273
|
1 |
|
|
2 |
theory SpecExt
|
|
3 |
imports Main "~~/src/HOL/Library/Sublist"
|
|
4 |
begin
|
|
5 |
|
|
6 |
section {* Sequential Composition of Languages *}
|
|
7 |
|
|
8 |
definition
|
|
9 |
Sequ :: "string set \<Rightarrow> string set \<Rightarrow> string set" ("_ ;; _" [100,100] 100)
|
|
10 |
where
|
|
11 |
"A ;; B = {s1 @ s2 | s1 s2. s1 \<in> A \<and> s2 \<in> B}"
|
|
12 |
|
|
13 |
text {* Two Simple Properties about Sequential Composition *}
|
|
14 |
|
|
15 |
lemma Sequ_empty_string [simp]:
|
|
16 |
shows "A ;; {[]} = A"
|
|
17 |
and "{[]} ;; A = A"
|
|
18 |
by (simp_all add: Sequ_def)
|
|
19 |
|
|
20 |
lemma Sequ_empty [simp]:
|
|
21 |
shows "A ;; {} = {}"
|
|
22 |
and "{} ;; A = {}"
|
|
23 |
by (simp_all add: Sequ_def)
|
|
24 |
|
|
25 |
lemma Sequ_assoc:
|
|
26 |
shows "(A ;; B) ;; C = A ;; (B ;; C)"
|
|
27 |
apply(auto simp add: Sequ_def)
|
|
28 |
apply blast
|
|
29 |
by (metis append_assoc)
|
|
30 |
|
|
31 |
lemma Sequ_Union_in:
|
|
32 |
shows "(A ;; (\<Union>x\<in> B. C x)) = (\<Union>x\<in> B. A ;; C x)"
|
|
33 |
by (auto simp add: Sequ_def)
|
|
34 |
|
|
35 |
section {* Semantic Derivative (Left Quotient) of Languages *}
|
|
36 |
|
|
37 |
definition
|
|
38 |
Der :: "char \<Rightarrow> string set \<Rightarrow> string set"
|
|
39 |
where
|
|
40 |
"Der c A \<equiv> {s. c # s \<in> A}"
|
|
41 |
|
|
42 |
definition
|
|
43 |
Ders :: "string \<Rightarrow> string set \<Rightarrow> string set"
|
|
44 |
where
|
|
45 |
"Ders s A \<equiv> {s'. s @ s' \<in> A}"
|
|
46 |
|
|
47 |
lemma Der_null [simp]:
|
|
48 |
shows "Der c {} = {}"
|
|
49 |
unfolding Der_def
|
|
50 |
by auto
|
|
51 |
|
|
52 |
lemma Der_empty [simp]:
|
|
53 |
shows "Der c {[]} = {}"
|
|
54 |
unfolding Der_def
|
|
55 |
by auto
|
|
56 |
|
|
57 |
lemma Der_char [simp]:
|
|
58 |
shows "Der c {[d]} = (if c = d then {[]} else {})"
|
|
59 |
unfolding Der_def
|
|
60 |
by auto
|
|
61 |
|
|
62 |
lemma Der_union [simp]:
|
|
63 |
shows "Der c (A \<union> B) = Der c A \<union> Der c B"
|
|
64 |
unfolding Der_def
|
|
65 |
by auto
|
|
66 |
|
|
67 |
lemma Der_UNION [simp]:
|
|
68 |
shows "Der c (\<Union>x\<in>A. B x) = (\<Union>x\<in>A. Der c (B x))"
|
|
69 |
by (auto simp add: Der_def)
|
|
70 |
|
|
71 |
lemma Der_Sequ [simp]:
|
|
72 |
shows "Der c (A ;; B) = (Der c A) ;; B \<union> (if [] \<in> A then Der c B else {})"
|
|
73 |
unfolding Der_def Sequ_def
|
|
74 |
by (auto simp add: Cons_eq_append_conv)
|
|
75 |
|
|
76 |
|
|
77 |
section {* Kleene Star for Languages *}
|
|
78 |
|
|
79 |
inductive_set
|
|
80 |
Star :: "string set \<Rightarrow> string set" ("_\<star>" [101] 102)
|
|
81 |
for A :: "string set"
|
|
82 |
where
|
|
83 |
start[intro]: "[] \<in> A\<star>"
|
|
84 |
| step[intro]: "\<lbrakk>s1 \<in> A; s2 \<in> A\<star>\<rbrakk> \<Longrightarrow> s1 @ s2 \<in> A\<star>"
|
|
85 |
|
|
86 |
(* Arden's lemma *)
|
|
87 |
|
|
88 |
lemma Star_cases:
|
|
89 |
shows "A\<star> = {[]} \<union> A ;; A\<star>"
|
|
90 |
unfolding Sequ_def
|
|
91 |
by (auto) (metis Star.simps)
|
|
92 |
|
|
93 |
lemma Star_decomp:
|
|
94 |
assumes "c # x \<in> A\<star>"
|
|
95 |
shows "\<exists>s1 s2. x = s1 @ s2 \<and> c # s1 \<in> A \<and> s2 \<in> A\<star>"
|
|
96 |
using assms
|
|
97 |
by (induct x\<equiv>"c # x" rule: Star.induct)
|
|
98 |
(auto simp add: append_eq_Cons_conv)
|
|
99 |
|
|
100 |
lemma Star_Der_Sequ:
|
|
101 |
shows "Der c (A\<star>) \<subseteq> (Der c A) ;; A\<star>"
|
|
102 |
unfolding Der_def Sequ_def
|
|
103 |
by(auto simp add: Star_decomp)
|
|
104 |
|
|
105 |
|
|
106 |
lemma Der_star [simp]:
|
|
107 |
shows "Der c (A\<star>) = (Der c A) ;; A\<star>"
|
|
108 |
proof -
|
|
109 |
have "Der c (A\<star>) = Der c ({[]} \<union> A ;; A\<star>)"
|
|
110 |
by (simp only: Star_cases[symmetric])
|
|
111 |
also have "... = Der c (A ;; A\<star>)"
|
|
112 |
by (simp only: Der_union Der_empty) (simp)
|
|
113 |
also have "... = (Der c A) ;; A\<star> \<union> (if [] \<in> A then Der c (A\<star>) else {})"
|
|
114 |
by simp
|
|
115 |
also have "... = (Der c A) ;; A\<star>"
|
|
116 |
using Star_Der_Sequ by auto
|
|
117 |
finally show "Der c (A\<star>) = (Der c A) ;; A\<star>" .
