thys/Paper/Paper.thy
author Christian Urban <christian dot urban at kcl dot ac dot uk>
Sun, 06 Mar 2016 20:00:47 +0000
changeset 119 71e26f43c896
parent 118 79efc0bcfc96
child 120 d74bfa11802c
permissions -rw-r--r--
updated
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
95
a33d3040bf7e started a paper and moved cruft to Attic
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
     1
(*<*)
a33d3040bf7e started a paper and moved cruft to Attic
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
     2
theory Paper
a33d3040bf7e started a paper and moved cruft to Attic
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
     3
imports "../ReStar" "~~/src/HOL/Library/LaTeXsugar"
a33d3040bf7e started a paper and moved cruft to Attic
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
     4
begin
97
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
     5
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
     6
declare [[show_question_marks = false]]
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
     7
108
73f7dc60c285 updated paper
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 107
diff changeset
     8
abbreviation 
73f7dc60c285 updated paper
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 107
diff changeset
     9
 "der_syn r c \<equiv> der c r"
73f7dc60c285 updated paper
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 107
diff changeset
    10
114
8b41d01b5e5d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
    11
abbreviation 
8b41d01b5e5d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
    12
 "ders_syn r s \<equiv> ders s r"
8b41d01b5e5d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
    13
97
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
    14
notation (latex output)
111
289728193164 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 110
diff changeset
    15
  If  ("(\<^raw:\textrm{>if\<^raw:}> (_)/ \<^raw:\textrm{>then\<^raw:}> (_)/ \<^raw:\textrm{>else\<^raw:}> (_))" 10) and
118
79efc0bcfc96 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 117
diff changeset
    16
  Cons ("_\<^raw:\mbox{$\,$}>::\<^raw:\mbox{$\,$}>_" [75,75] 73) and  
79efc0bcfc96 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 117
diff changeset
    17
116
022503caa187 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 115
diff changeset
    18
  ZERO ("\<^bold>0" 78) and 
022503caa187 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 115
diff changeset
    19
  ONE ("\<^bold>1" 78) and 
109
2c38f10643ae updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 108
diff changeset
    20
  CHAR ("_" [1000] 80) and
108
73f7dc60c285 updated paper
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 107
diff changeset
    21
  ALT ("_ + _" [77,77] 78) and
73f7dc60c285 updated paper
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 107
diff changeset
    22
  SEQ ("_ \<cdot> _" [77,77] 78) and
107
6adda4a667b1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 105
diff changeset
    23
  STAR ("_\<^sup>\<star>" [1000] 78) and
111
289728193164 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 110
diff changeset
    24
  
113
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
    25
  val.Void ("'(')" 79) and
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
    26
  val.Char ("Char _" [1000] 79) and
116
022503caa187 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 115
diff changeset
    27
  val.Left ("Left _" [79] 78) and
022503caa187 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 115
diff changeset
    28
  val.Right ("Right _" [79] 78) and
022503caa187 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 115
diff changeset
    29
  val.Seq ("Seq _ _" [79,79] 78) and
022503caa187 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 115
diff changeset
    30
  val.Stars ("Stars _" [79] 78) and
022503caa187 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 115
diff changeset
    31
108
73f7dc60c285 updated paper
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 107
diff changeset
    32
  L ("L'(_')" [10] 78) and
114
8b41d01b5e5d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
    33
  der_syn ("_\\_" [79, 1000] 76) and  
8b41d01b5e5d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
    34
  ders_syn ("_\\_" [79, 1000] 76) and
113
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
    35
  flat ("|_|" [75] 73) and
97
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
    36
  Sequ ("_ @ _" [78,77] 63) and
116
022503caa187 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 115
diff changeset
    37
  injval ("inj _ _ _" [79,77,79] 76) and 
022503caa187 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 115
diff changeset
    38
  mkeps ("mkeps _" [79] 76) and 
102
7f589bfecffa updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 101
diff changeset
    39
  projval ("proj _ _ _" [1000,77,1000] 77) and 
113
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
    40
  length ("len _" [78] 73) and
118
79efc0bcfc96 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 117
diff changeset
    41
  matcher ("lexer _ _" [78,78] 77) and
113
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
    42
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
    43
  Prf ("\<triangleright> _ : _" [75,75] 75) and  
116
022503caa187 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 115
diff changeset
    44
  PMatch ("'(_, _') \<rightarrow> _" [63,75,75] 75)
105
80218dddbb15 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 103
diff changeset
    45
  (* and ValOrd ("_ \<succeq>\<^bsub>_\<^esub> _" [78,77,77] 73) *)
114
8b41d01b5e5d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
    46
8b41d01b5e5d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
    47
definition 
8b41d01b5e5d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
    48
  "match r s \<equiv> nullable (ders s r)"
8b41d01b5e5d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
    49
95
a33d3040bf7e started a paper and moved cruft to Attic
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    50
(*>*)
a33d3040bf7e started a paper and moved cruft to Attic
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    51
a33d3040bf7e started a paper and moved cruft to Attic
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    52
section {* Introduction *}
a33d3040bf7e started a paper and moved cruft to Attic
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    53
113
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
    54
97
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
    55
text {*
108
73f7dc60c285 updated paper
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 107
diff changeset
    56
73f7dc60c285 updated paper
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 107
diff changeset
    57
Brzozowski \cite{Brzozowski1964} introduced the notion of the {\em
73f7dc60c285 updated paper
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 107
diff changeset
    58
derivative} @{term "der c r"} of a regular expression @{text r} w.r.t.\ a
73f7dc60c285 updated paper
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 107
diff changeset
    59
character~@{text c}, and showed that it gave a simple solution to the
73f7dc60c285 updated paper
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 107
diff changeset
    60
problem of matching a string @{term s} with a regular expression @{term r}:
73f7dc60c285 updated paper
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 107
diff changeset
    61
if the derivative of @{term r} w.r.t.\ (in succession) all the characters of
110
267afb7fb700 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 109
diff changeset
    62
the string matches the empty string, then @{term r} matches @{term s}
108
73f7dc60c285 updated paper
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 107
diff changeset
    63
(and {\em vice versa}). The derivative has the property (which may be
73f7dc60c285 updated paper
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 107
diff changeset
    64
regarded as its specification) that, for every string @{term s} and regular
73f7dc60c285 updated paper
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 107
diff changeset
    65
expression @{term r} and character @{term c}, one has @{term "cs \<in> L(r)"} if
73f7dc60c285 updated paper
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 107
diff changeset
    66
and only if \mbox{@{term "s \<in> L(der c r)"}}. The beauty of Brzozowski's
109
2c38f10643ae updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 108
diff changeset
    67
derivatives is that they are neatly expressible in any functional language,
2c38f10643ae updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 108
diff changeset
    68
and easily definable and reasoned about in theorem provers---the definitions
2c38f10643ae updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 108
diff changeset
    69
just consist of inductive datatypes and simple recursive functions. A
2c38f10643ae updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 108
diff changeset
    70
completely formalised correctness proof of this matcher in for example HOL4
116
022503caa187 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 115
diff changeset
    71
has been mentioned in~\cite{Owens2008}. Another one in Isabelle/HOL is
022503caa187 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 115
diff changeset
    72
in \cite{Krauss2011}.
108
73f7dc60c285 updated paper
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 107
diff changeset
    73
73f7dc60c285 updated paper
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 107
diff changeset
    74
One limitation of Brzozowski's matcher is that it only generates a YES/NO
109
2c38f10643ae updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 108
diff changeset
    75
answer for whether a string is being matched by a regular expression.
2c38f10643ae updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 108
diff changeset
    76
Sulzmann and Lu \cite{Sulzmann2014} extended this matcher to allow
2c38f10643ae updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 108
diff changeset
    77
generation not just of a YES/NO answer but of an actual matching, called a
2c38f10643ae updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 108
diff changeset
    78
[lexical] {\em value}. They give a simple algorithm to calculate a value
113
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
    79
that appears to be the value associated with POSIX matching
109
2c38f10643ae updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 108
diff changeset
    80
\cite{Kuklewicz,Vansummeren2006}. The challenge then is to specify that
2c38f10643ae updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 108
diff changeset
    81
value, in an algorithm-independent fashion, and to show that Sulzamann and
2c38f10643ae updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 108
diff changeset
    82
Lu's derivative-based algorithm does indeed calculate a value that is
2c38f10643ae updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 108
diff changeset
    83
correct according to the specification.
2c38f10643ae updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 108
diff changeset
    84
2c38f10643ae updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 108
diff changeset
    85
The answer given by Sulzmann and Lu \cite{Sulzmann2014} is to define a
2c38f10643ae updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 108
diff changeset
    86
relation (called an ``Order Relation'') on the set of values of @{term r},
2c38f10643ae updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 108
diff changeset
    87
and to show that (once a string to be matched is chosen) there is a maximum
2c38f10643ae updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 108
diff changeset
    88
element and that it is computed by their derivative-based algorithm. This
2c38f10643ae updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 108
diff changeset
    89
proof idea is inspired by work of Frisch and Cardelli \cite{Frisch2004} on a
2c38f10643ae updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 108
diff changeset
    90
GREEDY regular expression matching algorithm. Beginning with our
2c38f10643ae updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 108
diff changeset
    91
observations that, without evidence that it is transitive, it cannot be
2c38f10643ae updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 108
diff changeset
    92
called an ``order relation'', and that the relation is called a ``total
115
15ef2af1a6f2 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 114
diff changeset
    93
order'' despite being evidently not total\footnote{The relation @{text
116
022503caa187 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 115
diff changeset
    94
"\<ge>\<^bsub>r\<^esub>"} defined in \cite{Sulzmann2014} is a relation on the
022503caa187 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 115
diff changeset
    95
values for the regular expression @{term r}; but it only holds between
022503caa187 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 115
diff changeset
    96
@{term v} and @{term "v'"} in cases where @{term v} and @{term "v'"} have
022503caa187 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 115
diff changeset
    97
the same flattening (underlying string). So a counterexample to totality is
022503caa187 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 115
diff changeset
    98
given by taking two values @{term v} and @{term "v'"} for @{term r} that
022503caa187 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 115
diff changeset
    99
have different flattenings (see Section~\ref{posixsec}). A different
022503caa187 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 115
diff changeset
   100
relation @{text "\<ge>\<^bsub>r,s\<^esub>"} on the set of values for @{term r}
022503caa187 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 115
diff changeset
   101
with flattening @{term s} is definable by the same approach, and is indeed
022503caa187 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 115
diff changeset
   102
total; but that is not what Proposition 1 of \cite{Sulzmann2014} does.}, we
022503caa187 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 115
diff changeset
   103
identify problems with this approach (of which some of the proofs are not
022503caa187 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 115
diff changeset
   104
published in \cite{Sulzmann2014}); perhaps more importantly, we give a
022503caa187 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 115
diff changeset
   105
simple inductive (and algorithm-independent) definition of what we call
022503caa187 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 115
diff changeset
   106
being a {\em POSIX value} for a regular expression @{term r} and a string
022503caa187 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 115
diff changeset
   107
@{term s}; we show that the algorithm computes such a value and that such a
022503caa187 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 115
diff changeset
   108
value is unique. Proofs are both done by hand and checked in Isabelle/HOL.
022503caa187 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 115
diff changeset
   109
The experience of doing our proofs has been that this mechanical checking
022503caa187 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 115
diff changeset
   110
was absolutely essential: this subject area has hidden snares. This was also
022503caa187 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 115
diff changeset
   111
noted by Kuklewitz \cite{Kuklewicz} who found that nearly all POSIX matching
022503caa187 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 115
diff changeset
   112
implementations are ``buggy'' \cite[Page 203]{Sulzmann2014}.
108
73f7dc60c285 updated paper
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 107
diff changeset
   113
113
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   114
If a regular expression matches a string, then in general there is more than
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   115
one way of how the string is matched. There are two commonly used
110
267afb7fb700 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 109
diff changeset
   116
disambiguation strategies to generate a unique answer: one is called GREEDY
267afb7fb700 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 109
diff changeset
   117
matching \cite{Frisch2004} and the other is POSIX
113
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   118
matching~\cite{Kuklewicz,Sulzmann2014,Vansummeren2006}. For example consider
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   119
the string @{term xy} and the regular expression \mbox{@{term "STAR (ALT
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   120
(ALT x y) xy)"}}. Either the string can be matched in two `iterations' by
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   121
the single letter-regular expressions @{term x} and @{term y}, or directly
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   122
in one iteration by @{term xy}. The first case corresponds to GREEDY
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   123
matching, which first matches with the left-most symbol and only matches the
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   124
next symbol in case of a mismatch (this is greedy in the sense of preferring
110
267afb7fb700 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 109
diff changeset
   125
instant gratification to delayed repletion). The second case is POSIX
267afb7fb700 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 109
diff changeset
   126
matching, which prefers the longest match.
109
2c38f10643ae updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 108
diff changeset
   127
112
698967eceaf1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 111
diff changeset
   128
In the context of lexing, where an input string needs to be split up into a
110
267afb7fb700 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 109
diff changeset
   129
sequence of tokens, POSIX is the more natural disambiguation strategy for
267afb7fb700 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 109
diff changeset
   130
what programmers consider basic syntactic building blocks in their programs.
112
698967eceaf1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 111
diff changeset
   131
These building blocks are often specified by some regular expressions, say
698967eceaf1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 111
diff changeset
   132
@{text "r\<^bsub>key\<^esub>"} and @{text "r\<^bsub>id\<^esub>"} for recognising keywords and
698967eceaf1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 111
diff changeset
   133
identifiers, respectively. There are two underlying (informal) rules behind
698967eceaf1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 111
diff changeset
   134
tokenising a string in a POSIX fashion:
109
2c38f10643ae updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 108
diff changeset
   135
2c38f10643ae updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 108
diff changeset
   136
\begin{itemize} 
2c38f10643ae updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 108
diff changeset
   137
\item[$\bullet$] \underline{The Longest Match Rule (or ``maximal munch rule''):}
2c38f10643ae updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 108
diff changeset
   138
2c38f10643ae updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 108
diff changeset
   139
The longest initial substring matched by any regular expression is taken as
2c38f10643ae updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 108
diff changeset
   140
next token.\smallskip
2c38f10643ae updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 108
diff changeset
   141
119
71e26f43c896 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 118
diff changeset
   142
\item[$\bullet$] \underline{Priority Rule:}
108
73f7dc60c285 updated paper
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 107
diff changeset
   143
109
2c38f10643ae updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 108
diff changeset
   144
For a particular longest initial substring, the first regular expression
2c38f10643ae updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 108
diff changeset
   145
that can match determines the token.
2c38f10643ae updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 108
diff changeset
   146
\end{itemize}
2c38f10643ae updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 108
diff changeset
   147
 
