587
|
1 |
|
|
2 |
theory ClosedFormsBounds
|
|
3 |
imports "GeneralRegexBound" "ClosedForms"
|
|
4 |
begin
|
|
5 |
lemma alts_ders_lambda_shape_ders:
|
|
6 |
shows "\<forall>r \<in> set (map (\<lambda>r. rders_simp r ( s)) rs ). \<exists>r1 \<in> set rs. r = rders_simp r1 s"
|
|
7 |
by (simp add: image_iff)
|
|
8 |
|
|
9 |
lemma rlist_bound:
|
|
10 |
assumes "\<forall>r \<in> set rs. rsize r \<le> N"
|
|
11 |
shows "rsizes rs \<le> N * (length rs)"
|
|
12 |
using assms
|
|
13 |
apply(induct rs)
|
|
14 |
apply simp
|
|
15 |
by simp
|
|
16 |
|
|
17 |
lemma alts_closed_form_bounded:
|
|
18 |
assumes "\<forall>r \<in> set rs. \<forall>s. rsize (rders_simp r s) \<le> N"
|
|
19 |
shows "rsize (rders_simp (RALTS rs) s) \<le> max (Suc (N * (length rs))) (rsize (RALTS rs))"
|
|
20 |
proof (cases s)
|
|
21 |
case Nil
|
|
22 |
then show "rsize (rders_simp (RALTS rs) s) \<le> max (Suc (N * length rs)) (rsize (RALTS rs))"
|
|
23 |
by simp
|
|
24 |
next
|
|
25 |
case (Cons a s)
|
|
26 |
|
|
27 |
from assms have "\<forall>r \<in> set (map (\<lambda>r. rders_simp r (a # s)) rs ). rsize r \<le> N"
|
|
28 |
by (metis alts_ders_lambda_shape_ders)
|
|
29 |
then have a: "rsizes (map (\<lambda>r. rders_simp r (a # s)) rs ) \<le> N * (length rs)"
|
|
30 |
by (metis length_map rlist_bound)
|
|
31 |
|
|
32 |
have "rsize (rders_simp (RALTS rs) (a # s))
|
|
33 |
= rsize (rsimp (RALTS (map (\<lambda>r. rders_simp r (a # s)) rs)))"
|
|
34 |
by (metis alts_closed_form_variant list.distinct(1))
|
|
35 |
also have "... \<le> rsize (RALTS (map (\<lambda>r. rders_simp r (a # s)) rs))"
|
|
36 |
using rsimp_mono by blast
|
|
37 |
also have "... = Suc (rsizes (map (\<lambda>r. rders_simp r (a # s)) rs))"
|
|
38 |
by simp
|
|
39 |
also have "... \<le> Suc (N * (length rs))"
|
|
40 |
using a by blast
|
|
41 |
finally have "rsize (rders_simp (RALTS rs) (a # s)) \<le> max (Suc (N * length rs)) (rsize (RALTS rs))"
|
|
42 |
by auto
|
|
43 |
then show ?thesis using local.Cons by simp
|
|
44 |
qed
|
|
45 |
|
|
46 |
lemma alts_simp_ineq_unfold:
|
|
47 |
shows "rsize (rsimp (RALTS rs)) \<le> Suc (rsizes (rdistinct (rflts (map rsimp rs)) {}))"
|
|
48 |
using rsimp_aalts_smaller by auto
|
|
49 |
|
|
50 |
|
|
51 |
lemma rdistinct_mono_list:
|
|
52 |
shows "rsizes (rdistinct (x5 @ rs) rset) \<le> rsizes x5 + rsizes (rdistinct rs ((set x5 ) \<union> rset))"
|
|
53 |
apply(induct x5 arbitrary: rs rset)
|
|
54 |
apply simp
|
|
55 |
apply(case_tac "a \<in> rset")
|
|
56 |
apply simp
|
|
57 |
apply (simp add: add.assoc insert_absorb trans_le_add2)
|
|
58 |
apply simp
|
|
59 |
by (metis Un_insert_right)
|
|
60 |
|
|
61 |
|
|
62 |
lemma flts_size_reduction_alts:
|
|
63 |
assumes a: "\<And>noalts_set alts_set corr_set.