|
|
118 |
qed
|
|
119 |
|
|
120 |
section {* Power operation for Sets *}
|
|
121 |
|
|
122 |
fun
|
|
123 |
Pow :: "string set \<Rightarrow> nat \<Rightarrow> string set" ("_ \<up> _" [101, 102] 101)
|
|
124 |
where
|
|
125 |
"A \<up> 0 = {[]}"
|
|
126 |
| "A \<up> (Suc n) = A ;; (A \<up> n)"
|
|
127 |
|
|
128 |
lemma Pow_empty [simp]:
|
|
129 |
shows "[] \<in> A \<up> n \<longleftrightarrow> (n = 0 \<or> [] \<in> A)"
|
|
130 |
by(induct n) (auto simp add: Sequ_def)
|
|
131 |
|
|
132 |
lemma Pow_Suc_rev:
|
|
133 |
"A \<up> (Suc n) = (A \<up> n) ;; A"
|
|
134 |
apply(induct n arbitrary: A)
|
|
135 |
apply(simp_all)
|
|
136 |
by (metis Sequ_assoc)
|
|
137 |
|
|
138 |
|
|
139 |
lemma Pow_decomp:
|
|
140 |
assumes "c # x \<in> A \<up> n"
|
|
141 |
shows "\<exists>s1 s2. x = s1 @ s2 \<and> c # s1 \<in> A \<and> s2 \<in> A \<up> (n - 1)"
|
|
142 |
using assms
|
|
143 |
apply(induct n)
|
|
144 |
apply(auto simp add: Cons_eq_append_conv Sequ_def)
|
|
145 |
apply(case_tac n)
|
|
146 |
apply(auto simp add: Sequ_def)
|
|
147 |
apply(blast)
|
|
148 |
done
|
|
149 |
|
|
150 |
lemma Star_Pow:
|
|
151 |
assumes "s \<in> A\<star>"
|
|
152 |
shows "\<exists>n. s \<in> A \<up> n"
|
|
153 |
using assms
|
|
154 |
apply(induct)
|
|
155 |
apply(auto)
|
|
156 |
apply(rule_tac x="Suc n" in exI)
|
|
157 |
apply(auto simp add: Sequ_def)
|
|
158 |
done
|
|
159 |
|
|
160 |
lemma Pow_Star:
|
|
161 |
assumes "s \<in> A \<up> n"
|
|
162 |
shows "s \<in> A\<star>"
|
|
163 |
using assms
|
|
164 |
apply(induct n arbitrary: s)
|
|
165 |
apply(auto simp add: Sequ_def)
|
|
166 |
done
|
|
167 |
|
|
168 |
lemma Der_Pow_0:
|
|
169 |
shows "Der c (A \<up> 0) = {}"
|
|
170 |
by(simp add: Der_def)
|
|
171 |
|
|
172 |
lemma Der_Pow_Suc:
|
|
173 |
shows "Der c (A \<up> (Suc n)) = (Der c A) ;; (A \<up> n)"
|
|
174 |
unfolding Der_def Sequ_def
|
|
175 |
apply(auto simp add: Cons_eq_append_conv Sequ_def dest!: Pow_decomp)
|
|
176 |
apply(case_tac n)
|
|
177 |
apply(force simp add: Sequ_def)+
|
|
178 |
done
|
|
179 |
|
|
180 |
lemma Der_Pow [simp]:
|
|
181 |
shows "Der c (A \<up> n) = (if n = 0 then {} else (Der c A) ;; (A \<up> (n - 1)))"
|
|
182 |
apply(case_tac n)
|
|
183 |
apply(simp_all del: Pow.simps add: Der_Pow_0 Der_Pow_Suc)
|
|
184 |
done
|
|
185 |
|
|
186 |
lemma Der_Pow_Sequ [simp]:
|
|
187 |
shows "Der c (A ;; A \<up> n) = (Der c A) ;; (A \<up> n)"
|
|
188 |
by (simp only: Pow.simps[symmetric] Der_Pow) (simp)
|
|
189 |
|
|
190 |
|
|
191 |
lemma Pow_Sequ_Un:
|
|
192 |
assumes "0 < x"
|
|
193 |
shows "(\<Union>n \<in> {..x}. (A \<up> n)) = ({[]} \<union> (\<Union>n \<in> {..x - Suc 0}. A ;; (A \<up> n)))"
|
|
194 |
using assms
|
|
195 |
apply(auto simp add: Sequ_def)
|
|
196 |
apply(smt Pow.elims Sequ_def Suc_le_mono Suc_pred atMost_iff empty_iff insert_iff mem_Collect_eq)
|
|
197 |
apply(rule_tac x="Suc xa" in bexI)
|
|
198 |
apply(auto simp add: Sequ_def)
|
|
199 |
done
|
|
200 |
|
|
201 |
lemma Pow_Sequ_Un2:
|
|
202 |
assumes "0 < x"
|
|
203 |
shows "(\<Union>n \<in> {x..}. (A \<up> n)) = (\<Union>n \<in> {x - Suc 0..}. A ;; (A \<up> n))"
|
|
204 |
using assms
|
|
205 |
apply(auto simp add: Sequ_def)
|
|
206 |
apply(case_tac n)
|
|
207 |
apply(auto simp add: Sequ_def)
|
|
208 |
apply fastforce
|
|
209 |
apply(case_tac x)
|
|
210 |
apply(auto)
|
|
211 |
apply(rule_tac x="Suc xa" in bexI)
|
|
212 |
apply(auto simp add: Sequ_def)
|
|
213 |
done
|
|
214 |
|
|
215 |
section {* Regular Expressions *}
|
|
216 |
|
|
217 |
datatype rexp =
|
|
218 |
ZERO
|
|
219 |
| ONE
|
|
220 |
| CHAR char
|
|
221 |
| SEQ rexp rexp
|
|
222 |
| ALT rexp rexp
|
|
223 |
| STAR rexp
|
|
224 |
| UPNTIMES rexp nat
|
|
225 |
| NTIMES rexp nat
|
|
226 |
| FROMNTIMES rexp nat
|
|
227 |
| NMTIMES rexp nat nat
|
|
228 |
|
|
229 |
section {* Semantics of Regular Expressions *}
|
|
230 |
|
|
231 |
fun
|
|
232 |
L :: "rexp \<Rightarrow> string set"
|
|
233 |
where
|
|
234 |
"L (ZERO) = {}"
|
|
235 |
| "L (ONE) = {[]}"
|
|
236 |
| "L (CHAR c) = {[c]}"
|
|
237 |
| "L (SEQ r1 r2) = (L r1) ;; (L r2)"
|
|
238 |
| "L (ALT r1 r2) = (L r1) \<union> (L r2)"
|
|
239 |
| "L (STAR r) = (L r)\<star>"
|
|
240 |
| "L (UPNTIMES r n) = (\<Union>i\<in> {..n} . (L r) \<up> i)"
|
|
241 |
| "L (NTIMES r n) = (L r) \<up> n"
|
|
242 |
| "L (FROMNTIMES r n) = (\<Union>i\<in> {n..} . (L r) \<up> i)"
|
|
243 |
| "L (NMTIMES r n m) = (\<Union>i\<in>{n..m} . (L r) \<up> i)"
|
|
244 |
|
|
245 |
section {* Nullable, Derivatives *}
|
|
246 |
|
|
247 |
fun
|
|
248 |
nullable :: "rexp \<Rightarrow> bool"
|
|
249 |
where
|
|
250 |
"nullable (ZERO) = False"
|
|
251 |
| "nullable (ONE) = True"
|
|
252 |
| "nullable (CHAR c) = False"
|
|
253 |
| "nullable (ALT r1 r2) = (nullable r1 \<or> nullable r2)"
|
|
254 |
| "nullable (SEQ r1 r2) = (nullable r1 \<and> nullable r2)"
|
|
255 |
| "nullable (STAR r) = True"
|
|
256 |
| "nullable (UPNTIMES r n) = True"
|
|
257 |
| "nullable (NTIMES r n) = (if n = 0 then True else nullable r)"
|
|
258 |
| "nullable (FROMNTIMES r n) = (if n = 0 then True else nullable r)"
|
|
259 |
| "nullable (NMTIMES r n m) = (if m < n then False else (if n = 0 then True else nullable r))"
|
|
260 |
|
|
261 |
fun
|
|
262 |
der :: "char \<Rightarrow> rexp \<Rightarrow> rexp"
|
|
263 |
where
|
|
264 |
"der c (ZERO) = ZERO"
|
|
265 |
| "der c (ONE) = ZERO"
|
|
266 |
| "der c (CHAR d) = (if c = d then ONE else ZERO)"
|
|
267 |
| "der c (ALT r1 r2) = ALT (der c r1) (der c r2)"
|
|
268 |
| "der c (SEQ r1 r2) =
|
|
269 |
(if nullable r1
|
|
270 |
then ALT (SEQ (der c r1) r2) (der c r2)
|
|
271 |
else SEQ (der c r1) r2)"
|
|
272 |
| "der c (STAR r) = SEQ (der c r) (STAR r)"
|
|
273 |
| "der c (UPNTIMES r n) = (if n = 0 then ZERO else SEQ (der c r) (UPNTIMES r (n - 1)))"
|
|
274 |
| "der c (NTIMES r n) = (if n = 0 then ZERO else SEQ (der c r) (NTIMES r (n - 1)))"
|
|
275 |
| "der c (FROMNTIMES r n) = SEQ (der c r) (FROMNTIMES r (n - 1))"
|
|
276 |
| "der c (NMTIMES r n m) =
|
|
277 |
(if m < n then ZERO
|
|
278 |
else (if n = 0 then (if m = 0 then ZERO else
|
|
279 |
SEQ (der c r) (UPNTIMES r (m - 1))) else
|
|
280 |
SEQ (der c r) (NMTIMES r (n - 1) (m - 1))))"
|
|
281 |
|
|
282 |
fun
|
|
283 |
ders :: "string \<Rightarrow> rexp \<Rightarrow> rexp"
|
|
284 |
where
|
|
285 |
"ders [] r = r"
|
|