113
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   148
\noindent Consider for example @{text "r\<^bsub>key\<^esub>"} recognising keywords such as
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   149
@{text "if"}, @{text "then"} and so on; and @{text "r\<^bsub>id\<^esub>"} recognising
116
022503caa187 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 115
diff changeset
   150
identifiers (say, a single character followed by characters or numbers). Then we
113
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   151
can form the regular expression @{text "(r\<^bsub>key\<^esub> + r\<^bsub>id\<^esub>)\<^sup>\<star>"} and use POSIX
110
267afb7fb700 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 109
diff changeset
   152
matching to tokenise strings, say @{text "iffoo"} and @{text "if"}. In the
267afb7fb700 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 109
diff changeset
   153
first case we obtain by the longest match rule a single identifier token,
113
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   154
not a keyword followed by an identifier. In the second case we obtain by rule
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   155
priority a keyword token, not an identifier token---even if @{text "r\<^bsub>id\<^esub>"}
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   156
matches also.\bigskip
109
2c38f10643ae updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 108
diff changeset
   157
116
022503caa187 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 115
diff changeset
   158
\noindent {\bf Contributions:} (NOT DONE YET) We have implemented in Isabelle/HOL the
113
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   159
derivative-based regular expression matching algorithm as described by
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   160
Sulzmann and Lu \cite{Sulzmann2014}. We have proved the correctness of this
116
022503caa187 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 115
diff changeset
   161
algorithm according to our specification of what a POSIX value is. The
113
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   162
informal correctness proof given in \cite{Sulzmann2014} is in final
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   163
form\footnote{} and to us contains unfillable gaps. Our specification of a
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   164
POSIX value consists of a simple inductive definition that given a string
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   165
and a regular expression uniquely determines this value. Derivatives as
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   166
calculated by Brzozowski's method are usually more complex regular
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   167
expressions than the initial one; various optimisations are possible, such
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   168
as the simplifications of @{term "ALT ZERO r"}, @{term "ALT r ZERO"}, @{term
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   169
"SEQ ONE r"} and @{term "SEQ r ONE"} to @{term r}. One of the advantages of
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   170
having a simple specification and correctness proof is that the latter can
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   171
be refined to allow for such optimisations and simple correctness proof.
108
73f7dc60c285 updated paper
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 107
diff changeset
   172
113
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   173
An extended version of \cite{Sulzmann2014} is available at the website of
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   174
its first author; this includes some ``proofs'', claimed in
108
73f7dc60c285 updated paper
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 107
diff changeset
   175
\cite{Sulzmann2014} to be ``rigorous''. Since these are evidently not in
113
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   176
final form, we make no comment thereon, preferring to give general reasons
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   177
for our belief that the approach of \cite{Sulzmann2014} is problematic
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   178
rather than to discuss details of unpublished work.
107
6adda4a667b1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 105
diff changeset
   179
6adda4a667b1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 105
diff changeset
   180
*}
6adda4a667b1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 105
diff changeset
   181
6adda4a667b1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 105
diff changeset
   182
section {* Preliminaries *}
6adda4a667b1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 105
diff changeset
   183
111
289728193164 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 110
diff changeset
   184
text {* \noindent Strings in Isabelle/HOL are lists of characters with the
289728193164 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 110
diff changeset
   185
empty string being represented by the empty list, written @{term "[]"}, and
289728193164 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 110
diff changeset
   186
list-cons being written as @{term "DUMMY # DUMMY"}. Often we use the usual
113
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   187
bracket notation for lists also for strings; for example a string consisting
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   188
of just a single character @{term c} is written @{term "[c]"}. By using the
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   189
type @{type char} for characters we have a supply of finitely many
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   190
characters roughly corresponding to the ASCII character set. Regular
116
022503caa187 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 115
diff changeset
   191
expressions are defined as usual as the elements of the following inductive
022503caa187 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 115
diff changeset
   192
datatype:
97
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   193
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   194
  \begin{center}
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   195
  @{text "r :="}
107
6adda4a667b1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 105
diff changeset
   196
  @{const "ZERO"} $\mid$
6adda4a667b1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 105
diff changeset
   197
  @{const "ONE"} $\mid$
97
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   198
  @{term "CHAR c"} $\mid$
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   199
  @{term "ALT r\<^sub>1 r\<^sub>2"} $\mid$
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   200
  @{term "SEQ r\<^sub>1 r\<^sub>2"} $\mid$
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   201
  @{term "STAR r"} 
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   202
  \end{center}
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   203
113
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   204
  \noindent where @{const ZERO} stands for the regular expression that does
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   205
  not match any string, @{const ONE} for the regular expression that matches
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   206
  only the empty string and @{term c} for matching a character literal. The
116
022503caa187 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 115
diff changeset
   207
  language of a regular expression is also defined as usual by the
113
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   208
  recursive function @{term L} with the clauses:
108
73f7dc60c285 updated paper
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 107
diff changeset
   209
73f7dc60c285 updated paper
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 107
diff changeset
   210
  \begin{center}
73f7dc60c285 updated paper
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 107
diff changeset
   211
  \begin{tabular}{rcl}
73f7dc60c285 updated paper
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 107
diff changeset
   212
  @{thm (lhs) L.simps(1)} & $\dn$ & @{thm (rhs) L.simps(1)}\\
73f7dc60c285 updated paper
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 107
diff changeset
   213
  @{thm (lhs) L.simps(2)} & $\dn$ & @{thm (rhs) L.simps(2)}\\
73f7dc60c285 updated paper
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 107
diff changeset
   214
  @{thm (lhs) L.simps(3)} & $\dn$ & @{thm (rhs) L.simps(3)}\\
73f7dc60c285 updated paper
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 107
diff changeset
   215
  @{thm (lhs) L.simps(4)[of "r\<^sub>1" "r\<^sub>2"]} & $\dn$ & @{thm (rhs) L.simps(4)[of "r\<^sub>1" "r\<^sub>2"]}\\
73f7dc60c285 updated paper
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 107
diff changeset
   216
  @{thm (lhs) L.simps(5)[of "r\<^sub>1" "r\<^sub>2"]} & $\dn$ & @{thm (rhs) L.simps(5)[of "r\<^sub>1" "r\<^sub>2"]}\\
73f7dc60c285 updated paper
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 107
diff changeset
   217
  @{thm (lhs) L.simps(6)} & $\dn$ & @{thm (rhs) L.simps(6)}\\
73f7dc60c285 updated paper
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 107
diff changeset
   218
  \end{tabular}
73f7dc60c285 updated paper
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 107
diff changeset
   219
  \end{center}
73f7dc60c285 updated paper
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 107
diff changeset
   220
  