|
|
64 |
(\<forall>r\<in>noalts_set. \<forall>xs. r \<noteq> RALTS xs) \<and>
|
|
65 |
(\<forall>a\<in>alts_set. \<exists>xs. a = RALTS xs \<and> set xs \<subseteq> corr_set) \<Longrightarrow>
|
|
66 |
Suc (rsizes (rdistinct (rflts rs) (noalts_set \<union> corr_set)))
|
|
67 |
\<le> Suc (rsizes (rdistinct rs (insert RZERO (noalts_set \<union> alts_set))))"
|
|
68 |
and b: "\<forall>r\<in>noalts_set. \<forall>xs. r \<noteq> RALTS xs"
|
|
69 |
and c: "\<forall>a\<in>alts_set. \<exists>xs. a = RALTS xs \<and> set xs \<subseteq> corr_set"
|
|
70 |
and d: "a = RALTS x5"
|
|
71 |
shows "rsizes (rdistinct (rflts (a # rs)) (noalts_set \<union> corr_set))
|
|
72 |
\<le> rsizes (rdistinct (a # rs) (insert RZERO (noalts_set \<union> alts_set)))"
|
|
73 |
|
|
74 |
apply(case_tac "a \<in> alts_set")
|
|
75 |
using a b c d
|
|
76 |
apply simp
|
|
77 |
apply(subgoal_tac "set x5 \<subseteq> corr_set")
|
|
78 |
apply(subst rdistinct_concat)
|
|
79 |
apply auto[1]
|
|
80 |
apply presburger
|
|
81 |
apply fastforce
|
|
82 |
using a b c d
|
|
83 |
apply (subgoal_tac "a \<notin> noalts_set")
|
|
84 |
prefer 2
|
|
85 |
apply blast
|
|
86 |
apply simp
|
|
87 |
apply(subgoal_tac "rsizes (rdistinct (x5 @ rflts rs) (noalts_set \<union> corr_set))
|
|
88 |
\<le> rsizes x5 + rsizes (rdistinct (rflts rs) ((set x5) \<union> (noalts_set \<union> corr_set)))")
|
|
89 |
prefer 2
|
|
90 |
using rdistinct_mono_list apply presburger
|
|
91 |
apply(subgoal_tac "insert (RALTS x5) (noalts_set \<union> alts_set) = noalts_set \<union> (insert (RALTS x5) alts_set)")
|
|
92 |
apply(simp only:)
|
|
93 |
apply(subgoal_tac "rsizes x5 + rsizes (rdistinct (rflts rs) (noalts_set \<union> (corr_set \<union> (set x5)))) \<le>
|
|
94 |
rsizes x5 + rsizes (rdistinct rs (insert RZERO (noalts_set \<union> insert (RALTS x5) alts_set)))")
|
|
95 |
|
|
96 |
apply (simp add: Un_left_commute inf_sup_aci(5))
|
|
97 |
apply(subgoal_tac "rsizes (rdistinct (rflts rs) (noalts_set \<union> (corr_set \<union> set x5))) \<le>
|
|
98 |
rsizes (rdistinct rs (insert RZERO (noalts_set \<union> insert (RALTS x5) alts_set)))")
|
|
99 |
apply linarith
|
|
100 |
apply(subgoal_tac "\<forall>r \<in> insert (RALTS x5) alts_set. \<exists>xs1.( r = RALTS xs1 \<and> set xs1 \<subseteq> corr_set \<union> set x5)")
|
|
101 |
apply presburger
|
|
102 |
apply (meson insert_iff sup.cobounded2 sup.coboundedI1)
|
|
103 |
by blast
|
|
104 |
|
|
105 |
|
|
106 |
lemma flts_vs_nflts1:
|
|
107 |
assumes "\<forall>r \<in> noalts_set. \<forall>xs. r \<noteq> RALTS xs"
|
|
108 |
and "\<forall>a \<in> alts_set. (\<exists>xs. a = RALTS xs \<and> set xs \<subseteq> corr_set)"
|
|
109 |
shows "rsizes (rdistinct (rflts rs) (noalts_set \<union> corr_set))
|
|
110 |
\<le> rsizes (rdistinct rs (insert RZERO (noalts_set \<union> alts_set)))"
|
|
111 |
using assms
|
|
112 |
apply(induct rs arbitrary: noalts_set alts_set corr_set)
|
|
113 |
apply simp
|
|
114 |
apply(case_tac a)
|
|
115 |
apply(case_tac "RZERO \<in> noalts_set")
|
|
116 |
apply simp
|
|
117 |
apply(subgoal_tac "RZERO \<notin> alts_set")
|
|
118 |
apply simp
|
|
119 |
apply fastforce
|
|
120 |
apply(case_tac "RONE \<in> noalts_set")
|
|
121 |
apply simp
|
|
122 |
apply(subgoal_tac "RONE \<notin> alts_set")
|
|
123 |
prefer 2
|
|
124 |
apply fastforce
|
|
125 |
