub>1"]}\medskip\\
698967eceaf1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 111
diff changeset
   447
  \multicolumn{1}{p{5cm}}{@{thm[mode=Rule] PMatch.intros(5)[of "s\<^sub>1" "r\<^sub>1" "v\<^sub>1" "s\<^sub>2" "r\<^sub>2" "v\<^sub>2"]}}\medskip\\
698967eceaf1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 111
diff changeset
   448
  @{thm[mode=Rule] PMatch.intros(6)[of "s\<^sub>1" "r" "v" "s\<^sub>2" "vs"]}\medskip\\
698967eceaf1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 111
diff changeset
   449
  @{thm[mode=Axiom] PMatch.intros(7)}\medskip\\
698967eceaf1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 111
diff changeset
   450
  \end{tabular}
698967eceaf1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 111
diff changeset
   451
  \end{center}
698967eceaf1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 111
diff changeset
   452
111
289728193164 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 110
diff changeset
   453
*}
289728193164 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 110
diff changeset
   454
107
6adda4a667b1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 105
diff changeset
   455
section {* The Argument by Sulzmmann and Lu *}
6adda4a667b1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 105
diff changeset
   456
6adda4a667b1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 105
diff changeset
   457
section {* Conclusion *}
6adda4a667b1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 105
diff changeset
   458
6adda4a667b1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 105
diff changeset
   459
text {*
6adda4a667b1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 105
diff changeset
   460
6adda4a667b1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 105
diff changeset
   461
  Nipkow lexer from 2000
6adda4a667b1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 105
diff changeset
   462
6adda4a667b1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 105
diff changeset
   463
*}
6adda4a667b1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 105
diff changeset
   464
6adda4a667b1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 105
diff changeset
   465
6adda4a667b1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 105
diff changeset
   466
text {*
6adda4a667b1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 105
diff changeset
   467
6adda4a667b1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 105
diff changeset
   468
6adda4a667b1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 105
diff changeset
   469
6adda4a667b1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 105
diff changeset
   470
97
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   471
  \noindent
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   472
  Values
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   473
113
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   474
  
97
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   475
108
73f7dc60c285 updated paper
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 107
diff changeset
   476
 
97
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   477
114
8b41d01b5e5d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
   478
 
97
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   479
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   480
  \noindent
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   481
  The @{const mkeps} function
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   482
111
289728193164 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 110
diff changeset
   483
 