116
022503caa187 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 115
diff changeset
   221
  \noindent In the fourth clause we use the operation @{term "DUMMY ;;
022503caa187 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 115
diff changeset
   222
  DUMMY"} for the concatenation of two languages (it is also list-append for
022503caa187 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 115
diff changeset
   223
  strings). We use the star-notation for regular expressions and languages
022503caa187 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 115
diff changeset
   224
  (in the last clause above). The star on languages is defined inductively
022503caa187 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 115
diff changeset
   225
  by two clauses: @{text "(i)"} for the empty string being in the star of a
113
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   226
  language and @{text "(ii)"} if @{term "s\<^sub>1"} is in a language and @{term
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   227
  "s\<^sub>2"} in the star of this language, then also @{term "s\<^sub>1 @ s\<^sub>2"} is in
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   228
  the star of this language. It will also be convenient to use the following
116
022503caa187 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 115
diff changeset
   229
  notion of a \emph{semantic derivative} (or \emph{left quotient}) of a
022503caa187 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 115
diff changeset
   230
  language, say @{text A}, defined as:
108
73f7dc60c285 updated paper
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 107
diff changeset
   231
73f7dc60c285 updated paper
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 107
diff changeset
   232
  \begin{center}
73f7dc60c285 updated paper
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 107
diff changeset
   233
  \begin{tabular}{lcl}
73f7dc60c285 updated paper
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 107
diff changeset
   234
  @{thm (lhs) Der_def} & $\dn$ & @{thm (rhs) Der_def}\\
73f7dc60c285 updated paper
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 107
diff changeset
   235
  \end{tabular}
73f7dc60c285 updated paper
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 107
diff changeset
   236
  \end{center}
73f7dc60c285 updated paper
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 107
diff changeset
   237
  
113
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   238
  \noindent 
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   239
  For semantic derivatives we have the following equations (for example
116
022503caa187 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 115
diff changeset
   240
  mechanically proved in \cite{Krauss2011}):
108
73f7dc60c285 updated paper
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 107
diff changeset
   241
114
8b41d01b5e5d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
   242
  \begin{equation}\label{SemDer}
113
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   243
  \begin{array}{lcl}
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   244
  @{thm (lhs) Der_null}  & \dn & @{thm (rhs) Der_null}\\
114
8b41d01b5e5d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
   245
  @{thm (lhs) Der_empty}  & \dn & @{thm (rhs) Der_empty}\\
8b41d01b5e5d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
   246
  @{thm (lhs) Der_char}  & \dn & @{thm (rhs) Der_char}\\
8b41d01b5e5d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
   247
  @{thm (lhs) Der_union}  & \dn & @{thm (rhs) Der_union}\\
8b41d01b5e5d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
   248
  @{thm (lhs) Der_Sequ}  & \dn & @{thm (rhs) Der_Sequ}\\
8b41d01b5e5d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
   249
  @{thm (lhs) Der_star}  & \dn & @{thm (rhs) Der_star}
113
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   250
  \end{array}
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   251
  \end{equation}
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   252
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   253
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   254
  \noindent \emph{\Brz's derivatives} of regular expressions
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   255
  \cite{Brzozowski1964} can be easily defined by two recursive functions:
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   256
  the first is from regular expressions to booleans (implementing a test
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   257
  when a regular expression can match the empty string), and the second
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   258
  takes a regular expression and a character to a (derivative) regular
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   259
  expression:
108
73f7dc60c285 updated paper
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 107
diff changeset
   260
73f7dc60c285 updated paper
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 107
diff changeset
   261
  \begin{center}
73f7dc60c285 updated paper
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 107
diff changeset
   262
  \begin{tabular}{lcl}
73f7dc60c285 updated paper
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 107
diff changeset
   263
  @{thm (lhs) nullable.simps(1)} & $\dn$ & @{thm (rhs) nullable.simps(1)}\\
73f7dc60c285 updated paper
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 107
diff changeset
   264
  @{thm (lhs) nullable.simps(2)} & $\dn$ & @{thm (rhs) nullable.simps(2)}\\
73f7dc60c285 updated paper
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 107
diff changeset
   265
  @{thm (lhs) nullable.simps(3)} & $\dn$ & @{thm (rhs) nullable.simps(3)}\\
73f7dc60c285 updated paper
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 107
diff changeset
   266
  @{thm (lhs) nullable.simps(4)[of "r\<^sub>1" "r\<^sub>2"]} & $\dn$ & @{thm (rhs) nullable.simps(4)[of "r\<^sub>1" "r\<^sub>2"]}\\
73f7dc60c285 updated paper
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 107
diff changeset
   267
  @{thm (lhs) nullable.simps(5)[of "r\<^sub>1" "r\<^sub>2"]} & $\dn$ & @{thm (rhs) nullable.simps(5)[of "r\<^sub>1" "r\<^sub>2"]}\\
113
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   268
  @{thm (lhs) nullable.simps(6)} & $\dn$ & @{thm (rhs) nullable.simps(6)}\medskip\\
108
73f7dc60c285 updated paper
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 107
diff changeset
   269
  @{thm (lhs) der.simps(1)} & $\dn$ & @{thm (rhs) der.simps(1)}\\
73f7dc60c285 updated paper
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 107
diff changeset
   270
  @{thm (lhs) der.simps(2)} & $\dn$ & @{thm (rhs) der.simps(2)}\\
73f7dc60c285 updated paper
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 107
diff changeset
   271
  @{thm (lhs) der.simps(3)} & $\dn$ & @{thm (rhs) der.simps(3)}\\
73f7dc60c285 updated paper
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 107
diff changeset
   272
  @{thm (lhs) der.simps(4)[of c "r\<^sub>1" "r\<^sub>2"]} & $\dn$ & @{thm (rhs) der.simps(4)[of c "r\<^sub>1" "r\<^sub>2"]}\\
73f7dc60c285 updated paper
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 107
diff changeset
   273
  @{thm (lhs) der.simps(5)[of c "r\<^sub>1" "r\<^sub>2"]} & $\dn$ & @{thm (rhs) der.simps(5)[of c "r\<^sub>1" "r\<^sub>2"]}\\
110
267afb7fb700 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 109
diff changeset
   274
  @{thm (lhs) der.simps(6)} & $\dn$ & @{thm (rhs) der.simps(6)}
108
73f7dc60c285 updated paper
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 107
diff changeset
   275
  \end{tabular}
73f7dc60c285 updated paper
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 107
diff changeset
   276
  \end{center}
114
8b41d01b5e5d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
   277
 