apply(case_tac "RONE \<in> corr_set")
|
|
126 |
apply(subgoal_tac "rflts (a # rs) = RONE # rflts rs")
|
|
127 |
apply(simp only:)
|
|
128 |
apply(subgoal_tac "rdistinct (RONE # rflts rs) (noalts_set \<union> corr_set) =
|
|
129 |
rdistinct (rflts rs) (noalts_set \<union> corr_set)")
|
|
130 |
apply(simp only:)
|
|
131 |
apply(subgoal_tac "rdistinct (RONE # rs) (insert RZERO (noalts_set \<union> alts_set)) =
|
|
132 |
RONE # (rdistinct rs (insert RONE (insert RZERO (noalts_set \<union> alts_set)))) ")
|
|
133 |
apply(simp only:)
|
|
134 |
apply(subgoal_tac "rdistinct (rflts rs) (noalts_set \<union> corr_set) =
|
|
135 |
rdistinct (rflts rs) (insert RONE (noalts_set \<union> corr_set))")
|
|
136 |
apply (simp only:)
|
|
137 |
apply(subgoal_tac "insert RONE (noalts_set \<union> corr_set) = (insert RONE noalts_set) \<union> corr_set")
|
|
138 |
apply(simp only:)
|
|
139 |
apply(subgoal_tac "insert RONE (insert RZERO (noalts_set \<union> alts_set)) =
|
|
140 |
insert RZERO ((insert RONE noalts_set) \<union> alts_set)")
|
|
141 |
apply(simp only:)
|
|
142 |
apply(subgoal_tac "rsizes (rdistinct rs (insert RZERO (insert RONE noalts_set \<union> alts_set)))
|
|
143 |
\<le> rsizes (RONE # rdistinct rs (insert RZERO (insert RONE noalts_set \<union> alts_set)))")
|
|
144 |
apply (smt (verit, ccfv_threshold) dual_order.trans insertE rrexp.distinct(17))
|
|
145 |
apply (metis (no_types, opaque_lifting) le_add_same_cancel2 list.simps(9) sum_list.Cons zero_le)
|
|
146 |
apply fastforce
|
|
147 |
apply fastforce
|
|
148 |
apply (metis Un_iff insert_absorb)
|
|
149 |
apply (metis UnE insertE insert_is_Un rdistinct.simps(2) rrexp.distinct(1))
|
|
150 |
apply (meson UnCI rdistinct.simps(2))
|
|
151 |
using rflts.simps(4) apply presburger
|
|
152 |
apply simp
|
|
153 |
apply(subgoal_tac "insert RONE (noalts_set \<union> corr_set) = (insert RONE noalts_set) \<union> corr_set")
|
|
154 |
apply(simp only:)
|
|
155 |
apply (metis Un_insert_left insertE rrexp.distinct(17))
|
|
156 |
apply fastforce
|
|
157 |
apply(case_tac "a \<in> noalts_set")
|
|
158 |
apply simp
|
|
159 |
apply(subgoal_tac "a \<notin> alts_set")
|
|
160 |
prefer 2
|
|
161 |
apply blast
|
|
162 |
apply(case_tac "a \<in> corr_set")
|
|
163 |
apply(subgoal_tac "noalts_set \<union> corr_set = insert a ( noalts_set \<union> corr_set)")
|
|
164 |
prefer 2
|
|
165 |
apply fastforce
|
|
166 |
apply(simp only:)
|
|
167 |
apply(subgoal_tac "rsizes (rdistinct (a # rs) (insert RZERO ((insert a noalts_set) \<union> alts_set))) \<le>
|
|
168 |
rsizes (rdistinct (a # rs) (insert RZERO (noalts_set \<union> alts_set)))")
|
|
169 |
|
|
170 |
apply(subgoal_tac "rsizes (rdistinct (rflts (a # rs)) ((insert a noalts_set) \<union> corr_set)) \<le>
|
|
171 |
rsizes (rdistinct (a # rs) (insert RZERO ((insert a noalts_set) \<union> alts_set)))")
|
|
172 |
apply fastforce
|
|
173 |
apply simp
|
|
174 |
apply(subgoal_tac "(insert a (noalts_set \<union> alts_set)) = (insert a noalts_set) \<union> alts_set")
|
|
175 |
apply(simp only:)
|
|
176 |
apply(subgoal_tac "noalts_set \<union> corr_set = (insert a noalts_set) \<union> corr_set")
|
|
177 |
apply(simp only:)
|
|
178 |
apply (metis insertE nonalt.simps(1) nonalt.simps(4))
|
|
179 |
apply blast
|
|
180 |
|
|
181 |
apply fastforce
|
|
182 |
apply force
|
|
183 |
apply simp
|
|
184 |