97
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   484
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   485
  \noindent
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   486
  The @{text inj} function
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   487
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   488
  \begin{center}
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   489
  \begin{tabular}{lcl}
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   490
  @{thm (lhs) injval.simps(1)} & $\dn$ & @{thm (rhs) injval.simps(1)}\\
101
7f4f8c34da95 fixed inj function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 100
diff changeset
   491
  @{thm (lhs) injval.simps(2)[of "r\<^sub>1" "r\<^sub>2" "c" "v\<^sub>1"]} & $\dn$ & 
7f4f8c34da95 fixed inj function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 100
diff changeset
   492
      @{thm (rhs) injval.simps(2)[of "r\<^sub>1" "r\<^sub>2" "c" "v\<^sub>1"]}\\
7f4f8c34da95 fixed inj function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 100
diff changeset
   493
  @{thm (lhs) injval.simps(3)[of "r\<^sub>1" "r\<^sub>2" "c" "v\<^sub>2"]} & $\dn$ & 
7f4f8c34da95 fixed inj function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 100
diff changeset
   494
      @{thm (rhs) injval.simps(3)[of "r\<^sub>1" "r\<^sub>2" "c" "v\<^sub>2"]}\\
7f4f8c34da95 fixed inj function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 100
diff changeset
   495
  @{thm (lhs) injval.simps(4)[of "r\<^sub>1" "r\<^sub>2" "c" "v\<^sub>1" "v\<^sub>2"]} & $\dn$ 
7f4f8c34da95 fixed inj function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 100
diff changeset
   496
      & @{thm (rhs) injval.simps(4)[of "r\<^sub>1" "r\<^sub>2" "c" "v\<^sub>1" "v\<^sub>2"]}\\
7f4f8c34da95 fixed inj function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 100
diff changeset
   497
  @{thm (lhs) injval.simps(5)[of "r\<^sub>1" "r\<^sub>2" "c" "v\<^sub>1" "v\<^sub>2"]} & $\dn$ 
7f4f8c34da95 fixed inj function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 100
diff changeset
   498
      & @{thm (rhs) injval.simps(5)[of "r\<^sub>1" "r\<^sub>2" "c" "v\<^sub>1" "v\<^sub>2"]}\\
7f4f8c34da95 fixed inj function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 100
diff changeset
   499
  @{thm (lhs) injval.simps(6)[of "r\<^sub>1" "r\<^sub>2" "c" "v\<^sub>2"]} & $\dn$ 
7f4f8c34da95 fixed inj function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 100
diff changeset
   500
      & @{thm (rhs) injval.simps(6)[of "r\<^sub>1" "r\<^sub>2" "c" "v\<^sub>2"]}\\
7f4f8c34da95 fixed inj function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 100
diff changeset
   501
  @{thm (lhs) injval.simps(7)[of "r" "c" "v" "vs"]} & $\dn$ 
7f4f8c34da95 fixed inj function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 100
diff changeset
   502
      & @{thm (rhs) injval.simps(7)[of "r" "c" "v" "vs"]}\\
97
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   503
  \end{tabular}
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   504
  \end{center}
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   505
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   506
  \noindent
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   507
  The inhabitation relation:
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   508
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   509
  \begin{center}
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   510
  \begin{tabular}{c}
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   511
  @{thm[mode=Rule] Prf.intros(1)[of "v\<^sub>1" "r\<^sub>1" "v\<^sub>2" "r\<^sub>2"]}\medskip\\ 
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   512
  @{thm[mode=Rule] Prf.intros(2)[of "v\<^sub>1" "r\<^sub>1" "r\<^sub>2"]} \qquad 
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   513
  @{thm[mode=Rule] Prf.intros(3)[of "v\<^sub>2" "r\<^sub>1" "r\<^sub>2"]}\medskip\\
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   514
  @{thm[mode=Axiom] Prf.intros(4)} \qquad 
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   515
  @{thm[mode=Axiom] Prf.intros(5)[of "c"]}\medskip\\
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   516
  @{thm[mode=Axiom] Prf.intros(6)[of "r"]} \qquad 
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   517
  @{thm[mode=Rule] Prf.intros(7)[of "v" "r" "vs"]}\medskip\\
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   518
  \end{tabular}
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   519
  \end{center}
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   520
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   521
  \noindent
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   522
  We have also introduced a slightly restricted version of this relation
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   523
  where the last rule is restricted so that @{term "flat v \<noteq> []"}.
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   524
  This relation for \emph{non-problematic} is written @{term "\<Turnstile> v : r"}.
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   525
  \bigskip
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   526
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   527
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   528
  \noindent
112
698967eceaf1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 111
diff changeset
   529
  