113
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   278
  \noindent
114
8b41d01b5e5d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
   279
  We may extend this definition to give derivatives w.r.t.~strings:
113
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   280
114
8b41d01b5e5d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
   281
  \begin{center}
8b41d01b5e5d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
   282
  \begin{tabular}{lcl}
8b41d01b5e5d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
   283
  @{thm (lhs) ders.simps(1)} & $\dn$ & @{thm (rhs) ders.simps(1)}\\
8b41d01b5e5d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
   284
  @{thm (lhs) ders.simps(2)} & $\dn$ & @{thm (rhs) ders.simps(2)}\\
8b41d01b5e5d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
   285
  \end{tabular}
8b41d01b5e5d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
   286
  \end{center}
8b41d01b5e5d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
   287
8b41d01b5e5d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
   288
  \noindent Given the equations in \eqref{SemDer}, it is a relatively easy
8b41d01b5e5d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
   289
  exercise in mechanical reasoning to establish that
8b41d01b5e5d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
   290
8b41d01b5e5d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
   291
  \begin{proposition}\mbox{}\\ 
113
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   292
  \begin{tabular}{ll}
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   293
  @{text "(1)"} & @{thm (lhs) nullable_correctness} if and only if
116
022503caa187 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 115
diff changeset
   294
  @{thm (rhs) nullable_correctness}, and \\ 
022503caa187 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 115
diff changeset
   295
  @{text "(2)"} & @{thm[mode=IfThen] der_correctness}.
113
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   296
  \end{tabular}
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   297
  \end{proposition}
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   298
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   299
  \noindent With this in place it is also very routine to prove that the
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   300
  regular expression matcher defined as
108
73f7dc60c285 updated paper
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 107
diff changeset
   301
73f7dc60c285 updated paper
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 107
diff changeset
   302
  \begin{center}
114
8b41d01b5e5d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
   303
  @{thm match_def}
108
73f7dc60c285 updated paper
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 107
diff changeset
   304
  \end{center}
113
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   305
116
022503caa187 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 115
diff changeset
   306
  \noindent gives a positive answer if and only if @{term "s \<in> L r"}.
022503caa187 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 115
diff changeset
   307
  Consequently, this regular expression matching algorithm satisfies the
022503caa187 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 115
diff changeset
   308
  usual specification. While the matcher above calculates a provably correct
022503caa187 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 115
diff changeset
   309
  a YES/NO answer for whether a regular expression matches a string, the
022503caa187 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 115
diff changeset
   310
  novel idea of Sulzmann and Lu \cite{Sulzmann2014} is to append another
022503caa187 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 115
diff changeset
   311
  phase to this algorithm in order to calculate a [lexical] value. We will
022503caa187 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 115
diff changeset
   312
  explain the details next.
113
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   313
107
6adda4a667b1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 105
diff changeset
   314
*}
6adda4a667b1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 105
diff changeset
   315
116
022503caa187 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 115
diff changeset
   316
section {* POSIX Regular Expression Matching\label{posixsec} *}
107
6adda4a667b1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 105
diff changeset
   317
111
289728193164 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 110
diff changeset
   318
text {* 
289728193164 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 110
diff changeset
   319
113
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   320
The clever idea in \cite{Sulzmann2014} is to introduce values for encoding
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   321
\emph{how} a regular expression matches a string and then define a function
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   322
on values that mirrors (but inverts) the construction of the derivative on
116
022503caa187 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 115
diff changeset
   323
regular expressions. \emph{Values} are defined as the inductive datatype
113
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   324
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   325
  \begin{center}
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   326
  @{text "v :="}
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   327
  @{const "Void"} $\mid$
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   328
  @{term "val.Char c"} $\mid$
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   329
  @{term "Left v"} $\mid$
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   330
  @{term "Right v"} $\mid$
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   331
  @{term "Seq v\<^sub>1 v\<^sub>2"} $\mid$ 
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   332
  @{term "Stars vs"} 
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   333
  \end{center}  
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   334
116
022503caa187 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 115
diff changeset
   335
  \noindent where we use @{term vs} standing for a list of values. (This is
022503caa187 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 115
diff changeset
   336
  similar to the approach taken by Frisch and Cardelli for GREEDY matching
022503caa187 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 115
diff changeset
   337
  \cite{Frisch2014}, and Sulzmann and Lu \cite{2014} for POSIX matching).
022503caa187 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 115
diff changeset
   338
  The string underlying a value can be calculated by the @{const flat}
022503caa187 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 115
diff changeset
   339
  function, written @{term "flat DUMMY"} and defined as:
114
8b41d01b5e5d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
   340
8b41d01b5e5d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
   341
  \begin{center}
8b41d01b5e5d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
   342
  \begin{tabular}{lcl}
8b41d01b5e5d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
   343
  @{thm (lhs) flat.simps(1)} & $\dn$ & @{thm (rhs) flat.simps(1)}\\
8b41d01b5e5d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
   344
  @{thm (lhs) flat.simps(2)} & $\dn$ & @{thm (rhs) flat.simps(2)}\\
8b41d01b5e5d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
   345
  @{thm (lhs) flat.simps(3)} & $\dn$ & @{thm (rhs) flat.simps(3)}\\
8b41d01b5e5d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
   346
  @{thm (lhs) flat.simps(4)} & $\dn$ & @{thm (rhs) flat.simps(4)}\\
8b41d01b5e5d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
   347
  @{thm (lhs) flat.simps(5)[of "v\<^sub>1" "v\<^sub>2"]} & $\dn$ & @{thm (rhs) flat.simps(5)[of "v\<^sub>1" "v\<^sub>2"]}\\
8b41d01b5e5d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
   348
  @{thm (lhs) flat.simps(6)} & $\dn$ & @{thm (rhs) flat.simps(6)}\\
8b41d01b5e5d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
   349
  @{thm (lhs) flat.simps(7)} & $\dn$ & @{thm (rhs) flat.simps(7)}\\
8b41d01b5e5d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
   350
  \end{tabular}
8b41d01b5e5d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
   351
  \end{center}
8b41d01b5e5d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
   352
8b41d01b5e5d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
   353
  \noindent Sulzmann and Lu also define inductively an inhabitation relation
8b41d01b5e5d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
   354
  that associates values to regular expressions:
113
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   355
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   356
  \begin{center}
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   357
  \begin{tabular}{c}
116
022503caa187 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 115
diff changeset
   358
  @{thm[mode=Axiom] Prf.intros(4)} \qquad
022503caa187 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 115
diff changeset
   359
  @{thm[mode=Axiom] Prf.intros(5)[of "c"]}\medskip\\
113
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   360
  @{thm[mode=Rule] Prf.intros(2)[of "v\<^sub>1" "r\<^sub>1" "r\<^sub>2"]} \qquad 
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   361
  @{thm[mode=Rule] Prf.intros(3)[of "v\<^sub>2" "r\<^sub>1" "r\<^sub>2"]}\medskip\\
116
022503caa187 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 115
diff changeset
   362
  @{thm[mode=Rule] Prf.intros(1)[of "v\<^sub>1" "r\<^sub>1" "v\<^sub>2" "r\<^sub>2"]}\medskip\\ 
022503caa187 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 115
diff changeset
   363
  @{thm[mode=Axiom] Prf.intros(6)[of "r"]} \qquad  
113
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   364
  @{thm[mode=Rule] Prf.intros(7)[of "v" "r" "vs"]}\medskip\\
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   365
  \end{tabular}
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   366
  \end{center}
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   367
114
8b41d01b5e5d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
   368
  \noindent Note that no values are associated with the regular expression
8b41d01b5e5d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
   369
  @{term ZERO}, and that the only value associated with the regular
8b41d01b5e5d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
   370
  expression @{term ONE} is @{term Void}, pronounced (if one must) as {\em
119
71e26f43c896 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 118
diff changeset
   371
  ``Void''}. It is routine to establish how values ``inhabiting'' a regular
114
8b41d01b5e5d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
   372
  expression correspond to the language of a regular expression, namely
113
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   373
114
8b41d01b5e5d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
   374
  \begin{proposition}
8b41d01b5e5d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
   375
  @{thm L_flat_Prf}
8b41d01b5e5d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
   376
  \end{proposition}
8b41d01b5e5d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
   377
116
022503caa187 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 115
diff changeset
   378
  In general there are more than one value associated with a regular
022503caa187 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 115
diff changeset
   379
  expression. In case of POSIX matching the problem is to calculate the
022503caa187 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 115
diff changeset
   380
  unique value that satisfies the (informal) POSIX constraints from the
022503caa187 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 115
diff changeset
   381
  Introduction. Graphically the regular expression matching algorithm by
022503caa187 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 115
diff changeset
   382
  Sulzmann and Lu can be illustrated by the picture in Figure~\ref{Sulz}
022503caa187 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 115
diff changeset
   383
  where the path from the left to the right involving @{const der}/@{const
022503caa187 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 115
diff changeset
   384
  nullable} is the first phase of the algorithm (calculating successive
022503caa187 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 115
diff changeset
   385
  \Brz's derivatives) and @{const mkeps}/@{text inj}, the path from right to
022503caa187 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 115
diff changeset
   386
  left, the second phase. This picture shows the steps required when a
022503caa187 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 115
diff changeset
   387
  regular expression, say @{text "r\<^sub>1"}, matches the string @{term
022503caa187 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 115
diff changeset
   388
  "[a,b,c]"}. We first build the three derivatives (according to @{term a},
022503caa187 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 115
diff changeset
   389
  @{term b} and @{term c}). We then use @{const nullable} to find out
022503caa187 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 115
diff changeset
   390
  whether the resulting derivative regular expression @{term "r\<^sub>4"}
022503caa187 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 115
diff changeset
   391
  can match the empty string. If yes, we call the function @{const mkeps}
022503caa187 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 115
diff changeset
   392
  that produces a value @{term "v\<^sub>4"} for how @{term "r\<^sub>4"} can
022503caa187 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 115
diff changeset
   393
  match the empty string (taking into account the POSIX constraints in case
022503caa187 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 115
diff changeset
   394
  there are several ways). This functions is defined by the clauses:
113
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   395
114
8b41d01b5e5d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
   396
\begin{figure}[t]
8b41d01b5e5d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
   397
\begin{center}
115
15ef2af1a6f2 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 114
diff changeset
   398
\begin{tikzpicture}[scale=2,node distance=1.3cm,
114
8b41d01b5e5d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
   399
                    every node/.style={minimum size=7mm}]
8b41d01b5e5d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
   400
\node (r1)  {@{term "r\<^sub>1"}};
8b41d01b5e5d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
   401
\node (r2) [right=of r1]{@{term "r\<^sub>2"}};
8b41d01b5e5d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
   402
\draw[->,line width=1mm](r1)--(r2) node[above,midway] {@{term "der a DUMMY"}};
8b41d01b5e5d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
   403
\node (r3) [right=of r2]{@{term "r\<^sub>3"}};
8b41d01b5e5d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
   404
\draw[->,line width=1mm](r2)--(r3) node[above,midway] {@{term "der b DUMMY"}};
8b41d01b5e5d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
   405
\node (r4) [right=of r3]{@{term "r\<^sub>4"}};
8b41d01b5e5d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
   406
\draw[->,line width=1mm](r3)--(r4) node[above,midway] {@{term "der c DUMMY"}};
8b41d01b5e5d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
   407
\draw (r4) node[anchor=west] {\;\raisebox{3mm}{@{term nullable}}};
8b41d01b5e5d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
   408
\node (v4) [below=of r4]{@{term "v\<^sub>4"}};
8b41d01b5e5d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
   409
\draw[->,line width=1mm](r4) -- (v4);
8b41d01b5e5d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
   410
\node (v3) [left=of v4] {@{term "v\<^sub>3"}};
115
15ef2af1a6f2 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 114
diff changeset
   411
\draw[->,line width=1mm](v4)--(v3) node[below,midway] {@{text "inj r\<^sub>3 c"}};
114
8b41d01b5e5d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
   412
\node (v2) [left=of v3]{@{term "v\<^sub>2"}};
115
15ef2af1a6f2 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 114
diff changeset
   413
\draw[->,line width=1mm](v3)--(v2) node[below,midway] {@{text "inj r\<^sub>2 b"}};
114
8b41d01b5e5d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
   414
\node (v1) [left=of v2] {@{term "v\<^sub>1"}};
115
15ef2af1a6f2 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 114
diff changeset
   415
\draw[->,line width=1mm](v2)--(v1) node[below,midway] {@{text "inj r\<^sub>1 a"}};
114
8b41d01b5e5d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
   416
\draw (r4) node[anchor=north west] {\;\raisebox{-8mm}{@{term "mkeps"}}};
8b41d01b5e5d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
   417
\end{tikzpicture}
8b41d01b5e5d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
   418
\end{center}
8b41d01b5e5d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
   419
\caption{The two phases of the algorithm by Sulzmann \& Lu \cite{Sulzmann2014}
115
15ef2af1a6f2 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 114
diff changeset
   420
matching the string @{term "[a,b,c]"}. The first phase (the arrows from 
114
8b41d01b5e5d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
   421
left to right) is \Brz's matcher building succesive derivatives. If at the 
8b41d01b5e5d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
   422
last regular expression is @{term nullable}, then functions of the 
8b41d01b5e5d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
   423
second phase are called: first @{term mkeps} calculates a value witnessing
8b41d01b5e5d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
   424
how the empty string has been recognised by @{term "r\<^sub>4"}. After
8b41d01b5e5d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
   425
that the function @{term inj} `injects back' the characters of the string into
8b41d01b5e5d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
   426
the values (the arrows from right to left).
8b41d01b5e5d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
   427
\label{Sulz}}
8b41d01b5e5d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
   428
\end{figure} 
8b41d01b5e5d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
   429
116
022503caa187 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 115
diff changeset
   430
  \begin{center}
111
289728193164 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 110
diff changeset
   431
  \begin{tabular}{lcl}
289728193164 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 110
diff changeset
   432
  @{thm (lhs) mkeps.simps(1)} & $\dn$ & @{thm (rhs) mkeps.simps(1)}\\
289728193164 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 110
diff changeset
   433
  @{thm (lhs) mkeps.simps(2)[of "r\<^sub>1" "r\<^sub>2"]} & $\dn$ & @{thm (rhs) mkeps.simps(2)[of "r\<^sub>1" "r\<^sub>2"]}\\
289728193164 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 110
diff changeset
   434
  @{thm (lhs) mkeps.simps(3)[of "r\<^sub>1" "r\<^sub>2"]} & $\dn$ & @{thm (rhs) mkeps.simps(3)[of "r\<^sub>1" "r\<^sub>2"]}\\
289728193164 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 110
diff changeset
   435
  @{thm (lhs) mkeps.simps(4)} & $\dn$ & @{thm (rhs) mkeps.simps(4)}\\
289728193164 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 110
diff changeset
   436
  \end{tabular}
289728193164 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 110
diff changeset
   437
  \end{center}
289728193164 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 110
diff changeset
   438
116
022503caa187 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 115
diff changeset
   439
  \noindent Note that this function needs only to be partially defined,
022503caa187 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 115
diff changeset
   440
  namely only for regular expressions that are nullable. In case @{const
022503caa187 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 115