apply (metis Un_insert_left insertE nonalt.simps(1) nonalt.simps(4))
|
|
185 |
apply(case_tac "a \<in> noalts_set")
|
|
186 |
apply simp
|
|
187 |
apply(subgoal_tac "a \<notin> alts_set")
|
|
188 |
prefer 2
|
|
189 |
apply blast
|
|
190 |
apply(case_tac "a \<in> corr_set")
|
|
191 |
apply(subgoal_tac "noalts_set \<union> corr_set = insert a ( noalts_set \<union> corr_set)")
|
|
192 |
prefer 2
|
|
193 |
apply fastforce
|
|
194 |
apply(simp only:)
|
|
195 |
apply(subgoal_tac "rsizes (rdistinct (a # rs) (insert RZERO ((insert a noalts_set) \<union> alts_set))) \<le>
|
|
196 |
rsizes (rdistinct (a # rs) (insert RZERO (noalts_set \<union> alts_set)))")
|
|
197 |
|
|
198 |
apply(subgoal_tac "rsizes (rdistinct (rflts (a # rs)) ((insert a noalts_set) \<union> corr_set)) \<le>
|
|
199 |
rsizes (rdistinct (a # rs) (insert RZERO ((insert a noalts_set) \<union> alts_set)))")
|
|
200 |
apply fastforce
|
|
201 |
apply simp
|
|
202 |
apply(subgoal_tac "(insert a (noalts_set \<union> alts_set)) = (insert a noalts_set) \<union> alts_set")
|
|
203 |
apply(simp only:)
|
|
204 |
apply(subgoal_tac "noalts_set \<union> corr_set = (insert a noalts_set) \<union> corr_set")
|
|
205 |
apply(simp only:)
|
|
206 |
|
|
207 |
apply (metis insertE rrexp.distinct(31))
|
|
208 |
apply blast
|
|
209 |
apply fastforce
|
|
210 |
apply force
|
|
211 |
apply simp
|
|
212 |
|
|
213 |
apply (metis Un_insert_left insertE rrexp.distinct(31))
|
|
214 |
|
|
215 |
using Suc_le_mono flts_size_reduction_alts apply presburger
|
|
216 |
apply(case_tac "a \<in> noalts_set")
|
|
217 |
apply simp
|
|
218 |
apply(subgoal_tac "a \<notin> alts_set")
|
|
219 |
prefer 2
|
|
220 |
apply blast
|
|
221 |
apply(case_tac "a \<in> corr_set")
|
|
222 |
apply(subgoal_tac "noalts_set \<union> corr_set = insert a ( noalts_set \<union> corr_set)")
|
|
223 |
prefer 2
|
|
224 |
apply fastforce
|
|
225 |
apply(simp only:)
|
|
226 |
apply(subgoal_tac "rsizes (rdistinct (a # rs) (insert RZERO ((insert a noalts_set) \<union> alts_set))) \<le>
|
|
227 |
rsizes (rdistinct (a # rs) (insert RZERO (noalts_set \<union> alts_set)))")
|
|
228 |
|
|
229 |
apply(subgoal_tac "rsizes (rdistinct (rflts (a # rs)) ((insert a noalts_set) \<union> corr_set)) \<le>
|
|
230 |
rsizes (rdistinct (a # rs) (insert RZERO ((insert a noalts_set) \<union> alts_set)))")
|
|
231 |
apply fastforce
|
|
232 |
apply simp
|
|
233 |
apply(subgoal_tac "(insert a (noalts_set \<union> alts_set)) = (insert a noalts_set) \<union> alts_set")
|
|
234 |
apply(simp only:)
|
|
235 |
apply(subgoal_tac "noalts_set \<union> corr_set = (insert a noalts_set) \<union> corr_set")
|
|
236 |
apply(simp only:)
|
|
237 |
apply (metis insertE rrexp.distinct(37))
|
|
238 |
|
|
239 |
apply blast
|
|
240 |
|
|
241 |
apply fastforce
|
|
242 |
apply force
|
|
243 |
apply simp
|
|
244 |
apply (metis Un_insert_left insert_iff rrexp.distinct(37))
|
|
245 |
apply(case_tac "a \<in> noalts_set")
|
|
246 |
apply simp
|
|
247 |
apply(subgoal_tac "a \<notin> alts_set")
|
|
248 |
prefer 2
|
|
249 |
apply blast
|
|
250 |
apply(case_tac "a \<in> corr_set")
|
|
251 |
apply(subgoal_tac "noalts_set \<union> corr_set = insert a ( noalts_set \<union> corr_set)")
|
|
252 |
prefer 2
|
|
253 |
apply fastforce
|
|
254 |
apply(simp only:)
|
|
255 |