97
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   530
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   531
  \noindent
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   532
  Our version of Sulzmann's ordering relation
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   533
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   534
  \begin{center}
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   535
  \begin{tabular}{c}
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   536
  @{thm[mode=Rule] ValOrd.intros(2)[of "v\<^sub>1" "r\<^sub>1" "v\<^sub>1'" "v\<^sub>2" "r\<^sub>2" "v\<^sub>2'"]} \qquad
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   537
  @{thm[mode=Rule] ValOrd.intros(1)[of "v\<^sub>2" "r\<^sub>2" "v\<^sub>2'" "v\<^sub>1" "r\<^sub>1"]}\medskip\\
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   538
  @{thm[mode=Rule] ValOrd.intros(3)[of "v\<^sub>1" "v\<^sub>2" "r\<^sub>1" "r\<^sub>2"]} \qquad
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   539
  @{thm[mode=Rule] ValOrd.intros(4)[of "v\<^sub>2" "v\<^sub>1" "r\<^sub>1" "r\<^sub>2"]}\medskip\\ 
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   540
  @{thm[mode=Rule] ValOrd.intros(5)[of "v\<^sub>2" "r\<^sub>2" "v\<^sub>2'" "r\<^sub>1"]} \qquad
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   541
  @{thm[mode=Rule] ValOrd.intros(6)[of "v\<^sub>1" "r\<^sub>1" "v\<^sub>1'"  "r\<^sub>2"]} \medskip\\
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   542
  @{thm[mode=Axiom] ValOrd.intros(7)}\qquad
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   543
  @{thm[mode=Axiom] ValOrd.intros(8)[of "c"]}\medskip\\
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   544
  @{thm[mode=Rule] ValOrd.intros(9)[of "v" "vs" "r"]}\qquad
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   545
  @{thm[mode=Rule] ValOrd.intros(10)[of "v" "vs" "r"]}\medskip\\
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   546
  @{thm[mode=Rule] ValOrd.intros(11)[of "v\<^sub>1" "r" "v\<^sub>2" "vs\<^sub>1" "vs\<^sub>2"]}\medskip\\
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   547
  @{thm[mode=Rule] ValOrd.intros(12)[of "vs\<^sub>1" "r" "vs\<^sub>2" "v"]}\qquad
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   548
  @{thm[mode=Axiom] ValOrd.intros(13)[of "r"]}\medskip\\
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   549
  \end{tabular}
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   550
  \end{center}
98
8b4c8cdd0b51 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 97
diff changeset
   551
8b4c8cdd0b51 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 97
diff changeset
   552
  \noindent
8b4c8cdd0b51 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 97
diff changeset
   553
  A prefix of a string s
8b4c8cdd0b51 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 97
diff changeset
   554
8b4c8cdd0b51 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 97
diff changeset
   555
  \begin{center}
8b4c8cdd0b51 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 97
diff changeset
   556
  \begin{tabular}{c}
8b4c8cdd0b51 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 97
diff changeset
   557
  @{thm prefix_def[of "s\<^sub>1" "s\<^sub>2"]}
8b4c8cdd0b51 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 97
diff changeset
   558
  \end{tabular}
8b4c8cdd0b51 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 97
diff changeset
   559
  \end{center}
8b4c8cdd0b51 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 97
diff changeset
   560
8b4c8cdd0b51 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 97
diff changeset
   561
  \noindent
8b4c8cdd0b51 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 97
diff changeset
   562
  Values and non-problematic values
8b4c8cdd0b51 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 97
diff changeset
   563
8b4c8cdd0b51 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 97
diff changeset
   564
  \begin{center}
8b4c8cdd0b51 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 97
diff changeset
   565
  \begin{tabular}{c}
8b4c8cdd0b51 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 97
diff changeset
   566
  @{thm Values_def}\medskip\\
8b4c8cdd0b51 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 97
diff changeset
   567
  \end{tabular}
8b4c8cdd0b51 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 97
diff changeset
   568
  \end{center}
8b4c8cdd0b51 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 97
diff changeset
   569
8b4c8cdd0b51 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 97
diff changeset
   570
8b4c8cdd0b51 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 97
diff changeset
   571
  \noindent
8b4c8cdd0b51 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 97
diff changeset
   572
  The point is that for a given @{text s} and @{text r} there are only finitely many
8b4c8cdd0b51 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 97
diff changeset
   573
  non-problematic values.
97
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   574
*} 
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   575
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   576
text {* 
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   577
  \noindent
98
8b4c8cdd0b51 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 97
diff changeset
   578
  Some lemmas we have proved:\bigskip
97
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   579
  
98
8b4c8cdd0b51 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 97
diff changeset
   580
  @{thm L_flat_Prf}
8b4c8cdd0b51 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 97
diff changeset
   581
8b4c8cdd0b51 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 97
diff changeset
   582
  @{thm L_flat_NPrf}
97
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   583
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   584
  @{thm[mode=IfThen] mkeps_nullable}
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   585
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   586
  @{thm[mode=IfThen] mkeps_flat}
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   587
107
6adda4a667b1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 105
diff changeset
   588
  @{thm[mode=IfThen] Prf_injval}
98
8b4c8cdd0b51 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 97
diff changeset
   589
107
6adda4a667b1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 105
diff changeset
   590
  @{thm[mode=IfThen] Prf_injval_flat}
98
8b4c8cdd0b51 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 97
diff changeset
   591
  
8b4c8cdd0b51 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 97
diff changeset
   592
  @{thm[mode=IfThen] PMatch_mkeps}
8b4c8cdd0b51 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 97
diff changeset
   593
  
8b4c8cdd0b51 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 97
diff changeset
   594
  @{thm[mode=IfThen] PMatch1(2)}
8b4c8cdd0b51 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 97
diff changeset
   595
8b4c8cdd0b51 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 97
diff changeset
   596
  @{thm[mode=IfThen] PMatch1N}
8b4c8cdd0b51 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 97
diff changeset
   597
100
8b919b3d753e strengthened PMatch to get determ
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 99
diff changeset
   598
  @{thm[mode=IfThen] PMatch_determ(1)[of "s" "r" "v\<^sub>1" "v\<^sub>2"]}
8b919b3d753e strengthened PMatch to get determ
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 99
diff changeset
   599
8b919b3d753e strengthened PMatch to get determ
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 99
diff changeset
   600
  \medskip
98
8b4c8cdd0b51 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 97
diff changeset
   601
  \noindent
8b4c8cdd0b51 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 97
diff changeset
   602
  This is the main theorem that lets us prove that the algorithm is correct according to
8b4c8cdd0b51 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 97
diff changeset
   603
  @{term "s \<in> r \<rightarrow> v"}:
8b4c8cdd0b51 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 97
diff changeset
   604
8b4c8cdd0b51 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 97
diff changeset
   605
  @{thm[mode=IfThen] PMatch2}
8b4c8cdd0b51 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 97
diff changeset
   606
8b4c8cdd0b51 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 97
diff changeset
   607
  \mbox{}\bigskip
102
7f589bfecffa updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 101
diff changeset
   608
  