286 |
| "ders (c # s) r = ders s (der c r)"
|
|
287 |
|
|
288 |
|
|
289 |
lemma nullable_correctness:
|
|
290 |
shows "nullable r \<longleftrightarrow> [] \<in> (L r)"
|
|
291 |
by(induct r) (auto simp add: Sequ_def)
|
|
292 |
|
|
293 |
|
|
294 |
lemma der_correctness:
|
|
295 |
shows "L (der c r) = Der c (L r)"
|
|
296 |
apply(induct r)
|
|
297 |
apply(simp add: nullable_correctness del: Der_UNION)
|
|
298 |
apply(simp add: nullable_correctness del: Der_UNION)
|
|
299 |
apply(simp add: nullable_correctness del: Der_UNION)
|
|
300 |
apply(simp add: nullable_correctness del: Der_UNION)
|
|
301 |
apply(simp add: nullable_correctness del: Der_UNION)
|
|
302 |
apply(simp add: nullable_correctness del: Der_UNION)
|
|
303 |
prefer 2
|
|
304 |
apply(simp add: nullable_correctness del: Der_UNION)
|
|
305 |
apply(simp add: nullable_correctness del: Der_UNION)
|
|
306 |
apply(rule impI)
|
|
307 |
apply(subst Sequ_Union_in)
|
|
308 |
apply(subst Der_Pow_Sequ[symmetric])
|
|
309 |
apply(subst Pow.simps[symmetric])
|
|
310 |
apply(subst Der_UNION[symmetric])
|
|
311 |
apply(subst Pow_Sequ_Un)
|
|
312 |
apply(simp)
|
|
313 |
apply(simp only: Der_union Der_empty)
|
|
314 |
apply(simp)
|
|
315 |
apply(simp add: nullable_correctness del: Der_UNION)
|
|
316 |
apply(subst Sequ_Union_in)
|
|
317 |
apply(subst Der_Pow_Sequ[symmetric])
|
|
318 |
apply(subst Pow.simps[symmetric])
|
|
319 |
apply(case_tac x2)
|
|
320 |
prefer 2
|
|
321 |
apply(subst Pow_Sequ_Un2)
|
|
322 |
apply(simp)
|
|
323 |
apply(simp)
|
|
324 |
apply(auto simp add: Sequ_def Der_def)[1]
|
|
325 |
apply(rule_tac x="Suc xa" in exI)
|
|
326 |
apply(auto simp add: Sequ_def)[1]
|
|
327 |
apply(drule Pow_decomp)
|
|
328 |
apply(auto)[1]
|
|
329 |
apply (metis append_Cons)
|
|
330 |
apply(simp add: nullable_correctness del: Der_UNION)
|
|
331 |
apply(rule impI)
|
|
332 |
apply(rule conjI)
|
|
333 |
apply(rule impI)
|
|
334 |
apply(subst Sequ_Union_in)
|
|
335 |
apply(subst Der_Pow_Sequ[symmetric])
|
|
336 |
apply(subst Pow.simps[symmetric])
|
|
337 |
apply(subst Der_UNION[symmetric])
|
|
338 |
apply(case_tac x3a)
|
|
339 |
apply(simp)
|
|
340 |
apply(clarify)
|
|
341 |
apply(auto simp add: Sequ_def Der_def Cons_eq_append_conv)[1]
|
|
342 |
apply(rule_tac x="Suc xa" in bexI)
|
|
343 |
apply(auto simp add: Sequ_def)[2]
|
|
344 |
apply (metis append_Cons)
|
|
345 |
apply (metis (no_types, hide_lams) Pow_decomp atMost_iff diff_Suc_eq_diff_pred diff_is_0_eq)
|
|
346 |
apply(rule impI)+
|
|
347 |
apply(subst Sequ_Union_in)
|
|
348 |
apply(subst Der_Pow_Sequ[symmetric])
|
|
349 |
apply(subst Pow.simps[symmetric])
|
|
350 |
apply(subst Der_UNION[symmetric])
|
|
351 |
apply(case_tac x2)
|
|
352 |
apply(simp)
|
|
353 |
apply(simp del: Pow.simps)
|
|
354 |
apply(auto simp add: Sequ_def Der_def)
|
|
355 |
apply (metis One_nat_def Suc_le_D Suc_le_mono atLeastAtMost_iff diff_Suc_1 not_le)
|
|
356 |
by fastforce
|
|
357 |
|
|
358 |
|
|
359 |
|
|
360 |
lemma ders_correctness:
|
|
361 |
shows "L (ders s r) = Ders s (L r)"
|
|
362 |
by (induct s arbitrary: r)
|
|
363 |
(simp_all add: Ders_def der_correctness Der_def)
|
|
364 |
|
|
365 |
|
|
366 |
|
|
367 |
section {* Values *}
|
|
368 |
|
|
369 |
datatype val =
|
|
370 |
Void
|
|
371 |
| Char char
|
|
372 |
| Seq val val
|
|
373 |
| Right val
|
|
374 |
| Left val
|
|
375 |
| Stars "val list"
|
|
376 |
|
|
377 |
|
|
378 |
section {* The string behind a value *}
|
|
379 |
|
|
380 |
fun
|
|
381 |
flat :: "val \<Rightarrow> string"
|
|
382 |
where
|
|
383 |
"flat (Void) = []"
|
|
384 |
| "flat (Char c) = [c]"
|
|
385 |
| "flat (Left v) = flat v"
|
|
386 |
| "flat (Right v) = flat v"
|
|
387 |
| "flat (Seq v1 v2) = (flat v1) @ (flat v2)"
|
|
388 |
| "flat (Stars []) = []"
|
|
389 |
| "flat (Stars (v#vs)) = (flat v) @ (flat (Stars vs))"
|
|
390 |
|
|
391 |
abbreviation
|
|
392 |
"flats vs \<equiv> concat (map flat vs)"
|
|
393 |
|
|
394 |
lemma flat_Stars [simp]:
|
|
395 |
"flat (Stars vs) = flats vs"
|
|
396 |
by (induct vs) (auto)
|
|
397 |
|
|
398 |
lemma Star_concat:
|
|
399 |
assumes "\<forall>s \<in> set ss. s \<in> A"
|
|
400 |
shows "concat ss \<in> A\<star>"
|
|
401 |
using assms by (induct ss) (auto)
|
|
402 |
|
|
403 |
lemma Star_cstring:
|
|
404 |
assumes "s \<in> A\<star>"
|
|
405 |
shows "\<exists>ss. concat ss = s \<and> (\<forall>s \<in> set ss. s \<in> A \<and> s \<noteq> [])"
|
|
406 |
using assms
|
|
407 |
apply(induct rule: Star.induct)
|
|
408 |
apply(auto)[1]
|
|
409 |
apply(rule_tac x="[]" in exI)
|
|
410 |
apply(simp)
|
|
411 |
apply(erule exE)
|
|
412 |
apply(clarify)
|
|
413 |
apply(case_tac "s1 = []")
|
|
414 |
apply(rule_tac x="ss" in exI)
|
|
415 |
apply(simp)
|
|
416 |
apply(rule_tac x="s1#ss" in exI)
|
|
417 |
apply(simp)
|
|
418 |
done
|
|
419 |
|
|
420 |
lemma Aux:
|
|
421 |
assumes "\<forall>s\<in>set ss. s = []"
|
|
422 |
shows "concat ss = []"
|
|
423 |
using assms
|
|
424 |
by (induct ss) (auto)
|
|
425 |
|
|
426 |
lemma Pow_cstring_nonempty:
|
|
427 |
assumes "s \<in> A \<up> n"
|
|
428 |
shows "\<exists>ss. concat ss = s \<and> length ss \<le> n \<and> (\<forall>s \<in> set ss. s \<in> A \<and> s \<noteq> [])"
|
|
429 |
using assms
|
|
430 |
apply(induct n arbitrary: s)
|
|
431 |
apply(auto)
|
|
432 |
apply(simp add: Sequ_def)
|
|
433 |
apply(erule exE)+
|
|
434 |
apply(clarify)
|
|
435 |
apply(drule_tac x="s2" in meta_spec)
|
|
436 |
apply(simp)
|
|
437 |
apply(clarify)
|
|
438 |
apply(case_tac "s1 = []")
|
|
439 |
apply(simp)
|
|
440 |
apply(rule_tac x="ss" in exI)
|
|
441 |
apply(simp)
|
|
442 |
apply(rule_tac x="s1 # ss" in exI)
|
|
443 |
apply(simp)
|
|
444 |
done
|
|
445 |
|
|
446 |
lemma Pow_cstring:
|
|
447 |
assumes "s \<in> A \<up> n"
|
|
448 |
shows "\<exists>ss1 ss2. concat (ss1 @ ss2) = s \<and> length (ss1 @ ss2) = n \<and>
|
|
449 |
(\<forall>s \<in> set ss1. s \<in> A \<and> s \<noteq> []) \<and> (\<forall>s \<in> set ss2. s \<in> A \<and> s = [])"
|
|
450 |
using assms
|
|
451 |
apply(induct n arbitrary: s)
|
|
452 |
apply(auto)[1]
|
|
453 |
apply(simp only: Pow_Suc_rev)
|
|
454 |
apply(simp add: Sequ_def)
|
|
455 |
apply(erule exE)+
|
|
456 |
apply(clarify)
|
|
457 |
apply(drule_tac x="s1" in meta_spec)
|
|
458 |
apply(simp)
|
|
459 |
apply(erule exE)+
|
|
460 |
apply(clarify)