apply(subgoal_tac "rsizes (rdistinct (a # rs) (insert RZERO ((insert a noalts_set) \<union> alts_set))) \<le>
|
|
256 |
rsizes (rdistinct (a # rs) (insert RZERO (noalts_set \<union> alts_set)))")
|
|
257 |
|
|
258 |
apply(subgoal_tac "rsizes (rdistinct (rflts (a # rs)) ((insert a noalts_set) \<union> corr_set)) \<le>
|
|
259 |
rsizes (rdistinct (a # rs) (insert RZERO ((insert a noalts_set) \<union> alts_set)))")
|
|
260 |
apply fastforce
|
|
261 |
apply simp
|
|
262 |
apply(subgoal_tac "(insert a (noalts_set \<union> alts_set)) = (insert a noalts_set) \<union> alts_set")
|
|
263 |
apply(simp only:)
|
|
264 |
apply(subgoal_tac "noalts_set \<union> corr_set = (insert a noalts_set) \<union> corr_set")
|
|
265 |
apply(simp only:)
|
|
266 |
apply (metis insertE nonalt.simps(1) nonalt.simps(7))
|
|
267 |
apply blast
|
|
268 |
apply blast
|
|
269 |
apply force
|
|
270 |
apply(auto)
|
|
271 |
by (metis Un_insert_left insert_iff rrexp.distinct(39))
|
|
272 |
|
|
273 |
|
|
274 |
lemma flts_vs_nflts:
|
|
275 |
assumes "\<forall>r \<in> noalts_set. \<forall>xs. r \<noteq> RALTS xs"
|
|
276 |
and "\<forall>a \<in> alts_set. (\<exists>xs. a = RALTS xs \<and> set xs \<subseteq> corr_set)"
|
|
277 |
shows "rsizes (rdistinct (rflts rs) (noalts_set \<union> corr_set))
|
|
278 |
\<le> rsizes (rdistinct rs (insert RZERO (noalts_set \<union> alts_set)))"
|
|
279 |
by (simp add: assms flts_vs_nflts1)
|
|
280 |
|
|
281 |
lemma distinct_simp_ineq_general:
|
|
282 |
assumes "rsimp ` no_simp = has_simp" "finite no_simp"
|
|
283 |
shows "rsizes (rdistinct (map rsimp rs) has_simp) \<le> rsizes (rdistinct rs no_simp)"
|
|
284 |
using assms
|
|
285 |
apply(induct rs no_simp arbitrary: has_simp rule: rdistinct.induct)
|
|
286 |
apply simp
|
|
287 |
apply(auto)
|
|
288 |
using add_le_mono rsimp_mono by presburger
|
|
289 |
|
|
290 |
lemma larger_acc_smaller_distinct_res0:
|
|
291 |
assumes "ss \<subseteq> SS"
|
|
292 |
shows "rsizes (rdistinct rs SS) \<le> rsizes (rdistinct rs ss)"
|
|
293 |
using assms
|
|
294 |
apply(induct rs arbitrary: ss SS)
|
|
295 |
apply simp
|
|
296 |
by (metis distinct_early_app1 rdistinct_smaller)
|
|
297 |
|
|
298 |
lemma without_flts_ineq:
|
|
299 |
shows "rsizes (rdistinct (rflts rs) {}) \<le> rsizes (rdistinct rs {})"
|
|
300 |
proof -
|
|
301 |
have "rsizes (rdistinct (rflts rs) {}) \<le> rsizes (rdistinct rs (insert RZERO {}))"
|
|
302 |
by (metis empty_iff flts_vs_nflts sup_bot_left)
|
|
303 |
also have "... \<le> rsizes (rdistinct rs {})"
|
|
304 |
by (simp add: larger_acc_smaller_distinct_res0)
|
|
305 |
finally show ?thesis
|
|
306 |
by blast
|
|
307 |
qed
|
|
308 |
|
|
309 |
|
|
310 |
lemma distinct_simp_ineq:
|
|
311 |
shows "rsizes (rdistinct (map rsimp rs) {}) \<le> rsizes (rdistinct rs {})"
|
|
312 |
using distinct_simp_ineq_general by blast
|
|
313 |
|
|
314 |
|
|
315 |
lemma alts_simp_control:
|
|
316 |
shows "rsize (rsimp (RALTS rs)) \<le> Suc (rsizes (rdistinct rs {}))"
|
|
317 |
proof -
|
|
318 |
have "rsize (rsimp (RALTS rs)) \<le> Suc (rsizes (rdistinct (rflts (map rsimp rs)) {}))"
|
|
319 |
using alts_simp_ineq_unfold by auto
|
|
320 |
moreover have "\<dots> \<le> Suc (rsizes (rdistinct (map rsimp rs) {}))"
|
|
321 |
using without_flts_ineq by blast
|
|
322 |
ultimately show "rsize (rsimp (RALTS rs)) \<le> Suc (rsizes (rdistinct rs {}))"
|
|
323 |