diff changeset
   441
  nullable} fails, the string @{term "[a,b,c]"} cannot be matched by @{term
022503caa187 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 115
diff changeset
   442
  "r\<^sub>1"} and an error is raised. Note also how this function makes
022503caa187 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 115
diff changeset
   443
  some subtle choices leading to a POSIX value: for example if the
022503caa187 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 115
diff changeset
   444
  alternative, say @{term "ALT r\<^sub>1 r\<^sub>2"}, can match the empty
022503caa187 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 115
diff changeset
   445
  string and furthermore @{term "r\<^sub>1"} can match the empty string,
022503caa187 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 115
diff changeset
   446
  then we return a @{const Left}-value. The @{const Right}-value will only
022503caa187 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 115
diff changeset
   447
  be returned if @{term "r\<^sub>1"} is not nullable.
022503caa187 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 115
diff changeset
   448
022503caa187 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 115
diff changeset
   449
  The most interesting novelty from Sulzmann and Lu \cite{Sulzmann2014} is
022503caa187 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 115
diff changeset
   450
  the construction value for how @{term "r\<^sub>1"} can match the string
022503caa187 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 115
diff changeset
   451
  @{term "[a,b,c]"} from the value how the last derivative, @{term
022503caa187 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 115
diff changeset
   452
  "r\<^sub>4"} in Fig~\ref{Sulz}, can match the empty string. Sulzmann and
022503caa187 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 115
diff changeset
   453
  Lu acchieve this by stepwise ``injecting back'' the characters into the
022503caa187 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 115
diff changeset
   454
  values thus inverting the operation of building derivatives on the level
022503caa187 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 115
diff changeset
   455
  of values. The corresponding function, called @{term inj}, takes three
022503caa187 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 115
diff changeset
   456
  arguments, a regular expression, a character and a value. For example in
022503caa187 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 115
diff changeset
   457
  the first @{term inj}-step in Fig~\ref{Sulz} the regular expression @{term
022503caa187 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 115
diff changeset
   458
  "r\<^sub>3"}, the character @{term c} from the last derivative step and
022503caa187 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 115
diff changeset
   459
  @{term "v\<^sub>4"}, which is the value corresponding to the derivative
022503caa187 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 115
diff changeset
   460
  regular expression @{term "r\<^sub>4"}. The result is the new value @{term
022503caa187 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 115
diff changeset
   461
  "v\<^sub>3"}. The final result of the algorithm is the value @{term
022503caa187 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 115
diff changeset
   462
  "v\<^sub>1"} corresponding to the input regular expression. The @{term
022503caa187 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 115
diff changeset
   463
  inj} function is by recursion on the regular expression and by analysing
022503caa187 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 115
diff changeset
   464
  the shape of values.
022503caa187 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 115
diff changeset
   465
022503caa187 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 115
diff changeset
   466
  \begin{center}
118
79efc0bcfc96 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 117
diff changeset
   467
  \begin{tabular}{llcl}
79efc0bcfc96 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 117
diff changeset
   468
  (1) & @{thm (lhs) injval.simps(1)} & $\dn$ & @{thm (rhs) injval.simps(1)}\\
79efc0bcfc96 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 117
diff changeset
   469
  (2) & @{thm (lhs) injval.simps(2)[of "r\<^sub>1" "r\<^sub>2" "c" "v\<^sub>1"]} & $\dn$ & 
116
022503caa187 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 115
diff changeset
   470
      @{thm (rhs) injval.simps(2)[of "r\<^sub>1" "r\<^sub>2" "c" "v\<^sub>1"]}\\
118
79efc0bcfc96 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 117
diff changeset
   471
  (3) & @{thm (lhs) injval.simps(3)[of "r\<^sub>1" "r\<^sub>2" "c" "v\<^sub>2"]} & $\dn$ & 
116
022503caa187 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 115
diff changeset
   472
      @{thm (rhs) injval.simps(3)[of "r\<^sub>1" "r\<^sub>2" "c" "v\<^sub>2"]}\\
118
79efc0bcfc96 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 117
diff changeset
   473
  (4) & @{thm (lhs) injval.simps(4)[of "r\<^sub>1" "r\<^sub>2" "c" "v\<^sub>1" "v\<^sub>2"]} & $\dn$ 
116
022503caa187 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 115
diff changeset
   474
      & @{thm (rhs) injval.simps(4)[of "r\<^sub>1" "r\<^sub>2" "c" "v\<^sub>1" "v\<^sub>2"]}\\
118
79efc0bcfc96 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 117
diff changeset
   475
  (5) & @{thm (lhs) injval.simps(5)[of "r\<^sub>1" "r\<^sub>2" "c" "v\<^sub>1" "v\<^sub>2"]} & $\dn$ 
116
022503caa187 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 115
diff changeset
   476
      & @{thm (rhs) injval.simps(5)[of "r\<^sub>1" "r\<^sub>2" "c" "v\<^sub>1" "v\<^sub>2"]}\\
118
79efc0bcfc96 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 117
diff changeset
   477
  (6) & @{thm (lhs) injval.simps(6)[of "r\<^sub>1" "r\<^sub>2" "c" "v\<^sub>2"]} & $\dn$ 
116
022503caa187 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 115
diff changeset
   478
      & @{thm (rhs) injval.simps(6)[of "r\<^sub>1" "r\<^sub>2" "c" "v\<^sub>2"]}\\
118
79efc0bcfc96 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 117
diff changeset
   479
  (7) & @{thm (lhs) injval.simps(7)[of "r" "c" "v" "vs"]} & $\dn$ 
116
022503caa187 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 115
diff changeset
   480
      & @{thm (rhs) injval.simps(7)[of "r" "c" "v" "vs"]}\\
022503caa187 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 115
diff changeset
   481
  \end{tabular}
022503caa187 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 115
diff changeset
   482
  \end{center}
022503caa187 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 115
diff changeset
   483
022503caa187 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 115
diff changeset
   484
  \noindent To better understand what is going on in this definition it
022503caa187 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 115
diff changeset
   485
  might be instructive to look first at the three sequence cases (clauses
118
79efc0bcfc96 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 117
diff changeset
   486
  (4)--(6)). In each case we need to construct an ``injected value'' for @{term
117
2c4ffcc95399 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 116
diff changeset
   487
  "SEQ r\<^sub>1 r\<^sub>2"}. Recall the clause of the @{const der}-function
2c4ffcc95399 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 116
diff changeset
   488
  for sequence regular expressions:
116
022503caa187 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 115
diff changeset
   489
022503caa187 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 115
diff changeset
   490
  \begin{center}
022503caa187 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 115
diff changeset
   491
  @{thm (lhs) der.simps(5)[of c "r\<^sub>1" "r\<^sub>2"]} $\dn$ @{thm (rhs) der.simps(5)[of c "r\<^sub>1" "r\<^sub>2"]}
022503caa187 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 115
diff changeset
   492
  \end{center}
022503caa187 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 115
diff changeset
   493
117
2c4ffcc95399 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 116
diff changeset
   494
  \noindent Consider first the else-branch where the derivative is @{term
2c4ffcc95399 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 116
diff changeset
   495
  "SEQ (der c r\<^sub>1) r\<^sub>2"}. The corresponding value must therefore
118
79efc0bcfc96 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 117
diff changeset
   496
  be the form @{term "Seq v\<^sub>1 v\<^sub>2"}, which matches clause (4) of
79efc0bcfc96 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 117
diff changeset
   497
  @{term inj}. In the if-branch the derivative is an alternative, namely
79efc0bcfc96 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 117
diff changeset
   498
  @{term "ALT (SEQ (der c r\<^sub>1) r\<^sub>2) (der c r\<^sub>2)"}. This
79efc0bcfc96 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 117
diff changeset
   499
  means we either have to consider a @{text Left}- or @{text Right}-value.
79efc0bcfc96 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 117
diff changeset
   500
  In case of the @{text Left}-value we know further it must be a value for a
79efc0bcfc96 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 117
diff changeset
   501
  sequence regular expression. Therefore the pattern we match in the clause
79efc0bcfc96 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 117
diff changeset
   502
  (5) is @{term "Left (Seq v\<^sub>1 v\<^sub>2)"}, while in (6) it is just
79efc0bcfc96 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 117
diff changeset
   503
  @{term "Right v\<^sub>2"}. One more interesting point is in the right-hand
79efc0bcfc96 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 117
diff changeset
   504
  side of clause (6): since in this case the regular expression @{text
79efc0bcfc96 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 117
diff changeset
   505
  "r\<^sub>1"} does not ``contribute'' in matching the string, that is only
79efc0bcfc96 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 117
diff changeset
   506
  matches the empty string, we need to call @{const mkeps} in order to
79efc0bcfc96 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 117
diff changeset
   507
  construct a value how @{term "r\<^sub>1"} can match this empty string. A
79efc0bcfc96 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 117
diff changeset
   508
  similar argument applies for why we can expect in clause (7) that the
79efc0bcfc96 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 117
diff changeset
   509
  value is of the form @{term "Seq v (Stars vs)"} (the derivative of a star
79efc0bcfc96 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 117
diff changeset
   510
  is @{term "SEQ r (STAR r)"}). Finally, the reason for why we can ignore
79efc0bcfc96 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 117
diff changeset
   511
  the second argument in clause (1) of @{term inj} is that it will only ever
79efc0bcfc96 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 117
diff changeset
   512
  be called in cases where @{term "c=d"}, but the usual linearity
79efc0bcfc96 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 117
diff changeset
   513
  restrictions in pattern-matches do not allow is to build this constraint
79efc0bcfc96 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 117
diff changeset
   514
  explicitly into the pattern.
79efc0bcfc96 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 117
diff changeset
   515
79efc0bcfc96 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 117
diff changeset
   516
  Having defined the @{const mkeps} and @{text inj} function we can extend
79efc0bcfc96 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 117
diff changeset
   517
  \Brz's matcher so that a [lexical] value is constructed (assuming the
79efc0bcfc96 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 117
diff changeset
   518
  regular expression matches the string). The clauses of the lexer are
79efc0bcfc96 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 117
diff changeset
   519
79efc0bcfc96 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 117
diff changeset
   520
  \begin{center}
79efc0bcfc96 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 117
diff changeset
   521
  \begin{tabular}{lcl}
79efc0bcfc96 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 117
diff changeset
   522
  @{thm (lhs) matcher.simps(1)} & $\dn$ & @{thm (rhs) matcher.simps(1)}\\
79efc0bcfc96 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 117
diff changeset
   523
  @{thm (lhs) matcher.simps(2)} & $\dn$ & @{text "case"} @{term "matcher (der c r) s"} @{text of}\\
79efc0bcfc96 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 117
diff changeset
   524
                     & & \phantom{$|$} @{term "None"}  @{text "\<Rightarrow>"} @{term None}\\
79efc0bcfc96 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 117
diff changeset
   525
                     & & $|$ @{term "Some v"} @{text "\<Rightarrow>"} @{term "Some (injval r c v)"}                          
79efc0bcfc96 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 117
diff changeset
   526
  \end{tabular}
79efc0bcfc96 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 117
diff changeset
   527
  \end{center}
79efc0bcfc96 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 117
diff changeset
   528
119
71e26f43c896 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 118
diff changeset
   529
  \noindent If the regular expression does not match, @{const None} is
71e26f43c896 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 118
diff changeset
   530
  returned. If the regular expression does match the string, then @{const
71e26f43c896 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 118
diff changeset
   531
  Some} value is returned. Again the virtues of this algorithm is that it
71e26f43c896 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 118
diff changeset
   532
  can be implemented with ease in a functional programming language and also
71e26f43c896 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 118
diff changeset
   533
  in Isabelle/HOL. In the remaining part of this section we prove that
71e26f43c896 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 118
diff changeset
   534
  this algorithm is correct.
116
022503caa187 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 115
diff changeset
   535
119
71e26f43c896 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 118
diff changeset
   536
  The well-known idea of POSIX matching is informally defined by the longest
71e26f43c896 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 118
diff changeset
   537
  match and priority rule; as correctly argued in \cite{Sulzmann2014}, this
71e26f43c896 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 118
diff changeset
   538
  needs formal specification. 
111
289728193164 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 110
diff changeset
   539
119
71e26f43c896 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 118
diff changeset
   540
  We use a simple inductive definition to specify this notion, incorporating
71e26f43c896 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 118
diff changeset
   541
  the POSIX-specific choices into the side-conditions for the rules $R tl
71e26f43c896 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 118
diff changeset
   542
  +_2$, $R tl\circ$ and $R tl*$ (as they are now called). By contrast,
71e26f43c896 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 118
diff changeset
   543
  \cite{Sulzmann2014} defines a relation between values and argues that there is a
71e26f43c896 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 118
diff changeset
   544
  maximum value, as given by the derivative-based algorithm yet to be spelt
71e26f43c896 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 118
diff changeset
   545
  out. The relation we define is ternary, relating strings, values and regular
71e26f43c896 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 118
diff changeset
   546
  expressions.
111
289728193164 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 110
diff changeset
   547
112
698967eceaf1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 111
diff changeset
   548
Our Posix relation @{term "s \<in> r \<rightarrow> v"}
698967eceaf1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 111
diff changeset
   549
698967eceaf1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 111
diff changeset
   550
  \begin{center}
698967eceaf1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 111
diff changeset
   551
  \begin{tabular}{c}
698967eceaf1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 111
diff changeset
   552
  @{thm[mode=Axiom] PMatch.intros(1)} \qquad
698967eceaf1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 111
diff changeset
   553
  @{thm[mode=Axiom] PMatch.intros(2)}\medskip\\
698967eceaf1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 111
diff changeset
   554
  @{thm[mode=Rule] PMatch.intros(3)[of "s" "r\<^sub>1" "v" "r\<^sub>2"]}\qquad
698967eceaf1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 111
diff changeset
   555
  @{thm[mode=Rule] PMatch.intros(4)[of "s" "r\<^sub>2" "v" "r\<^sub>1"]}\medskip\\
698967eceaf1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 111
diff changeset
   556
  \multicolumn{1}{p{5cm}}{@{thm[mode=Rule] PMatch.intros(5)[of "s\<^sub>1" "r\<^sub>1" "v\<^sub>1" "s\<^sub>2" "r\<^sub>2" "v\<^sub>2"]}}\medskip\\
698967eceaf1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 111
diff changeset
   557
  @{thm[mode=Rule] PMatch.intros(6)[of "s\<^sub>1" "r" "v" "s\<^sub>2" "vs"]}\medskip\\
698967eceaf1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 111
diff changeset
   558
  @{thm[mode=Axiom] PMatch.intros(7)}\medskip\\
698967eceaf1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 111
diff changeset
   559
  \end{tabular}
698967eceaf1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 111
diff changeset
   560
  \end{center}
698967eceaf1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 111
diff changeset
   561
111
289728193164 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 110
diff changeset
   562
*}
289728193164 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 110
diff changeset
   563
107
6adda4a667b1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 105
diff changeset
   564
section {* The Argument by Sulzmmann and Lu *}
6adda4a667b1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 105
diff changeset
   565
6adda4a667b1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 105
diff changeset
   566
section {* Conclusion *}
6adda4a667b1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 105
diff changeset
   567
6adda4a667b1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 105
diff changeset
   568
text {*
6adda4a667b1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 105
diff changeset
   569
6adda4a667b1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 105
diff changeset
   570
  Nipkow lexer from 2000
6adda4a667b1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 105
diff changeset
   571
6adda4a667b1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 105
diff changeset
   572
*}
6adda4a667b1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 105
diff changeset
   573
6adda4a667b1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 105
diff changeset
   574
6adda4a667b1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 105
diff changeset
   575
text {*
6adda4a667b1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 105
diff changeset
   576
6adda4a667b1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 105
diff changeset
   577
6adda4a667b1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 105
diff changeset
   578
6adda4a667b1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 105
diff changeset
   579
97
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   580
  \noindent
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   581
  Values
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   582
113
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   583
  