|
|
461 |
apply(case_tac "s2 = []")
|
|
462 |
apply(simp)
|
|
463 |
apply(rule_tac x="ss1" in exI)
|
|
464 |
apply(rule_tac x="s2#ss2" in exI)
|
|
465 |
apply(simp)
|
|
466 |
apply(rule_tac x="ss1 @ [s2]" in exI)
|
|
467 |
apply(rule_tac x="ss2" in exI)
|
|
468 |
apply(simp)
|
|
469 |
apply(subst Aux)
|
|
470 |
apply(auto)[1]
|
|
471 |
apply(subst Aux)
|
|
472 |
apply(auto)[1]
|
|
473 |
apply(simp)
|
|
474 |
done
|
|
475 |
|
|
476 |
|
|
477 |
section {* Lexical Values *}
|
|
478 |
|
|
479 |
|
|
480 |
|
|
481 |
inductive
|
|
482 |
Prf :: "val \<Rightarrow> rexp \<Rightarrow> bool" ("\<Turnstile> _ : _" [100, 100] 100)
|
|
483 |
where
|
|
484 |
"\<lbrakk>\<Turnstile> v1 : r1; \<Turnstile> v2 : r2\<rbrakk> \<Longrightarrow> \<Turnstile> Seq v1 v2 : SEQ r1 r2"
|
|
485 |
| "\<Turnstile> v1 : r1 \<Longrightarrow> \<Turnstile> Left v1 : ALT r1 r2"
|
|
486 |
| "\<Turnstile> v2 : r2 \<Longrightarrow> \<Turnstile> Right v2 : ALT r1 r2"
|
|
487 |
| "\<Turnstile> Void : ONE"
|
|
488 |
| "\<Turnstile> Char c : CHAR c"
|
|
489 |
| "\<lbrakk>\<forall>v \<in> set vs. \<Turnstile> v : r \<and> flat v \<noteq> []\<rbrakk> \<Longrightarrow> \<Turnstile> Stars vs : STAR r"
|
|
490 |
| "\<lbrakk>\<forall>v \<in> set vs. \<Turnstile> v : r \<and> flat v \<noteq> []; length vs \<le> n\<rbrakk> \<Longrightarrow> \<Turnstile> Stars vs : UPNTIMES r n"
|
|
491 |
| "\<lbrakk>\<forall>v \<in> set vs1. \<Turnstile> v : r \<and> flat v \<noteq> [];
|
|
492 |
\<forall>v \<in> set vs2. \<Turnstile> v : r \<and> flat v = [];
|
|
493 |
length (vs1 @ vs2) = n\<rbrakk> \<Longrightarrow> \<Turnstile> Stars (vs1 @ vs2) : NTIMES r n"
|
|
494 |
| "\<lbrakk>\<forall>v \<in> set vs1. \<Turnstile> v : r \<and> flat v \<noteq> [];
|
|
495 |
\<forall>v \<in> set vs2. \<Turnstile> v : r \<and> flat v = [];
|
|
496 |
length (vs1 @ vs2) \<ge> n\<rbrakk> \<Longrightarrow> \<Turnstile> Stars (vs1 @ vs2) : FROMNTIMES r n"
|
|
497 |
| "\<lbrakk>\<forall>v \<in> set vs1. \<Turnstile> v : r \<and> flat v \<noteq> [];
|
|
498 |
\<forall>v \<in> set vs2. \<Turnstile> v : r \<and> flat v = [];
|
|
499 |
length (vs1 @ vs2) \<ge> n; length (vs1 @ vs2) \<le> m\<rbrakk> \<Longrightarrow> \<Turnstile> Stars (vs1 @ vs2) : NMTIMES r n m"
|
|
500 |
|
|
501 |
inductive_cases Prf_elims:
|
|
502 |
"\<Turnstile> v : ZERO"
|
|
503 |
"\<Turnstile> v : SEQ r1 r2"
|
|
504 |
"\<Turnstile> v : ALT r1 r2"
|
|
505 |
"\<Turnstile> v : ONE"
|
|
506 |
"\<Turnstile> v : CHAR c"
|
|
507 |
"\<Turnstile> vs : STAR r"
|
|
508 |
"\<Turnstile> vs : UPNTIMES r n"
|
|
509 |
"\<Turnstile> vs : NTIMES r n"
|
|
510 |
"\<Turnstile> vs : FROMNTIMES r n"
|
|
511 |
"\<Turnstile> vs : NMTIMES r n m"
|
|
512 |
|
|
513 |
lemma Prf_Stars_appendE:
|
|
514 |
assumes "\<Turnstile> Stars (vs1 @ vs2) : STAR r"
|
|
515 |
shows "\<Turnstile> Stars vs1 : STAR r \<and> \<Turnstile> Stars vs2 : STAR r"
|
|
516 |
using assms
|
|
517 |
by (auto intro: Prf.intros elim!: Prf_elims)
|
|
518 |
|
274
|
519 |
|
|
520 |
|
273
|
521 |
lemma flats_empty:
|
|
522 |
assumes "(\<forall>v\<in>set vs. flat v = [])"
|
|
523 |
shows "flats vs = []"
|
|
524 |
using assms
|
|
525 |
by(induct vs) (simp_all)
|
|
526 |
|
|
527 |
lemma Star_cval:
|
|
528 |
assumes "\<forall>s\<in>set ss. \<exists>v. s = flat v \<and> \<Turnstile> v : r"
|
|
529 |
shows "\<exists>vs. flats vs = concat ss \<and> (\<forall>v\<in>set vs. \<Turnstile> v : r \<and> flat v \<noteq> [])"
|
|
530 |
using assms
|
|
531 |
apply(induct ss)
|
|
532 |
apply(auto)
|
|
533 |
apply(rule_tac x="[]" in exI)
|
|
534 |
apply(simp)
|
|
535 |
apply(case_tac "flat v = []")
|
|
536 |
apply(rule_tac x="vs" in exI)
|
|
537 |
apply(simp)
|
|
538 |
apply(rule_tac x="v#vs" in exI)
|
|
539 |
apply(simp)
|
|
540 |
done
|
|
541 |
|
|
542 |
|
|
543 |
lemma flats_cval:
|
|
544 |
assumes "\<forall>s\<in>set ss. \<exists>v. s = flat v \<and> \<Turnstile> v : r"
|
|
545 |
shows "\<exists>vs1 vs2. flats (vs1 @ vs2) = concat ss \<and> length (vs1 @ vs2) = length ss \<and>
|
|
546 |
(\<forall>v\<in>set vs1. \<Turnstile> v : r \<and> flat v \<noteq> []) \<and>
|
|
547 |
(\<forall>v\<in>set vs2. \<Turnstile> v : r \<and> flat v = [])"
|
|
548 |
using assms
|
|
549 |
apply(induct ss rule: rev_induct)
|
|
550 |
apply(rule_tac x="[]" in exI)+
|
|
551 |
apply(simp)
|
|
552 |
apply(simp)
|
|
553 |
apply(clarify)
|
|
554 |
apply(case_tac "flat v = []")
|
|
555 |
apply(rule_tac x="vs1" in exI)
|
|
556 |
apply(rule_tac x="v#vs2" in exI)
|
|
557 |
apply(simp)
|
|
558 |
apply(rule_tac x="vs1 @ [v]" in exI)
|
|
559 |
apply(rule_tac x="vs2" in exI)
|
|
560 |
apply(simp)
|
|
561 |
apply(subst (asm) (2) flats_empty)
|
|
562 |
apply(simp)
|
|
563 |
apply(simp)
|
|
564 |
done
|
|
565 |
|
|
566 |
lemma flats_cval_nonempty:
|
|
567 |
assumes "\<forall>s\<in>set ss. \<exists>v. s = flat v \<and> \<Turnstile> v : r"
|
|
568 |
shows "\<exists>vs. flats vs = concat ss \<and> length vs \<le> length ss \<and>
|
|
569 |
(\<forall>v\<in>set vs. \<Turnstile> v : r \<and> flat v \<noteq> [])"
|
|
570 |
using assms
|
|
571 |
apply(induct ss)
|
|
572 |
apply(rule_tac x="[]" in exI)
|
|
573 |
apply(simp)
|
|
574 |
apply(simp)
|
|
575 |
apply(clarify)
|
|
576 |
apply(case_tac "flat v = []")
|
|
577 |
apply(rule_tac x="vs" in exI)
|
|
578 |
apply(simp)
|
|
579 |
apply(rule_tac x="v # vs" in exI)
|
|
580 |
apply(simp)
|
|
581 |
done
|
|
582 |
|
|
583 |
lemma Pow_flats:
|
|
584 |
assumes "\<forall>v \<in> set vs. flat v \<in> A"
|
|
585 |
shows "flats vs \<in> A \<up> length vs"
|
|
586 |
using assms
|
|
587 |
by(induct vs)(auto simp add: Sequ_def)
|
|
588 |
|
|
589 |
lemma Pow_flats_appends:
|
|
590 |
assumes "\<forall>v \<in> set vs1. flat v \<in> A" "\<forall>v \<in> set vs2. flat v \<in> A"
|
|
591 |
shows "flats vs1 @ flats vs2 \<in> A \<up> (length vs1 + length vs2)"
|
|
592 |
using assms
|
|
593 |
apply(induct vs1)
|
|
594 |
apply(auto simp add: Sequ_def Pow_flats)
|
|
595 |
done
|
|
596 |
|
|
597 |
lemma L_flat_Prf1:
|
|
598 |
assumes "\<Turnstile> v : r"
|
|
599 |
shows "flat v \<in> L r"
|
|
600 |
using assms
|
|
601 |
apply(induct)
|
|
602 |
apply(auto simp add: Sequ_def Star_concat Pow_flats)
|
|
603 |
apply(meson Pow_flats atMost_iff)
|
|
604 |
using Pow_flats_appends apply blast
|
|
605 |