by (meson Suc_le_mono distinct_simp_ineq le_trans)
|
|
324 |
qed
|
|
325 |
|
|
326 |
|
|
327 |
lemma larger_acc_smaller_distinct_res:
|
|
328 |
shows "rsizes (rdistinct rs (insert a ss)) \<le> rsizes (rdistinct rs ss)"
|
|
329 |
by (simp add: larger_acc_smaller_distinct_res0 subset_insertI)
|
|
330 |
|
|
331 |
lemma triangle_inequality_distinct:
|
|
332 |
shows "rsizes (rdistinct (a # rs) ss) \<le> rsize a + rsizes (rdistinct rs ss)"
|
|
333 |
apply(case_tac "a \<in> ss")
|
|
334 |
apply simp
|
|
335 |
by (simp add: larger_acc_smaller_distinct_res)
|
|
336 |
|
|
337 |
|
|
338 |
lemma distinct_list_size_len_bounded:
|
|
339 |
assumes "\<forall>r \<in> set rs. rsize r \<le> N" "length rs \<le> lrs"
|
|
340 |
shows "rsizes rs \<le> lrs * N "
|
|
341 |
using assms
|
|
342 |
by (metis rlist_bound dual_order.trans mult.commute mult_le_mono1)
|
|
343 |
|
|
344 |
|
|
345 |
|
|
346 |
lemma rdistinct_same_set:
|
|
347 |
shows "r \<in> set rs \<longleftrightarrow> r \<in> set (rdistinct rs {})"
|
|
348 |
apply(induct rs)
|
|
349 |
apply simp
|
|
350 |
by (metis rdistinct_set_equality)
|
|
351 |
|
|
352 |
(* distinct_list_rexp_up_to_certain_size_bouded_by_set_enumerating_up_to_that_size *)
|
|
353 |
lemma distinct_list_rexp_upto:
|
|
354 |
assumes "\<forall>r\<in> set rs. (rsize r) \<le> N"
|
|
355 |
shows "rsizes (rdistinct rs {}) \<le> (card (sizeNregex N)) * N"
|
|
356 |
|
|
357 |
apply(subgoal_tac "distinct (rdistinct rs {})")
|
|
358 |
prefer 2
|
|
359 |
using rdistinct_does_the_job apply blast
|
|
360 |
apply(subgoal_tac "length (rdistinct rs {}) \<le> card (sizeNregex N)")
|
|
361 |
apply(rule distinct_list_size_len_bounded)
|
|
362 |
using assms
|
|
363 |
apply (meson rdistinct_same_set)
|
|
364 |
apply blast
|
|
365 |
apply(subgoal_tac "\<forall>r \<in> set (rdistinct rs {}). rsize r \<le> N")
|
|
366 |
prefer 2
|
|
367 |
using assms
|
|
368 |
apply (meson rdistinct_same_set)
|
|
369 |
apply(subgoal_tac "length (rdistinct rs {}) = card (set (rdistinct rs {}))")
|
|
370 |
prefer 2
|
|
371 |
apply (simp add: distinct_card)
|
|
372 |
apply(simp)
|
|
373 |
by (metis card_mono finite_size_n mem_Collect_eq sizeNregex_def subsetI)
|
|
374 |
|
|
375 |
|
|
376 |
lemma star_control_bounded:
|
|
377 |
assumes "\<forall>s. rsize (rders_simp r s) \<le> N"
|
|
378 |
shows "rsizes (rdistinct (map (\<lambda>s1. RSEQ (rders_simp r s1) (RSTAR r)) (star_updates s r [[c]])) {})
|
|
379 |
\<le> (card (sizeNregex (Suc (N + rsize (RSTAR r))))) * (Suc (N + rsize (RSTAR r)))"
|
|
380 |
by (smt (verit) add_Suc_shift add_mono_thms_linordered_semiring(3) assms distinct_list_rexp_upto image_iff list.set_map plus_nat.simps(2) rsize.simps(5))
|
|
381 |
|
|
382 |
|
|
383 |
lemma star_closed_form_bounded:
|
|
384 |
assumes "\<forall>s. rsize (rders_simp r s) \<le> N"
|
|
385 |
shows "rsize (rders_simp (RSTAR r) s) \<le>
|
|
386 |
max ((Suc (card (sizeNregex (Suc (N + rsize (RSTAR r))))) * (Suc (N + rsize (RSTAR r))))) (rsize (RSTAR r))"
|
|
387 |
proof(cases s)
|
|
388 |
case Nil
|
|
389 |
then show "rsize (rders_simp (RSTAR r) s)
|
|
390 |
\<le> max (Suc (card (sizeNregex (Suc (N + rsize (RSTAR r))))) * Suc (N + rsize (RSTAR r))) (rsize (RSTAR r))"
|
|
391 |
by simp
|
|
392 |
next
|
|
393 |
case (Cons a list)
|
|
394 |
then have "rsize (rders_simp (RSTAR r) s) =
|
|
395 |