7f589bfecffa updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 101
diff changeset
   609
  \noindent {\bf Proof} The proof is by induction on the definition of
7f589bfecffa updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 101
diff changeset
   610
  @{const der}. Other inductions would go through as well. The
7f589bfecffa updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 101
diff changeset
   611
  interesting case is for @{term "SEQ r\<^sub>1 r\<^sub>2"}. First we analyse the
7f589bfecffa updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 101
diff changeset
   612
  case where @{term "nullable r\<^sub>1"}. We have by induction hypothesis
7f589bfecffa updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 101
diff changeset
   613
7f589bfecffa updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 101
diff changeset
   614
  \[
7f589bfecffa updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 101
diff changeset
   615
  \begin{array}{l}
7f589bfecffa updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 101
diff changeset
   616
  (IH1)\quad @{text "\<forall>s v."} \text{\;if\;} @{term "s \<in> der c r\<^sub>1 \<rightarrow> v"} 
7f589bfecffa updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 101
diff changeset
   617
  \text{\;then\;} @{term "(c # s) \<in> r\<^sub>1 \<rightarrow> injval r\<^sub>1 c v"}\\
7f589bfecffa updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 101
diff changeset
   618
  (IH2)\quad @{text "\<forall>s v."} \text{\;if\;} @{term "s \<in> der c r\<^sub>2 \<rightarrow> v"} 
7f589bfecffa updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 101
diff changeset
   619
  \text{\;then\;} @{term "(c # s) \<in> r\<^sub>2 \<rightarrow> injval r\<^sub>2 c v"}
7f589bfecffa updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 101
diff changeset
   620
  \end{array}
7f589bfecffa updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 101
diff changeset
   621
  \]
7f589bfecffa updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 101
diff changeset
   622
  
7f589bfecffa updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 101
diff changeset
   623
  \noindent
7f589bfecffa updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 101
diff changeset
   624
  and have 
7f589bfecffa updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 101
diff changeset
   625
7f589bfecffa updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 101
diff changeset
   626
  \[
7f589bfecffa updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 101
diff changeset
   627
  @{term "s \<in> ALT (SEQ (der c r\<^sub>1) r\<^sub>2) (der c r\<^sub>2) \<rightarrow> v"}
7f589bfecffa updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 101
diff changeset
   628
  \]
7f589bfecffa updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 101
diff changeset
   629
  
7f589bfecffa updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 101
diff changeset
   630
  \noindent
7f589bfecffa updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 101
diff changeset
   631
  There are two cases what @{term v} can be: (1) @{term "Left v'"} and (2) @{term "Right v'"}.
7f589bfecffa updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 101
diff changeset
   632
7f589bfecffa updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 101
diff changeset
   633
  \begin{itemize}
7f589bfecffa updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 101
diff changeset
   634
  \item[(1)] We know @{term "s \<in> SEQ (der c r\<^sub>1) r\<^sub>2 \<rightarrow> v'"} holds, from which we
7f589bfecffa updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 101
diff changeset
   635
  can infer that there are @{text "s\<^sub>1"}, @{term "s\<^sub>2"}, @{text "v\<^sub>1"}, @{term "v\<^sub>2"}
7f589bfecffa updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 101
diff changeset
   636
  with
7f589bfecffa updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 101
diff changeset
   637
7f589bfecffa updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 101
diff changeset
   638
  \[
7f589bfecffa updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 101
diff changeset
   639
  @{term "s\<^sub>1 \<in> der c r\<^sub>1 \<rightarrow> v\<^sub>1"} \qquad\text{and}\qquad @{term "s\<^sub>2 \<in> r\<^sub>2 \<rightarrow> v\<^sub>2"}
7f589bfecffa updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 101
diff changeset
   640
  \]
7f589bfecffa updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 101
diff changeset
   641
7f589bfecffa updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 101
diff changeset
   642
  and also
7f589bfecffa updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 101
diff changeset
   643
7f589bfecffa updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 101
diff changeset
   644
  \[
7f589bfecffa updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 101
diff changeset
   645
  @{term "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s\<^sub>2 \<and> s\<^sub>1 @ s\<^sub>3 \<in> L (der c r\<^sub>1) \<and> s\<^sub>4 \<in> L r\<^sub>2)"}
7f589bfecffa updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 101
diff changeset
   646
  \]
7f589bfecffa updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 101
diff changeset
   647
7f589bfecffa updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 101
diff changeset
   648
  \noindent
7f589bfecffa updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 101
diff changeset
   649
  and have to prove
7f589bfecffa updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 101
diff changeset
   650
  