apply(meson Pow_flats_appends atLeast_iff)
|
|
606 |
apply(meson Pow_flats_appends atLeastAtMost_iff)
|
|
607 |
done
|
|
608 |
|
|
609 |
lemma L_flat_Prf2:
|
|
610 |
assumes "s \<in> L r"
|
|
611 |
shows "\<exists>v. \<Turnstile> v : r \<and> flat v = s"
|
|
612 |
using assms
|
|
613 |
proof(induct r arbitrary: s)
|
|
614 |
case (STAR r s)
|
|
615 |
have IH: "\<And>s. s \<in> L r \<Longrightarrow> \<exists>v. \<Turnstile> v : r \<and> flat v = s" by fact
|
|
616 |
have "s \<in> L (STAR r)" by fact
|
|
617 |
then obtain ss where "concat ss = s" "\<forall>s \<in> set ss. s \<in> L r \<and> s \<noteq> []"
|
|
618 |
using Star_cstring by auto
|
|
619 |
then obtain vs where "flats vs = s" "\<forall>v\<in>set vs. \<Turnstile> v : r \<and> flat v \<noteq> []"
|
|
620 |
using IH Star_cval by metis
|
|
621 |
then show "\<exists>v. \<Turnstile> v : STAR r \<and> flat v = s"
|
|
622 |
using Prf.intros(6) flat_Stars by blast
|
|
623 |
next
|
|
624 |
case (SEQ r1 r2 s)
|
|
625 |
then show "\<exists>v. \<Turnstile> v : SEQ r1 r2 \<and> flat v = s"
|
|
626 |
unfolding Sequ_def L.simps by (fastforce intro: Prf.intros)
|
|
627 |
next
|
|
628 |
case (ALT r1 r2 s)
|
|
629 |
then show "\<exists>v. \<Turnstile> v : ALT r1 r2 \<and> flat v = s"
|
|
630 |
unfolding L.simps by (fastforce intro: Prf.intros)
|
|
631 |
next
|
|
632 |
case (NTIMES r n)
|
|
633 |
have IH: "\<And>s. s \<in> L r \<Longrightarrow> \<exists>v. \<Turnstile> v : r \<and> flat v = s" by fact
|
|
634 |
have "s \<in> L (NTIMES r n)" by fact
|
|
635 |
then obtain ss1 ss2 where "concat (ss1 @ ss2) = s" "length (ss1 @ ss2) = n"
|
|
636 |
"\<forall>s \<in> set ss1. s \<in> L r \<and> s \<noteq> []" "\<forall>s \<in> set ss2. s \<in> L r \<and> s = []"
|
|
637 |
using Pow_cstring by force
|
|
638 |
then obtain vs1 vs2 where "flats (vs1 @ vs2) = s" "length (vs1 @ vs2) = n"
|
|
639 |
"\<forall>v\<in>set vs1. \<Turnstile> v : r \<and> flat v \<noteq> []" "\<forall>v\<in>set vs2. \<Turnstile> v : r \<and> flat v = []"
|
|
640 |
using IH flats_cval
|
|
641 |
apply -
|
|
642 |
apply(drule_tac x="ss1 @ ss2" in meta_spec)
|
|
643 |
apply(drule_tac x="r" in meta_spec)
|
|
644 |
apply(drule meta_mp)
|
|
645 |
apply(simp)
|
|
646 |
apply (metis Un_iff)
|
|
647 |
apply(clarify)
|
|
648 |
apply(drule_tac x="vs1" in meta_spec)
|
|
649 |
apply(drule_tac x="vs2" in meta_spec)
|
|
650 |
apply(simp)
|
|
651 |
done
|
|
652 |
then show "\<exists>v. \<Turnstile> v : NTIMES r n \<and> flat v = s"
|
|
653 |
using Prf.intros(8) flat_Stars by blast
|
|
654 |
next
|
|
655 |
case (FROMNTIMES r n)
|
|
656 |
have IH: "\<And>s. s \<in> L r \<Longrightarrow> \<exists>v. \<Turnstile> v : r \<and> flat v = s" by fact
|
|
657 |
have "s \<in> L (FROMNTIMES r n)" by fact
|
|
658 |
then obtain ss1 ss2 m where "concat (ss1 @ ss2) = s" "length (ss1 @ ss2) = m" "n \<le> m"
|
|
659 |
"\<forall>s \<in> set ss1. s \<in> L r \<and> s \<noteq> []" "\<forall>s \<in> set ss2. s \<in> L r \<and> s = []"
|
|
660 |
using Pow_cstring by auto blast
|
|
661 |
then obtain vs1 vs2 where "flats (vs1 @ vs2) = s" "length (vs1 @ vs2) = m" "n \<le> m"
|
|
662 |
"\<forall>v\<in>set vs1. \<Turnstile> v : r \<and> flat v \<noteq> []" "\<forall>v\<in>set vs2. \<Turnstile> v : r \<and> flat v = []"
|
|
663 |
using IH flats_cval
|
|
664 |
apply -
|
|
665 |
apply(drule_tac x="ss1 @ ss2" in meta_spec)
|
|
666 |
apply(drule_tac x="r" in meta_spec)
|
|
667 |
apply(drule meta_mp)
|
|
668 |
apply(simp)
|
|
669 |
apply (metis Un_iff)
|
|
670 |
apply(clarify)
|
|
671 |
apply(drule_tac x="vs1" in meta_spec)
|
|
672 |
apply(drule_tac x="vs2" in meta_spec)
|
|
673 |
apply(simp)
|
|
674 |
done
|
|
675 |
then show "\<exists>v. \<Turnstile> v : FROMNTIMES r n \<and> flat v = s"
|
|
676 |
using Prf.intros(9) flat_Stars by blast
|
|
677 |
next
|
|
678 |
case (NMTIMES r n m)
|
|
679 |
have IH: "\<And>s. s \<in> L r \<Longrightarrow> \<exists>v. \<Turnstile> v : r \<and> flat v = s" by fact
|
|
680 |
have "s \<in> L (NMTIMES r n m)" by fact
|
|
681 |
then obtain ss1 ss2 k where "concat (ss1 @ ss2) = s" "length (ss1 @ ss2) = k" "n \<le> k" "k \<le> m"
|
|
682 |
"\<forall>s \<in> set ss1. s \<in> L r \<and> s \<noteq> []" "\<forall>s \<in> set ss2. s \<in> L r \<and> s = []"
|
|
683 |
using Pow_cstring by (auto, blast)
|
|
684 |
then obtain vs1 vs2 where "flats (vs1 @ vs2) = s" "length (vs1 @ vs2) = k" "n \<le> k" "k \<le> m"
|
|
685 |
"\<forall>v\<in>set vs1. \<Turnstile> v : r \<and> flat v \<noteq> []" "\<forall>v\<in>set vs2. \<Turnstile> v : r \<and> flat v = []"
|
|
686 |
using IH flats_cval
|
|
687 |
apply -
|
|
688 |
apply(drule_tac x="ss1 @ ss2" in meta_spec)
|
|
689 |
apply(drule_tac x="r" in meta_spec)
|
|
690 |
apply(drule meta_mp)
|
|
691 |
apply(simp)
|
|
692 |
apply (metis Un_iff)
|
|
693 |
apply(clarify)
|
|
694 |
apply(drule_tac x="vs1" in meta_spec)
|
|
695 |
apply(drule_tac x="vs2" in meta_spec)
|
|
696 |
apply(simp)
|
|
697 |
done
|
|
698 |
then show "\<exists>v. \<Turnstile> v : NMTIMES r n m \<and> flat v = s"
|
|
699 |
apply(rule_tac x="Stars (vs1 @ vs2)" in exI)
|
|
700 |
apply(simp)
|
|
701 |
apply(rule Prf.intros)
|
|
702 |
apply(auto)
|
|
703 |
done
|
|
704 |
next
|
|
705 |
case (UPNTIMES r n s)
|
|
706 |
have IH: "\<And>s. s \<in> L r \<Longrightarrow> \<exists>v. \<Turnstile> v : r \<and> flat v = s" by fact
|
|
707 |
have "s \<in> L (UPNTIMES r n)" by fact
|
|
708 |
then obtain ss where "concat ss = s" "\<forall>s \<in> set ss. s \<in> L r \<and> s \<noteq> []" "length ss \<le> n"
|
|
709 |
using Pow_cstring_nonempty by force
|
|
710 |
then obtain vs where "flats vs = s" "\<forall>v\<in>set vs. \<Turnstile> v : r \<and> flat v \<noteq> []" "length vs \<le> n"
|
|
711 |
using IH flats_cval_nonempty by (smt order.trans)
|
|
712 |
then show "\<exists>v. \<Turnstile> v : UPNTIMES r n \<and> flat v = s"
|
|
713 |
using Prf.intros(7) flat_Stars by blast
|
|
714 |
qed (auto intro: Prf.intros)
|
|
715 |
|
|
716 |
|
|
717 |
lemma L_flat_Prf:
|
|
718 |
shows "L(r) = {flat v | v. \<Turnstile> v : r}"
|
|
719 |
using L_flat_Prf1 L_flat_Prf2 by blast
|
|
720 |
|
|
721 |
|
|
722 |
|
|
723 |
section {* Sets of Lexical Values *}
|
|
724 |
|
|
725 |
text {*
|
|
726 |
Shows that lexical values are finite for a given regex and string.
