365
|
1 |
|
|
2 |
theory Bounds
|
|
3 |
imports "Lexer"
|
|
4 |
begin
|
|
5 |
|
|
6 |
definition Size :: "rexp \<Rightarrow> nat"
|
|
7 |
where "Size r == Max {size (ders s r) | s. True }"
|
|
8 |
|
|
9 |
fun bar :: "rexp \<Rightarrow> string \<Rightarrow> rexp" where
|
|
10 |
"bar r [] = r"
|
|
11 |
| "bar r (c # s) = ALT (ders (c # s) r) (bar r s)"
|
|
12 |
|
|
13 |
lemma size_ALT:
|
|
14 |
"size (ders s (ALT r1 r2)) = Suc (size (ders s r1) + size (ders s r2))"
|
|
15 |
apply(induct s arbitrary: r1 r2)
|
|
16 |
apply(simp_all)
|
|
17 |
done
|
|
18 |
|
|
19 |
lemma size_bar_ALT:
|
|
20 |
"size (bar (ALT r1 r2) s) = Suc (size (bar r1 s) + size (bar r2 s))"
|
|
21 |
apply(induct s)
|
|
22 |
apply(simp)
|
|
23 |
apply(simp add: size_ALT)
|
|
24 |
done
|
|
25 |
|
|
26 |
lemma size_SEQ:
|
|
27 |
"size (ders s (SEQ r1 r2)) \<le> Suc (size (ders s r1)) + size r2 + size (bar (SEQ r1 r2) s)"
|
|
28 |
apply(induct s arbitrary: r1 r2)
|
|
29 |
apply(simp_all)
|
|
30 |
done
|
|
31 |
|
|
32 |
(*
|
|
33 |
lemma size_bar_SEQ:
|
|
34 |
"size (bar (SEQ r1 r2) s) \<le> Suc (size (bar r1 s) + size (bar r2 s))"
|
|
35 |
apply(induct s)
|
|
36 |
apply(simp)
|
|
37 |
apply(auto simp add: size_SEQ size_ALT)
|
|
38 |
apply(rule le_trans)
|
|
39 |
apply(rule size_SEQ)
|
|
40 |
done
|
|
41 |
*)
|
|
42 |
|
|
43 |
lemma size_STAR:
|
|
44 |
"size (ders s (STAR r)) \<le> Suc (size (bar r s)) + size (STAR r)"
|
|
45 |
apply(induct s arbitrary: r)
|
|
46 |
apply(simp)
|
|
47 |
apply(simp)
|
|
48 |
apply(rule le_trans)
|
|
49 |
apply(rule size_SEQ)
|
|
50 |
apply(simp)
|
|
51 |
oops
|
|
52 |
|
|
53 |
lemma Size_ALT:
|
|
54 |
"Size (ALT r1 r2) \<le> Suc (Size r1 + Size r2)"
|
|
55 |
unfolding Size_def
|
|
56 |
apply(auto)
|
|
57 |
apply(simp add: size_ALT)
|
|
58 |
apply(subgoal_tac "Max {n. \<exists>s. n = Suc (size (ders s r1) + size (ders s r2))} \<ge>
|
|
59 |
Suc (Max {n. \<exists>s. n = size (ders s r1) + size (ders s r2)})")
|
|
60 |
prefer 2
|
|
61 |
oops
|
|
62 |
|
|
63 |
|
|
64 |
|
|
65 |
end |