7f589bfecffa updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 101
diff changeset
   651
  \[
7f589bfecffa updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 101
diff changeset
   652
  @{term "((c # s\<^sub>1) @ s\<^sub>2) \<in> SEQ r\<^sub>1 r\<^sub>2 \<rightarrow> Seq (injval r\<^sub>1 c v\<^sub>1) v\<^sub>2"}
7f589bfecffa updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 101
diff changeset
   653
  \]
7f589bfecffa updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 101
diff changeset
   654
7f589bfecffa updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 101
diff changeset
   655
  \noindent
7f589bfecffa updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 101
diff changeset
   656
  The two requirements @{term "(c # s\<^sub>1) \<in> r\<^sub>1 \<rightarrow> injval r\<^sub>1 c v\<^sub>1"} and 
7f589bfecffa updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 101
diff changeset
   657
  @{term "s\<^sub>2 \<in> r\<^sub>2 \<rightarrow> v\<^sub>2"} can be proved by the induction hypothese (IH1) and the
7f589bfecffa updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 101
diff changeset
   658
  fact above.
7f589bfecffa updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 101
diff changeset
   659
7f589bfecffa updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 101
diff changeset
   660
  \noindent
7f589bfecffa updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 101
diff changeset
   661
  This leaves to prove
7f589bfecffa updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 101
diff changeset
   662
  
7f589bfecffa updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 101
diff changeset
   663
  \[
7f589bfecffa updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 101
diff changeset
   664
  @{term "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s\<^sub>2 \<and> (c # s\<^sub>1) @ s\<^sub>3 \<in> L r\<^sub>1 \<and> s\<^sub>4 \<in> L r\<^sub>2)"}
7f589bfecffa updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 101
diff changeset
   665
  \]
7f589bfecffa updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 101
diff changeset
   666
  