|
|
727 |
*}
|
|
728 |
|
|
729 |
definition
|
|
730 |
LV :: "rexp \<Rightarrow> string \<Rightarrow> val set"
|
|
731 |
where "LV r s \<equiv> {v. \<Turnstile> v : r \<and> flat v = s}"
|
|
732 |
|
|
733 |
lemma LV_simps:
|
|
734 |
shows "LV ZERO s = {}"
|
|
735 |
and "LV ONE s = (if s = [] then {Void} else {})"
|
|
736 |
and "LV (CHAR c) s = (if s = [c] then {Char c} else {})"
|
|
737 |
and "LV (ALT r1 r2) s = Left ` LV r1 s \<union> Right ` LV r2 s"
|
|
738 |
unfolding LV_def
|
274
|
739 |
apply(auto intro: Prf.intros elim: Prf.cases)
|
|
740 |
done
|
273
|
741 |
|
|
742 |
abbreviation
|
|
743 |
"Prefixes s \<equiv> {s'. prefixeq s' s}"
|
|
744 |
|
|
745 |
abbreviation
|
|
746 |
"Suffixes s \<equiv> {s'. suffixeq s' s}"
|
|
747 |
|
|
748 |
abbreviation
|
|
749 |
"SSuffixes s \<equiv> {s'. suffix s' s}"
|
|
750 |
|
|
751 |
lemma Suffixes_cons [simp]:
|
|
752 |
shows "Suffixes (c # s) = Suffixes s \<union> {c # s}"
|
|
753 |
by (auto simp add: suffixeq_def Cons_eq_append_conv)
|
|
754 |
|
|
755 |
|
|
756 |
lemma finite_Suffixes:
|
|
757 |
shows "finite (Suffixes s)"
|
|
758 |
by (induct s) (simp_all)
|
|
759 |
|
|
760 |
lemma finite_SSuffixes:
|
|
761 |
shows "finite (SSuffixes s)"
|
|
762 |
proof -
|
|
763 |
have "SSuffixes s \<subseteq> Suffixes s"
|
|
764 |
unfolding suffix_def suffixeq_def by auto
|
|
765 |
then show "finite (SSuffixes s)"
|
|
766 |
using finite_Suffixes finite_subset by blast
|
|
767 |
qed
|
|
768 |
|
|
769 |
lemma finite_Prefixes:
|
|
770 |
shows "finite (Prefixes s)"
|
|
771 |
proof -
|
|
772 |
have "finite (Suffixes (rev s))"
|
|
773 |
by (rule finite_Suffixes)
|
|
774 |
then have "finite (rev ` Suffixes (rev s))" by simp
|
|
775 |
moreover
|
|
776 |
have "rev ` (Suffixes (rev s)) = Prefixes s"
|
|
777 |
unfolding suffixeq_def prefixeq_def image_def
|
|
778 |
by (auto)(metis rev_append rev_rev_ident)+
|
|
779 |
ultimately show "finite (Prefixes s)" by simp
|
|
780 |
qed
|
|
781 |
|
|
782 |
lemma LV_STAR_finite:
|
|
783 |
assumes "\<forall>s. finite (LV r s)"
|
|
784 |
shows "finite (LV (STAR r) s)"
|
|
785 |
proof(induct s rule: length_induct)
|
|
786 |
fix s::"char list"
|
|
787 |
assume "\<forall>s'. length s' < length s \<longrightarrow> finite (LV (STAR r) s')"
|
|
788 |
then have IH: "\<forall>s' \<in> SSuffixes s. finite (LV (STAR r) s')"
|
|
789 |
by (auto simp add: suffix_def)
|
|
790 |
def f \<equiv> "\<lambda>(v, vs). Stars (v # vs)"
|
|
791 |
def S1 \<equiv> "\<Union>s' \<in> Prefixes s. LV r s'"
|
|
792 |
def S2 \<equiv> "\<Union>s2 \<in> SSuffixes s. Stars -` (LV (STAR r) s2)"
|
|
793 |
have "finite S1" using assms
|
|
794 |
unfolding S1_def by (simp_all add: finite_Prefixes)
|
|
795 |
moreover
|
|
796 |
with IH have "finite S2" unfolding S2_def
|
|
797 |
by (auto simp add: finite_SSuffixes inj_on_def finite_vimageI)
|
|
798 |
ultimately
|
|
799 |
have "finite ({Stars []} \<union> f ` (S1 \<times> S2))" by simp
|
|
800 |
moreover
|
|
801 |
have "LV (STAR r) s \<subseteq> {Stars []} \<union> f ` (S1 \<times> S2)"
|
|
802 |
unfolding S1_def S2_def f_def
|
|
803 |
unfolding LV_def image_def prefixeq_def suffix_def
|
|
804 |
apply(auto elim: Prf_elims)
|
|
805 |
apply(erule Prf_elims)
|
|
806 |
apply(auto)
|
|
807 |
apply(case_tac vs)
|
|
808 |
apply(auto intro: Prf.intros)
|
|
809 |
done
|
|
810 |
ultimately
|
|
811 |
show "finite (LV (STAR r) s)" by (simp add: finite_subset)
|
|
812 |
qed
|
|
813 |
|
|
814 |
lemma LV_UPNTIMES_STAR:
|
|
815 |
"LV (UPNTIMES r n) s \<subseteq> LV (STAR r) s"
|
|
816 |
by(auto simp add: LV_def intro: Prf.intros elim: Prf_elims)
|
|
817 |
|
274
|
818 |
(*
|
|
819 |
lemma LV_NTIMES_finite:
|
|
820 |
assumes "\<forall>s. finite (LV r s)"
|
|
821 |
shows "finite (LV (NTIMES r n) s)"
|
|
822 |
proof(induct s rule: length_induct)
|
|
823 |
fix s::"char list"
|
|
824 |
assume "\<forall>s'. length s' < length s \<longrightarrow> finite (LV (NTIMES r n) s')"
|
|
825 |
then have IH: "\<forall>s' \<in> SSuffixes s. finite (LV (NTIMES r n) s')"
|
|
826 |
by (auto simp add: suffix_def)
|
|
827 |
def f \<equiv> "\<lambda>(v, vs). Stars (v # vs)"
|
|
828 |
def S1 \<equiv> "\<Union>s' \<in> Prefixes s. LV r s'"
|
|
829 |
def S2 \<equiv> "\<Union>s2 \<in> SSuffixes s. Stars -` (LV (NTIMES r n) s2)"
|
|
830 |
have "finite S1" using assms
|
|
831 |
unfolding S1_def by (simp_all add: finite_Prefixes)
|
|
832 |
moreover
|
|
833 |
with IH have "finite S2" unfolding S2_def
|
|
834 |
by (auto simp add: finite_SSuffixes inj_on_def finite_vimageI)
|
|
835 |
ultimately
|
|
836 |
have "finite ({Stars []} \<union> f ` (S1 \<times> S2))" by simp
|
|
837 |
moreover
|
|
838 |
have "LV (NTIMES r n) s \<subseteq> {Stars []} \<union> f ` (S1 \<times> S2)"
|
|
839 |
unfolding S1_def S2_def f_def
|
|
840 |
unfolding LV_def image_def prefixeq_def suffix_def
|
|
841 |
apply(auto elim: Prf_elims)
|
|
842 |
apply(erule Prf_elims)
|
|
843 |
apply(auto)
|
|
844 |
apply(case_tac vs1)
|
|
845 |
apply(auto intro: Prf.intros)
|
|
846 |
|
|
847 |
done
|
|
848 |
ultimately
|
|
849 |
show "finite (LV (STAR r) s)" by (simp add: finite_subset)
|
|
850 |
qed
|
|
851 |
*)
|
|
852 |
|
|
853 |
lemma LV_NTIMES_0:
|
|
854 |
shows "LV (NTIMES r 0) s \<subseteq> {Stars []}"
|
|
855 |
unfolding LV_def
|
|
856 |
apply(auto elim: Prf_elims)
|
|
857 |
done
|
|
858 |
|
|
859 |
lemma LV_NTIMES_1:
|
|
860 |
shows "LV (NTIMES r 1) s \<subseteq> (\<lambda>v. Stars [v]) ` (LV r s)"
|
|
861 |
unfolding LV_def
|
|
862 |
apply(auto elim!: Prf_elims)
|
|
863 |
apply(case_tac vs1)
|
|
864 |
apply(simp)
|
|
865 |
apply(case_tac vs2)
|
|
866 |
apply(simp)
|
|
867 |
apply(simp)
|
|
868 |
apply(simp)
|
|
869 |
done
|
|
870 |
|
|
871 |
lemma LV_NTIMES_2:
|
|
872 |
shows "LV (NTIMES r 2) [] \<subseteq> (\<lambda>(v1,v2). Stars [v1,v2]) ` (LV r [] \<times> LV r [])"
|
|