97
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   584
108
73f7dc60c285 updated paper
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 107
diff changeset
   585
 
97
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   586
114
8b41d01b5e5d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
   587
 
97
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   588
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   589
  \noindent
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   590
  The @{const mkeps} function
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   591
111
289728193164 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 110
diff changeset
   592
 
97
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   593
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   594
  \noindent
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   595
  The @{text inj} function
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   596
116
022503caa187 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 115
diff changeset
   597
  
97
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   598
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   599
  \noindent
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   600
  The inhabitation relation:
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   601
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   602
  \begin{center}
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   603
  \begin{tabular}{c}
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   604
  @{thm[mode=Rule] Prf.intros(1)[of "v\<^sub>1" "r\<^sub>1" "v\<^sub>2" "r\<^sub>2"]}\medskip\\ 
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   605
  @{thm[mode=Rule] Prf.intros(2)[of "v\<^sub>1" "r\<^sub>1" "r\<^sub>2"]} \qquad 
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   606
  @{thm[mode=Rule] Prf.intros(3)[of "v\<^sub>2" "r\<^sub>1" "r\<^sub>2"]}\medskip\\
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   607
  @{thm[mode=Axiom] Prf.intros(4)} \qquad 
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   608
  @{thm[mode=Axiom] Prf.intros(5)[of "c"]}\medskip\\
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   609
  @{thm[mode=Axiom] Prf.intros(6)[of "r"]} \qquad 
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   610
  @{thm[mode=Rule] Prf.intros(7)[of "v" "r" "vs"]}\medskip\\
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   611
  \end{tabular}
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   612
  \end{center}
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   613
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   614
  \noindent
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   615
  We have also introduced a slightly restricted version of this relation
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   616
  where the last rule is restricted so that @{term "flat v \<noteq> []"}.
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   617
  This relation for \emph{non-problematic} is written @{term "\<Turnstile> v : r"}.
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   618
  \bigskip
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   619
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   620
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   621
  \noindent
112
698967eceaf1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 111
diff changeset
   622
  