rsize (rsimp (RALTS ((map (\<lambda>s1. RSEQ (rders_simp r s1) (RSTAR r)) (star_updates list r [[a]])))))"
|
|
396 |
using star_closed_form by fastforce
|
|
397 |
also have "... \<le> Suc (rsizes (rdistinct (map (\<lambda>s1. RSEQ (rders_simp r s1) (RSTAR r)) (star_updates list r [[a]])) {}))"
|
|
398 |
using alts_simp_control by blast
|
|
399 |
also have "... \<le> Suc (card (sizeNregex (Suc (N + rsize (RSTAR r))))) * (Suc (N + rsize (RSTAR r)))"
|
|
400 |
using star_control_bounded[OF assms] by (metis add_mono le_add1 mult_Suc plus_1_eq_Suc)
|
|
401 |
also have "... \<le> max (Suc (card (sizeNregex (Suc (N + rsize (RSTAR r))))) * Suc (N + rsize (RSTAR r))) (rsize (RSTAR r))"
|
|
402 |
by simp
|
|
403 |
finally show ?thesis by simp
|
|
404 |
qed
|
|
405 |
|
|
406 |
|
|
407 |
thm ntimes_closed_form
|
|
408 |
|
|
409 |
thm rsize.simps
|
|
410 |
|
|
411 |
lemma nupdates_snoc:
|
|
412 |
shows " (nupdates (xs @ [x]) r optlist) = nupdate x r (nupdates xs r optlist)"
|
|
413 |
by (simp add: nupdates_append)
|
|
414 |
|
|
415 |
lemma nupdate_elems:
|
|
416 |
shows "\<forall>opt \<in> set (nupdate c r optlist). opt = None \<or> (\<exists>s n. opt = Some (s, n))"
|
|
417 |
using nonempty_string.cases by auto
|
|
418 |
|
|
419 |
lemma nupdates_elems:
|
|
420 |
shows "\<forall>opt \<in> set (nupdates s r optlist). opt = None \<or> (\<exists>s n. opt = Some (s, n))"
|
|
421 |
by (meson nonempty_string.cases)
|
|
422 |
|
|
423 |
|
|
424 |
lemma opterm_optlist_result_shape:
|
|
425 |
shows "\<forall>r' \<in> set (map (optermsimp r) optlist). r' = RZERO \<or> (\<exists>s m. r' = RSEQ (rders_simp r s) (RNTIMES r m))"
|
|
426 |
apply(induct optlist)
|
|
427 |
apply simp
|
|
428 |
apply(case_tac a)
|
|
429 |
apply simp+
|
|
430 |
by fastforce
|
|
431 |
|
|
432 |
|
|
433 |
lemma opterm_optlist_result_shape2:
|
|
434 |
shows "\<And>optlist. \<forall>r' \<in> set (map (optermsimp r) optlist). r' = RZERO \<or> (\<exists>s m. r' = RSEQ (rders_simp r s) (RNTIMES r m))"
|
|
435 |
using opterm_optlist_result_shape by presburger
|
|
436 |
|
|
437 |
|
|
438 |
lemma nupdate_n_leq_n:
|
|
439 |
shows "\<forall>r \<in> set (nupdate c' r [Some ([c], n)]). r = None \<or>( \<exists>s' m. r = Some (s', m) \<and> m \<le> n)"
|
|
440 |
apply(case_tac n)
|
|
441 |
apply simp
|
|
442 |
apply simp
|
|
443 |
done
|
|
444 |
(*
|
|
445 |
lemma nupdate_induct_leqn:
|
|
446 |
shows "\<lbrakk>\<forall>opt \<in> set optlist. opt = None \<or> (\<exists>s' m. opt = Some(s', m) \<and> m \<le> n) \<rbrakk> \<Longrightarrow>
|
|
447 |
\<forall>opt \<in> set (nupdate c' r optlist). opt = None \<or> (\<exists>s' m. opt = Some (s', m) \<and> m \<le> n)"
|
|
448 |
apply (case_tac optlist)
|
|
449 |
apply simp
|
|
450 |
apply(case_tac a)
|
|
451 |
apply simp
|
|
452 |
sledgehammer
|
|
453 |
*)
|
|
454 |
|
|
455 |
|
|
456 |
lemma nupdates_n_leq_n:
|
|
457 |
shows "\<forall>r \<in> set (nupdates s r [Some ([c], n)]). r = None \<or>( \<exists>s' m. r = Some (s', m) \<and> m \<le> n)"
|
|
458 |
apply(induct s rule: rev_induct)
|
|
459 |
apply simp
|
|
460 |
apply(subst nupdates_append)
|
|
461 |
by (metis nupdates_elems_leqn nupdates_snoc)
|
|
462 |
|
|
463 |
|
|
464 |
|
|
465 |
lemma ntimes_closed_form_list_elem_shape:
|
|
466 |
shows "\<forall>r' \<in> set (map (optermsimp r) (nupdates s r [Some ([c], n)])).