873 |
unfolding LV_def
|
|
874 |
apply(auto elim!: Prf_elims simp add: image_def)
|
|
875 |
apply(case_tac vs1)
|
|
876 |
apply(auto)
|
|
877 |
apply(case_tac vs2)
|
|
878 |
apply(auto)
|
|
879 |
apply(case_tac list)
|
|
880 |
apply(auto)
|
|
881 |
done
|
|
882 |
|
|
883 |
lemma LV_NTIMES_3:
|
|
884 |
shows "LV (NTIMES r (Suc n)) [] = (\<lambda>(v,vs). Stars (v#vs)) ` (LV r [] \<times> (Stars -` (LV (NTIMES r n) [])))"
|
|
885 |
unfolding LV_def
|
|
886 |
apply(auto elim!: Prf_elims simp add: image_def)
|
|
887 |
apply(case_tac vs1)
|
|
888 |
apply(auto)
|
|
889 |
apply(case_tac vs2)
|
|
890 |
apply(auto)
|
|
891 |
apply(subst append.simps(1)[symmetric])
|
|
892 |
apply(rule Prf.intros)
|
|
893 |
apply(auto)
|
|
894 |
apply(subst append.simps(1)[symmetric])
|
|
895 |
apply(rule Prf.intros)
|
|
896 |
apply(auto)
|
|
897 |
done
|
|
898 |
|
|
899 |
thm card_cartesian_product
|
|
900 |
|
|
901 |
lemma LV_empty_finite:
|
|
902 |
shows "card (LV (NTIMES r n) []) \<le> ((card (LV r [])) ^ n)"
|
|
903 |
apply(induct n arbitrary:)
|
|
904 |
using LV_NTIMES_0
|
|
905 |
apply (metis card_empty card_insert_disjoint card_mono empty_iff finite.emptyI finite.insertI nat_power_eq_Suc_0_iff)
|
|
906 |
apply(simp add: LV_NTIMES_3)
|
|
907 |
apply(subst card_image)
|
|
908 |
apply(simp add: inj_on_def)
|
|
909 |
apply(subst card_cartesian_product)
|
|
910 |
apply(subst card_vimage_inj)
|
|
911 |
apply(simp add: inj_on_def)
|
|
912 |
apply(auto simp add: LV_def elim: Prf_elims)[1]
|
|
913 |
using nat_mult_le_cancel_disj by blast
|
|
914 |
|
|
915 |
lemma LV_NTIMES_STAR:
|
|
916 |
"LV (NTIMES r n) s \<subseteq> LV (STAR r) s"
|
|
917 |
apply(auto simp add: LV_def intro: Prf.intros elim!: Prf_elims)
|
|
918 |
apply(rule Prf.intros)
|
|
919 |
oops
|
|
920 |
|
273
|
921 |
lemma LV_FROMNTIMES_STAR:
|
|
922 |
"LV (FROMNTIMES r n) s \<subseteq> LV (STAR r) s"
|
|
923 |
apply(auto simp add: LV_def intro: Prf.intros elim!: Prf_elims)
|
|
924 |
oops
|
|
925 |
|
|
926 |
lemma LV_finite:
|
|
927 |
shows "finite (LV r s)"
|
|
928 |
proof(induct r arbitrary: s)
|
|
929 |
case (ZERO s)
|
|
930 |
show "finite (LV ZERO s)" by (simp add: LV_simps)
|
|
931 |
next
|
|
932 |
case (ONE s)
|
|
933 |
show "finite (LV ONE s)" by (simp add: LV_simps)
|
|
934 |
next
|
|
935 |
case (CHAR c s)
|
|
936 |
show "finite (LV (CHAR c) s)" by (simp add: LV_simps)
|
|
937 |
next
|
|
938 |
case (ALT r1 r2 s)
|
|
939 |
then show "finite (LV (ALT r1 r2) s)" by (simp add: LV_simps)
|
|
940 |
next
|
|
941 |
case (SEQ r1 r2 s)
|
|
942 |
def f \<equiv> "\<lambda>(v1, v2). Seq v1 v2"
|
|
943 |
def S1 \<equiv> "\<Union>s' \<in> Prefixes s. LV r1 s'"
|
|
944 |
def S2 \<equiv> "\<Union>s' \<in> Suffixes s. LV r2 s'"
|
|
945 |
have IHs: "\<And>s. finite (LV r1 s)" "\<And>s. finite (LV r2 s)" by fact+
|
|
946 |
then have "finite S1" "finite S2" unfolding S1_def S2_def
|
|
947 |
by (simp_all add: finite_Prefixes finite_Suffixes)
|
|
948 |
moreover
|
|
949 |
have "LV (SEQ r1 r2) s \<subseteq> f ` (S1 \<times> S2)"
|
|
950 |
unfolding f_def S1_def S2_def
|
|
951 |
unfolding LV_def image_def prefixeq_def suffixeq_def
|
|
952 |
by (auto elim: Prf.cases)
|
|
953 |
ultimately
|
|
954 |
show "finite (LV (SEQ r1 r2) s)"
|
|
955 |
by (simp add: finite_subset)
|
|
956 |
next
|
|
957 |
case (STAR r s)
|
|
958 |
then show "finite (LV (STAR r) s)" by (simp add: LV_STAR_finite)
|
|
959 |
next
|
274
|
960 |
case (UPNTIMES r n s)
|
273
|
961 |
have "\<And>s. finite (LV r s)" by fact
|
274
|
962 |
then show "finite (LV (UPNTIMES r n) s)"
|
|
963 |
by (meson LV_STAR_finite LV_UPNTIMES_STAR rev_finite_subset)
|
|
964 |
next
|
|
965 |
case (FROMNTIMES r n s)
|
|
966 |
have "\<And>s. finite (LV r s)" by fact
|
|
967 |
then show "finite (LV (FROMNTIMES r n) s)"
|
|
968 |
|
273
|
969 |
qed
|
|
970 |
|
|
971 |
|
|
972 |
|
|
973 |
section {* Our POSIX Definition *}
|
|
974 |
|
|
975 |
inductive
|
|
976 |
Posix :: "string \<Rightarrow> rexp \<Rightarrow> val \<Rightarrow> bool" ("_ \<in> _ \<rightarrow> _" [100, 100, 100] 100)
|
|
977 |
where
|
|
978 |
Posix_ONE: "[] \<in> ONE \<rightarrow> Void"
|
|
979 |
| Posix_CHAR: "[c] \<in> (CHAR c) \<rightarrow> (Char c)"
|
|
980 |
| Posix_ALT1: "s \<in> r1 \<rightarrow> v \<Longrightarrow> s \<in> (ALT r1 r2) \<rightarrow> (Left v)"
|
|
981 |
| Posix_ALT2: "\<lbrakk>s \<in> r2 \<rightarrow> v; s \<notin> L(r1)\<rbrakk> \<Longrightarrow> s \<in> (ALT r1 r2) \<rightarrow> (Right v)"
|
|
982 |
| Posix_SEQ: "\<lbrakk>s1 \<in> r1 \<rightarrow> v1; s2 \<in> r2 \<rightarrow> v2;
|
|
983 |
\<not>(\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> (s1 @ s\<^sub>3) \<in> L r1 \<and> s\<^sub>4 \<in> L r2)\<rbrakk> \<Longrightarrow>
|
|
984 |
(s1 @ s2) \<in> (SEQ r1 r2) \<rightarrow> (Seq v1 v2)"
|
|
985 |
| Posix_STAR1: "\<lbrakk>s1 \<in> r \<rightarrow> v; s2 \<in> STAR r \<rightarrow> Stars vs; flat v \<noteq> [];
|
|
986 |
\<not>(\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> (s1 @ s\<^sub>3) \<in> L r \<and> s\<^sub>4 \<in> L (STAR r))\<rbrakk>
|
|
987 |
\<Longrightarrow> (s1 @ s2) \<in> STAR r \<rightarrow> Stars (v # vs)"
|
|
988 |
| Posix_STAR2: "[] \<in> STAR r \<rightarrow> Stars []"
|
|
989 |
|
|
990 |
inductive_cases Posix_elims:
|
|
991 |
"s \<in> ZERO \<rightarrow> v"
|
|
992 |
"s \<in> ONE \<rightarrow> v"
|
|
993 |
"s \<in> CHAR c \<rightarrow> v"
|
|
994 |
"s \<in> ALT r1 r2 \<rightarrow> v"
|
|
995 |
"s \<in> SEQ r1 r2 \<rightarrow> v"
|
|
996 |
"s \<in> STAR r \<rightarrow> v"
|
|
997 |
|
|
998 |
lemma Posix1:
|
|
999 |
assumes "s \<in> r \<rightarrow> v"
|
|
1000 |
shows "s \<in> L r" "flat v = s"
|
|
1001 |
using assms
|
|
1002 |
by (induct s r v rule: Posix.induct)
|
|
1003 |
(auto simp add: Sequ_def)
|
|
1004 |
|
|
1005 |
text {*
|
|
1006 |
Our Posix definition determines a unique value.