97
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   623
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   624
  \noindent
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   625
  Our version of Sulzmann's ordering relation
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   626
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   627
  \begin{center}
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   628
  \begin{tabular}{c}
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   629
  @{thm[mode=Rule] ValOrd.intros(2)[of "v\<^sub>1" "r\<^sub>1" "v\<^sub>1'" "v\<^sub>2" "r\<^sub>2" "v\<^sub>2'"]} \qquad
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   630
  @{thm[mode=Rule] ValOrd.intros(1)[of "v\<^sub>2" "r\<^sub>2" "v\<^sub>2'" "v\<^sub>1" "r\<^sub>1"]}\medskip\\
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   631
  @{thm[mode=Rule] ValOrd.intros(3)[of "v\<^sub>1" "v\<^sub>2" "r\<^sub>1" "r\<^sub>2"]} \qquad
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   632
  @{thm[mode=Rule] ValOrd.intros(4)[of "v\<^sub>2" "v\<^sub>1" "r\<^sub>1" "r\<^sub>2"]}\medskip\\ 
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   633
  @{thm[mode=Rule] ValOrd.intros(5)[of "v\<^sub>2" "r\<^sub>2" "v\<^sub>2'" "r\<^sub>1"]} \qquad
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   634
  @{thm[mode=Rule] ValOrd.intros(6)[of "v\<^sub>1" "r\<^sub>1" "v\<^sub>1'"  "r\<^sub>2"]} \medskip\\
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   635
  @{thm[mode=Axiom] ValOrd.intros(7)}\qquad
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   636
  @{thm[mode=Axiom] ValOrd.intros(8)[of "c"]}\medskip\\
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   637
  @{thm[mode=Rule] ValOrd.intros(9)[of "v" "vs" "r"]}\qquad
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   638
  @{thm[mode=Rule] ValOrd.intros(10)[of "v" "vs" "r"]}\medskip\\
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   639
  @{thm[mode=Rule] ValOrd.intros(11)[of "v\<^sub>1" "r" "v\<^sub>2" "vs\<^sub>1" "vs\<^sub>2"]}\medskip\\
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   640
  @{thm[mode=Rule] ValOrd.intros(12)[of "vs\<^sub>1" "r" "vs\<^sub>2" "v"]}\qquad
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   641
  @{thm[mode=Axiom] ValOrd.intros(13)[of "r"]}\medskip\\
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   642
  \end{tabular}
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   643
  \end{center}
98
8b4c8cdd0b51 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 97
diff changeset
   644
8b4c8cdd0b51 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 97
diff changeset
   645
  \noindent
8b4c8cdd0b51 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 97
diff changeset
   646
  A prefix of a string s
8b4c8cdd0b51 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 97
diff changeset
   647
8b4c8cdd0b51 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 97
diff changeset
   648
  \begin{center}
8b4c8cdd0b51 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 97
diff changeset
   649
  \begin{tabular}{c}
8b4c8cdd0b51 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 97
diff changeset
   650
  @{thm prefix_def[of "s\<^sub>1" "s\<^sub>2"]}
8b4c8cdd0b51 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 97
diff changeset
   651
  \end{tabular}
8b4c8cdd0b51 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 97
diff changeset
   652
  \end{center}
8b4c8cdd0b51 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 97
diff changeset
   653
8b4c8cdd0b51 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 97
diff changeset
   654
  \noindent
8b4c8cdd0b51 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 97
diff changeset
   655
  Values and non-problematic values
8b4c8cdd0b51 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 97
diff changeset
   656
8b4c8cdd0b51 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 97
diff changeset
   657
  \begin{center}
8b4c8cdd0b51 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 97
diff changeset
   658
  \begin{tabular}{c}
8b4c8cdd0b51 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 97
diff changeset
   659
  @{thm Values_def}\medskip\\
8b4c8cdd0b51 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 97
diff changeset
   660
  \end{tabular}
8b4c8cdd0b51 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 97
diff changeset
   661
  \end{center}
8b4c8cdd0b51 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 97
diff changeset
   662
8b4c8cdd0b51 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 97
diff changeset
   663
8b4c8cdd0b51 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 97
diff changeset
   664
  \noindent
8b4c8cdd0b51 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 97
diff changeset
   665
  The point is that for a given @{text s} and @{text r} there are only finitely many
8b4c8cdd0b51 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 97
diff changeset
   666
  non-problematic values.
97
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   667
*} 
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   668
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   669
text {* 
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   670
  \noindent
98
8b4c8cdd0b51 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 97
diff changeset
   671
  Some lemmas we have proved:\bigskip
97
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   672
  
98
8b4c8cdd0b51 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 97
diff changeset
   673
  @{thm L_flat_Prf}
8b4c8cdd0b51 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 97
diff changeset
   674
8b4c8cdd0b51 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 97
diff changeset
   675
  @{thm L_flat_NPrf}
97
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   676
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   677
  @{thm[mode=IfThen] mkeps_nullable}
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   678
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   679
  @{thm[mode=IfThen] mkeps_flat}
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   680
107
6adda4a667b1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 105
diff changeset
   681
  @{thm[mode=IfThen] Prf_injval}
98
8b4c8cdd0b51 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 97
diff changeset
   682
107
6adda4a667b1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 105
diff changeset
   683
  @{thm[mode=IfThen] Prf_injval_flat}
98
8b4c8cdd0b51 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 97
diff changeset
   684
  
8b4c8cdd0b51 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 97
diff changeset
   685
  @{thm[mode=IfThen] PMatch_mkeps}
8b4c8cdd0b51 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 97
diff changeset
   686
  
8b4c8cdd0b51 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 97
diff changeset
   687
  @{thm[mode=IfThen] PMatch1(2)}
8b4c8cdd0b51 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 97
diff changeset
   688
8b4c8cdd0b51 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 97
diff changeset
   689
  @{thm[mode=IfThen] PMatch1N}
8b4c8cdd0b51 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 97
diff changeset
   690
100
8b919b3d753e strengthened PMatch to get determ
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 99
diff changeset
   691
  @{thm[mode=IfThen] PMatch_determ(1)[of "s" "r" "v\<^sub>1" "v\<^sub>2"]}
8b919b3d753e strengthened PMatch to get determ
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 99
diff changeset
   692
8b919b3d753e strengthened PMatch to get determ
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 99
diff changeset
   693
  \medskip
98
8b4c8cdd0b51 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 97
diff changeset
   694
  \noindent
8b4c8cdd0b51 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 97
diff changeset
   695
  This is the main theorem that lets us prove that the algorithm is correct according to
8b4c8cdd0b51 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 97
diff changeset
   696
  @{term "s \<in> r \<rightarrow> v"}:
8b4c8cdd0b51 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 97
diff changeset
   697
8b4c8cdd0b51 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 97
diff changeset
   698
  @{thm[mode=IfThen] PMatch2}
8b4c8cdd0b51 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 97
diff changeset
   699
8b4c8cdd0b51 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 97
diff changeset
   700
  \mbox{}\bigskip
102
7f589bfecffa updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 101
diff changeset
   701
  
7f589bfecffa updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 101
diff changeset
   702
  \noindent {\bf Proof} The proof is by induction on the definition of
7f589bfecffa updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 101
diff changeset
   703
  @{const der}. Other inductions would go through as well. The
7f589bfecffa updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 101
diff changeset
   704
  interesting case is for @{term "SEQ r\<^sub>1 r\<^sub>2"}. First we analyse the
7f589bfecffa updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 101
diff changeset
   705
  case where @{term "nullable r\<^sub>1"}. We have by induction hypothesis
7f589bfecffa updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 101
diff changeset
   706
7f589bfecffa updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 101
diff changeset
   707
  \[
7f589bfecffa updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 101
diff changeset
   708
  \begin{array}{l}
7f589bfecffa updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 101
diff changeset
   709
  (IH1)\quad @{text "\<forall>s v."} \text{\;if\;} @{term "s \<in> der c r\<^sub>1 \<rightarrow> v"} 
7f589bfecffa updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 101
diff changeset
   710
  \text{\;then\;} @{term "(c # s) \<in> r\<^sub>1 \<rightarrow> injval r\<^sub>1 c v"}\\
7f589bfecffa updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 101
diff changeset
   711
  (IH2)\quad @{text "\<forall>s v."} \text{\;if\;} @{term "s \<in> der c r\<^sub>2 \<rightarrow> v"} 
7f589bfecffa updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 101
diff changeset
   712
  \text{\;then\;} @{term "(c # s) \<in> r\<^sub>2 \<rightarrow> injval r\<^sub>2 c v"}
7f589bfecffa updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 101
diff changeset
   713
  \end{array}
7f589bfecffa updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 101
diff changeset
   714
  \]
7f589bfecffa updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 101
diff changeset
   715
  
7f589bfecffa updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 101
diff changeset
   716
  \noindent
7f589bfecffa updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 101
diff changeset
   717
  and have 
7f589bfecffa updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 101
diff changeset
   718
7f589bfecffa updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 101
diff changeset
   719
  \[
7f589bfecffa updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 101
diff changeset
   720
  @{term "s \<in> ALT (SEQ (der c r\<^sub>1) r\<^sub>2) (der c r\<^sub>2) \<rightarrow> v"}
7f589bfecffa updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 101
diff changeset
   721
  \]
7f589bfecffa updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 101
diff changeset
   722
  