7f589bfecffa updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 101
diff changeset
   667
  \noindent
7f589bfecffa updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 101
diff changeset
   668
  which holds because @{term "(c # s\<^sub>1) @ s\<^sub>3 \<in> L r\<^sub>1 "} implies @{term "s\<^sub>1 @ s\<^sub>3 \<in> L (der c r\<^sub>1) "}
7f589bfecffa updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 101
diff changeset
   669
103
ffe5d850df62 added some slides
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 102
diff changeset
   670
  \item[(2)] This case is similar.
102
7f589bfecffa updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 101
diff changeset
   671
  \end{itemize}
7f589bfecffa updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 101
diff changeset
   672
7f589bfecffa updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 101
diff changeset
   673
  \noindent 
7f589bfecffa updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 101
diff changeset
   674
  The final case is that @{term " \<not> nullable r\<^sub>1"} holds. This case again similar
7f589bfecffa updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 101
diff changeset
   675
  to the cases above.
98
8b4c8cdd0b51 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 97
diff changeset
   676
*}
8b4c8cdd0b51 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 97
diff changeset
   677
95
a33d3040bf7e started a paper and moved cruft to Attic
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   678
a33d3040bf7e started a paper and moved cruft to Attic
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   679
text {*
a33d3040bf7e started a paper and moved cruft to Attic
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   680
  %\noindent
a33d3040bf7e started a paper and moved cruft to Attic
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   681
  %{\bf Acknowledgements:}
a33d3040bf7e started a paper and moved cruft to Attic
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   682
  %We are grateful for the comments we received from anonymous
a33d3040bf7e started a paper and moved cruft to Attic
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   683
  %referees.
a33d3040bf7e started a paper and moved cruft to Attic
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   684
a33d3040bf7e started a paper and moved cruft to Attic
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   685
  \bibliographystyle{plain}
a33d3040bf7e started a paper and moved cruft to Attic
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   686
  \bibliography{root}
101
7f4f8c34da95 fixed inj function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 100
diff changeset
   687
7f4f8c34da95 fixed inj function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 100
diff changeset
   688
  \section{Roy's Rules}
7f4f8c34da95 fixed inj function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 100
diff changeset
   689
7f4f8c34da95 fixed inj function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 100
diff changeset
   690
   \newcommand{\abs}[1]{\mid\!\! #1\!\! \mid}
7f4f8c34da95 fixed inj function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 100
diff changeset
   691
   %%\newcommand{\mts}{\textit{``''}
7f4f8c34da95 fixed inj function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 100
diff changeset
   692
   \newcommand{\tl}{\ \triangleleft\ }
7f4f8c34da95 fixed inj function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 100
diff changeset
   693
   $$\inferrule[]{Void \tl \epsilon}{}
7f4f8c34da95 fixed inj function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 100
diff changeset
   694
            \quad\quad
7f4f8c34da95 fixed inj function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 100
diff changeset
   695
     \inferrule[]{Char\ c \tl Lit\ c}{}
7f4f8c34da95 fixed inj function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 100
diff changeset
   696
   $$
7f4f8c34da95 fixed inj function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 100
diff changeset
   697
   $$\inferrule
7f4f8c34da95 fixed inj function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 100
diff changeset
   698
       {v_1 \tl r_1}
7f4f8c34da95 fixed inj function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 100
diff changeset
   699
       {Left\ v_1 \tl r_1 + r_2}
7f4f8c34da95 fixed inj function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 100
diff changeset
   700
   \quad\quad
7f4f8c34da95 fixed inj function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 100
diff changeset
   701
     \inferrule[]
7f4f8c34da95 fixed inj function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 100
diff changeset
   702
       { v_2 \tl r_2 \\ \abs{v_2}\ \not\in\ L(r_1)}
7f4f8c34da95 fixed inj function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 100
diff changeset
   703
       {Right\ v_2 \tl r_1 + r_2}
7f4f8c34da95 fixed inj function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 100
diff changeset
   704
   $$
7f4f8c34da95 fixed inj function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 100
diff changeset
   705
   $$
7f4f8c34da95 fixed inj function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 100
diff changeset
   706
   \inferrule
7f4f8c34da95 fixed inj function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 100
diff changeset
   707
       {v_1 \tl r_1\\
7f4f8c34da95 fixed inj function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 100
diff changeset
   708
        v_2 \tl r_2\\
7f4f8c34da95 fixed inj function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 100
diff changeset
   709
        s \in\  L(r_1\backslash\! \abs{v_1}) \ \land\
7f4f8c34da95 fixed inj function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 100
diff changeset
   710
        \abs{v_2}\!\backslash s\ \epsilon\ L(r_2)
7f4f8c34da95 fixed inj function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 100
diff changeset
   711
        \ \Rightarrow\ s = []
7f4f8c34da95 fixed inj function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 100
diff changeset
   712
       }
7f4f8c34da95 fixed inj function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 100
diff changeset
   713
       {(v_1, v_2) \tl r_1 \cdot r_2}
7f4f8c34da95 fixed inj function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 100
diff changeset
   714
   $$
7f4f8c34da95 fixed inj function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 100
diff changeset
   715
   $$\inferrule
7f4f8c34da95 fixed inj function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 100
diff changeset
   716
         { v \tl r \\ vs \tl r^* \\ \abs{v}\ \not=\ []} 
7f4f8c34da95 fixed inj function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 100
diff changeset
   717
         { (v :: vs) \tl r^* }
7f4f8c34da95 fixed inj function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 100
diff changeset
   718
   \quad\quad
7f4f8c34da95 fixed inj function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 100
diff changeset
   719
       \inferrule{}
7f4f8c34da95 fixed inj function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 100
diff changeset
   720
         { []  \tl r^* }       
7f4f8c34da95 fixed inj function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 100
diff changeset
   721
   $$
7f4f8c34da95 fixed inj function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 100
diff changeset
   722
95
a33d3040bf7e started a paper and moved cruft to Attic
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   723
*}
a33d3040bf7e started a paper and moved cruft to Attic
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   724
a33d3040bf7e started a paper and moved cruft to Attic
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   725
a33d3040bf7e started a paper and moved cruft to Attic
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   726
(*<*)
a33d3040bf7e started a paper and moved cruft to Attic
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   727
end
a33d3040bf7e started a paper and moved cruft to Attic
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   728
(*>*)