|
|
1007 |
*}
|
|
1008 |
|
|
1009 |
lemma Posix_determ:
|
|
1010 |
assumes "s \<in> r \<rightarrow> v1" "s \<in> r \<rightarrow> v2"
|
|
1011 |
shows "v1 = v2"
|
|
1012 |
using assms
|
|
1013 |
proof (induct s r v1 arbitrary: v2 rule: Posix.induct)
|
|
1014 |
case (Posix_ONE v2)
|
|
1015 |
have "[] \<in> ONE \<rightarrow> v2" by fact
|
|
1016 |
then show "Void = v2" by cases auto
|
|
1017 |
next
|
|
1018 |
case (Posix_CHAR c v2)
|
|
1019 |
have "[c] \<in> CHAR c \<rightarrow> v2" by fact
|
|
1020 |
then show "Char c = v2" by cases auto
|
|
1021 |
next
|
|
1022 |
case (Posix_ALT1 s r1 v r2 v2)
|
|
1023 |
have "s \<in> ALT r1 r2 \<rightarrow> v2" by fact
|
|
1024 |
moreover
|
|
1025 |
have "s \<in> r1 \<rightarrow> v" by fact
|
|
1026 |
then have "s \<in> L r1" by (simp add: Posix1)
|
|
1027 |
ultimately obtain v' where eq: "v2 = Left v'" "s \<in> r1 \<rightarrow> v'" by cases auto
|
|
1028 |
moreover
|
|
1029 |
have IH: "\<And>v2. s \<in> r1 \<rightarrow> v2 \<Longrightarrow> v = v2" by fact
|
|
1030 |
ultimately have "v = v'" by simp
|
|
1031 |
then show "Left v = v2" using eq by simp
|
|
1032 |
next
|
|
1033 |
case (Posix_ALT2 s r2 v r1 v2)
|
|
1034 |
have "s \<in> ALT r1 r2 \<rightarrow> v2" by fact
|
|
1035 |
moreover
|
|
1036 |
have "s \<notin> L r1" by fact
|
|
1037 |
ultimately obtain v' where eq: "v2 = Right v'" "s \<in> r2 \<rightarrow> v'"
|
|
1038 |
by cases (auto simp add: Posix1)
|
|
1039 |
moreover
|
|
1040 |
have IH: "\<And>v2. s \<in> r2 \<rightarrow> v2 \<Longrightarrow> v = v2" by fact
|
|
1041 |
ultimately have "v = v'" by simp
|
|
1042 |
then show "Right v = v2" using eq by simp
|
|
1043 |
next
|
|
1044 |
case (Posix_SEQ s1 r1 v1 s2 r2 v2 v')
|
|
1045 |
have "(s1 @ s2) \<in> SEQ r1 r2 \<rightarrow> v'"
|
|
1046 |
"s1 \<in> r1 \<rightarrow> v1" "s2 \<in> r2 \<rightarrow> v2"
|
|
1047 |
"\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L r1 \<and> s\<^sub>4 \<in> L r2)" by fact+
|
|
1048 |
then obtain v1' v2' where "v' = Seq v1' v2'" "s1 \<in> r1 \<rightarrow> v1'" "s2 \<in> r2 \<rightarrow> v2'"
|
|
1049 |
apply(cases) apply (auto simp add: append_eq_append_conv2)
|
|
1050 |
using Posix1(1) by fastforce+
|
|
1051 |
moreover
|
|
1052 |
have IHs: "\<And>v1'. s1 \<in> r1 \<rightarrow> v1' \<Longrightarrow> v1 = v1'"
|
|
1053 |
"\<And>v2'. s2 \<in> r2 \<rightarrow> v2' \<Longrightarrow> v2 = v2'" by fact+
|
|
1054 |
ultimately show "Seq v1 v2 = v'" by simp
|
|
1055 |
next
|
|
1056 |
case (Posix_STAR1 s1 r v s2 vs v2)
|
|
1057 |
have "(s1 @ s2) \<in> STAR r \<rightarrow> v2"
|
|
1058 |
"s1 \<in> r \<rightarrow> v" "s2 \<in> STAR r \<rightarrow> Stars vs" "flat v \<noteq> []"
|
|
1059 |
"\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L r \<and> s\<^sub>4 \<in> L (STAR r))" by fact+
|
|
1060 |
then obtain v' vs' where "v2 = Stars (v' # vs')" "s1 \<in> r \<rightarrow> v'" "s2 \<in> (STAR r) \<rightarrow> (Stars vs')"
|
|
1061 |
apply(cases) apply (auto simp add: append_eq_append_conv2)
|
|
1062 |
using Posix1(1) apply fastforce
|
|
1063 |
apply (metis Posix1(1) Posix_STAR1.hyps(6) append_Nil append_Nil2)
|
|
1064 |
using Posix1(2) by blast
|
|
1065 |
moreover
|
|
1066 |
have IHs: "\<And>v2. s1 \<in> r \<rightarrow> v2 \<Longrightarrow> v = v2"
|
|
1067 |
"\<And>v2. s2 \<in> STAR r \<rightarrow> v2 \<Longrightarrow> Stars vs = v2" by fact+
|
|
1068 |
ultimately show "Stars (v # vs) = v2" by auto
|
|
1069 |
next
|
|
1070 |
case (Posix_STAR2 r v2)
|
|
1071 |
have "[] \<in> STAR r \<rightarrow> v2" by fact
|
|
1072 |
then show "Stars [] = v2" by cases (auto simp add: Posix1)
|
|
1073 |
qed
|
|
1074 |
|
|
1075 |
|
|
1076 |
text {*
|
|
1077 |
Our POSIX value is a lexical value.
|
|
1078 |
*}
|
|
1079 |
|
|
1080 |
lemma Posix_LV:
|
|
1081 |
assumes "s \<in> r \<rightarrow> v"
|
|
1082 |
shows "v \<in> LV r s"
|
|
1083 |
using assms unfolding LV_def
|
|
1084 |
apply(induct rule: Posix.induct)
|
|
1085 |
apply(auto simp add: intro!: Prf.intros elim!: Prf_elims)
|
|
1086 |
done
|
|
1087 |
|
|
1088 |
end |