7f589bfecffa updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 101
diff changeset
   723
  \noindent
7f589bfecffa updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 101
diff changeset
   724
  There are two cases what @{term v} can be: (1) @{term "Left v'"} and (2) @{term "Right v'"}.
7f589bfecffa updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 101
diff changeset
   725
7f589bfecffa updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 101
diff changeset
   726
  \begin{itemize}
7f589bfecffa updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 101
diff changeset
   727
  \item[(1)] We know @{term "s \<in> SEQ (der c r\<^sub>1) r\<^sub>2 \<rightarrow> v'"} holds, from which we
7f589bfecffa updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 101
diff changeset
   728
  can infer that there are @{text "s\<^sub>1"}, @{term "s\<^sub>2"}, @{text "v\<^sub>1"}, @{term "v\<^sub>2"}
7f589bfecffa updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 101
diff changeset
   729
  with
7f589bfecffa updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 101
diff changeset
   730
7f589bfecffa updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 101
diff changeset
   731
  \[
7f589bfecffa updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 101
diff changeset
   732
  @{term "s\<^sub>1 \<in> der c r\<^sub>1 \<rightarrow> v\<^sub>1"} \qquad\text{and}\qquad @{term "s\<^sub>2 \<in> r\<^sub>2 \<rightarrow> v\<^sub>2"}
7f589bfecffa updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 101
diff changeset
   733
  \]
7f589bfecffa updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 101
diff changeset
   734
7f589bfecffa updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 101
diff changeset
   735
  and also
7f589bfecffa updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 101
diff changeset
   736
7f589bfecffa updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 101
diff changeset
   737
  \[
7f589bfecffa updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 101
diff changeset
   738
  @{term "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s\<^sub>2 \<and> s\<^sub>1 @ s\<^sub>3 \<in> L (der c r\<^sub>1) \<and> s\<^sub>4 \<in> L r\<^sub>2)"}
7f589bfecffa updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 101
diff changeset
   739
  \]
7f589bfecffa updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 101
diff changeset
   740
7f589bfecffa updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 101
diff changeset
   741
  \noindent
7f589bfecffa updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 101
diff changeset
   742
  and have to prove
7f589bfecffa updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 101
diff changeset
   743
  
7f589bfecffa updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 101
diff changeset
   744
  \[
7f589bfecffa updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 101
diff changeset
   745
  @{term "((c # s\<^sub>1) @ s\<^sub>2) \<in> SEQ r\<^sub>1 r\<^sub>2 \<rightarrow> Seq (injval r\<^sub>1 c v\<^sub>1) v\<^sub>2"}
7f589bfecffa updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 101
diff changeset
   746
  \]
7f589bfecffa updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 101
diff changeset
   747
7f589bfecffa updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 101
diff changeset
   748
  \noindent
7f589bfecffa updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 101
diff changeset
   749
  The two requirements @{term "(c # s\<^sub>1) \<in> r\<^sub>1 \<rightarrow> injval r\<^sub>1 c v\<^sub>1"} and 
7f589bfecffa updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 101
diff changeset
   750
  @{term "s\<^sub>2 \<in> r\<^sub>2 \<rightarrow> v\<^sub>2"} can be proved by the induction hypothese (IH1) and the
7f589bfecffa updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 101
diff changeset
   751
  fact above.
7f589bfecffa updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 101
diff changeset
   752
7f589bfecffa updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 101
diff changeset
   753
  \noindent
7f589bfecffa updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 101
diff changeset
   754
  This leaves to prove
7f589bfecffa updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 101
diff changeset
   755
  
7f589bfecffa updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 101
diff changeset
   756
  \[
7f589bfecffa updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 101
diff changeset
   757
  @{term "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s\<^sub>2 \<and> (c # s\<^sub>1) @ s\<^sub>3 \<in> L r\<^sub>1 \<and> s\<^sub>4 \<in> L r\<^sub>2)"}
7f589bfecffa updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 101
diff changeset
   758
  \]
7f589bfecffa updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 101
diff changeset
   759
  
7f589bfecffa updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 101
diff changeset
   760
  \noindent
7f589bfecffa updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 101
diff changeset
   761
  which holds because @{term "(c # s\<^sub>1) @ s\<^sub>3 \<in> L r\<^sub>1 "} implies @{term "s\<^sub>1 @ s\<^sub>3 \<in> L (der c r\<^sub>1) "}
7f589bfecffa updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 101
diff changeset
   762
103
ffe5d850df62 added some slides
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 102
diff changeset
   763
  \item[(2)] This case is similar.
102
7f589bfecffa updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 101
diff changeset
   764
  \end{itemize}
7f589bfecffa updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 101
diff changeset
   765
7f589bfecffa updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 101
diff changeset
   766
  \noindent 
7f589bfecffa updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 101
diff changeset
   767
  The final case is that @{term " \<not> nullable r\<^sub>1"} holds. This case again similar
7f589bfecffa updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 101
diff changeset
   768
  to the cases above.
98
8b4c8cdd0b51 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 97
diff changeset
   769
*}
8b4c8cdd0b51 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 97
diff changeset
   770
95
a33d3040bf7e started a paper and moved cruft to Attic
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   771
a33d3040bf7e started a paper and moved cruft to Attic
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   772
text {*
a33d3040bf7e started a paper and moved cruft to Attic
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   773
  %\noindent
a33d3040bf7e started a paper and moved cruft to Attic
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   774
  %{\bf Acknowledgements:}
a33d3040bf7e started a paper and moved cruft to Attic
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   775
  %We are grateful for the comments we received from anonymous
a33d3040bf7e started a paper and moved cruft to Attic
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   776
  %referees.
a33d3040bf7e started a paper and moved cruft to Attic
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   777
a33d3040bf7e started a paper and moved cruft to Attic
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   778
  \bibliographystyle{plain}
a33d3040bf7e started a paper and moved cruft to Attic
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   779
  \bibliography{root}
101
7f4f8c34da95 fixed inj function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 100
diff changeset
   780
7f4f8c34da95 fixed inj function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 100
diff changeset
   781
  \section{Roy's Rules}
7f4f8c34da95 fixed inj function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 100
diff changeset
   782
7f4f8c34da95 fixed inj function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 100
diff changeset
   783
   \newcommand{\abs}[1]{\mid\!\! #1\!\! \mid}
7f4f8c34da95 fixed inj function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 100
diff changeset
   784
   %%\newcommand{\mts}{\textit{``''}
7f4f8c34da95 fixed inj function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 100
diff changeset
   785
   \newcommand{\tl}{\ \triangleleft\ }
7f4f8c34da95 fixed inj function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 100
diff changeset
   786
   $$\inferrule[]{Void \tl \epsilon}{}
7f4f8c34da95 fixed inj function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 100
diff changeset
   787
            \quad\quad
7f4f8c34da95 fixed inj function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 100
diff changeset
   788
     \inferrule[]{Char\ c \tl Lit\ c}{}
7f4f8c34da95 fixed inj function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 100
diff changeset
   789
   $$
7f4f8c34da95 fixed inj function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 100
diff changeset
   790
   $$\inferrule
7f4f8c34da95 fixed inj function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 100
diff changeset
   791
       {v_1 \tl r_1}
7f4f8c34da95 fixed inj function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 100
diff changeset
   792
       {Left\ v_1 \tl r_1 + r_2}
7f4f8c34da95 fixed inj function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 100
diff changeset
   793
   \quad\quad
7f4f8c34da95 fixed inj function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 100
diff changeset
   794
     \inferrule[]
7f4f8c34da95 fixed inj function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 100
diff changeset
   795
       { v_2 \tl r_2 \\ \abs{v_2}\ \not\in\ L(r_1)}
7f4f8c34da95 fixed inj function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 100
diff changeset
   796
       {Right\ v_2 \tl r_1 + r_2}
7f4f8c34da95 fixed inj function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 100
diff changeset
   797
   $$
7f4f8c34da95 fixed inj function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 100
diff changeset
   798
   $$
7f4f8c34da95 fixed inj function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 100
diff changeset
   799
   \inferrule
7f4f8c34da95 fixed inj function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 100
diff changeset
   800
       {v_1 \tl r_1\\
7f4f8c34da95 fixed inj function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 100
diff changeset
   801
        v_2 \tl r_2\\
7f4f8c34da95 fixed inj function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 100
diff changeset
   802
        s \in\  L(r_1\backslash\! \abs{v_1}) \ \land\
7f4f8c34da95 fixed inj function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 100
diff changeset
   803
        \abs{v_2}\!\backslash s\ \epsilon\ L(r_2)
7f4f8c34da95 fixed inj function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 100
diff changeset
   804
        \ \Rightarrow\ s = []
7f4f8c34da95 fixed inj function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 100
diff changeset
   805
       }
7f4f8c34da95 fixed inj function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 100
diff changeset
   806
       {(v_1, v_2) \tl r_1 \cdot r_2}
7f4f8c34da95 fixed inj function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 100
diff changeset
   807
   $$
7f4f8c34da95 fixed inj function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 100
diff changeset
   808
   $$\inferrule
7f4f8c34da95 fixed inj function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 100
diff changeset
   809
         { v \tl r \\ vs \tl r^* \\ \abs{v}\ \not=\ []} 
7f4f8c34da95 fixed inj function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 100
diff changeset
   810
         { (v :: vs) \tl r^* }
7f4f8c34da95 fixed inj function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 100
diff changeset
   811
   \quad\quad
7f4f8c34da95 fixed inj function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 100
diff changeset
   812
       \inferrule{}
7f4f8c34da95 fixed inj function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 100
diff changeset
   813
         { []  \tl r^* }       
7f4f8c34da95 fixed inj function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 100
diff changeset
   814
   $$
7f4f8c34da95 fixed inj function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 100
diff changeset
   815
95
a33d3040bf7e started a paper and moved cruft to Attic
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   816
*}
a33d3040bf7e started a paper and moved cruft to Attic
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   817
a33d3040bf7e started a paper and moved cruft to Attic
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   818
a33d3040bf7e started a paper and moved cruft to Attic
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   819
(*<*)
a33d3040bf7e started a paper and moved cruft to Attic
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   820
end
a33d3040bf7e started a paper and moved cruft to Attic
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   821
(*>*)