|
|
467 |
r' = RZERO \<or> (\<exists>s' m. r' = RSEQ (rders_simp r s') (RNTIMES r m) \<and> m \<le> n)"
|
|
468 |
apply(insert opterm_optlist_result_shape2)
|
|
469 |
apply(case_tac s)
|
|
470 |
apply(auto)
|
|
471 |
apply (metis rders_simp_one_char)
|
|
472 |
by (metis case_prod_conv nupdates.simps(2) nupdates_n_leq_n option.simps(4) option.simps(5))
|
|
473 |
|
|
474 |
|
|
475 |
lemma ntimes_trivial1:
|
|
476 |
shows "rsize RZERO \<le> N + rsize (RNTIMES r n)"
|
|
477 |
by simp
|
|
478 |
|
|
479 |
|
|
480 |
lemma ntimes_trivial20:
|
|
481 |
shows "m \<le> n \<Longrightarrow> rsize (RNTIMES r m) \<le> rsize (RNTIMES r n)"
|
|
482 |
by simp
|
|
483 |
|
|
484 |
|
|
485 |
lemma ntimes_trivial2:
|
|
486 |
assumes "\<forall>s. rsize (rders_simp r s) \<le> N"
|
|
487 |
shows " r' = RSEQ (rders_simp r s1) (RNTIMES r m) \<and> m \<le> n
|
|
488 |
\<Longrightarrow> rsize r' \<le> Suc (N + rsize (RNTIMES r n))"
|
|
489 |
apply simp
|
|
490 |
by (simp add: add_mono_thms_linordered_semiring(1) assms)
|
|
491 |
|
|
492 |
lemma ntimes_closed_form_list_elem_bounded:
|
|
493 |
assumes "\<forall>s. rsize (rders_simp r s) \<le> N"
|
|
494 |
shows "\<forall>r' \<in> set (map (optermsimp r) (nupdates s r [Some ([c], n)])). rsize r' \<le> Suc (N + rsize (RNTIMES r n))"
|
|
495 |
apply(rule ballI)
|
|
496 |
apply(subgoal_tac "r' = RZERO \<or> (\<exists>s' m. r' = RSEQ (rders_simp r s') (RNTIMES r m) \<and> m \<le> n)")
|
|
497 |
prefer 2
|
|
498 |
using ntimes_closed_form_list_elem_shape apply blast
|
|
499 |
apply(case_tac "r' = RZERO")
|
|
500 |
using le_SucI ntimes_trivial1 apply presburger
|
|
501 |
apply(subgoal_tac "\<exists>s1 m. r' = RSEQ (rders_simp r s1) (RNTIMES r m) \<and> m \<le> n")
|
|
502 |
apply(erule exE)+
|
|
503 |
using assms ntimes_trivial2 apply presburger
|
|
504 |
by blast
|
|
505 |
|
|
506 |
|
|
507 |
lemma P_holds_after_distinct:
|
|
508 |
assumes "\<forall>r \<in> set rs. P r"
|
|
509 |
shows "\<forall>r \<in> set (rdistinct rs rset). P r"
|
|
510 |
by (simp add: assms rdistinct_set_equality1)
|
|
511 |
|
|
512 |
|
|
513 |
|
|
514 |
lemma ntimes_control_bounded:
|
|
515 |
assumes "\<forall>s. rsize (rders_simp r s) \<le> N"
|
|
516 |
shows "rsizes (rdistinct (map (optermsimp r) (nupdates s r [Some ([c], n)])) {})
|
|
517 |
\<le> (card (sizeNregex (Suc (N + rsize (RNTIMES r n))))) * (Suc (N + rsize (RNTIMES r n)))"
|
|
518 |
apply(subgoal_tac "\<forall>r' \<in> set (rdistinct (map (optermsimp r) (nupdates s r [Some ([c], n)])) {}).
|
|
519 |
rsize r' \<le> Suc (N + rsize (RNTIMES r n))")
|
|
520 |
apply (meson distinct_list_rexp_upto rdistinct_same_set)
|
|
521 |
apply(subgoal_tac "\<forall>r' \<in> set (map (optermsimp r) (nupdates s r [Some ([c], n)])). rsize r' \<le> Suc (N + rsize (RNTIMES r n))")
|
|
522 |
apply (simp add: rdistinct_set_equality)
|
|
523 |
by (metis assms nat_le_linear not_less_eq_eq ntimes_closed_form_list_elem_bounded)
|
|
524 |
|
|
525 |
|
|
526 |
|
|
527 |
lemma ntimes_closed_form_bounded0:
|
|
528 |
assumes "\<forall>s. rsize (rders_simp r s) \<le> N"
|
|
529 |
shows " (rders_simp (RNTIMES r 0) s) = RZERO \<or> (rders_simp (RNTIMES r 0) s) = RNTIMES r 0
|
|
530 |
"
|
|
531 |
apply(induct s)
|
|
532 |
apply simp
|
|
533 |
by (metis always0 list.simps(3) rder.simps(7) rders.simps(2) rders_simp_same_simpders rsimp.simps(3))
|
|
534 |
|
|
535 |
lemma ntimes_closed_form_bounded1:
|
|
536 |
assumes "\<forall>s. rsize (rders_simp r s) \<le> N"
|
|
537 |
shows " rsize (rders_simp (RNTIMES r 0) s) \<le> max (rsize RZERO) (rsize (RNTIMES r 0))"
|
|
538 |
|
|
539 |
by (metis assms max.cobounded1 max.cobounded2 ntimes_closed_form_bounded0)
|
|
540 |
|
|
541 |
lemma self_smaller_than_bound:
|
|
542 |
shows "\<forall>s. rsize (rders_simp r s) \<le> N \<Longrightarrow> rsize r \<le> N"
|
|
543 |
apply(drule_tac x = "[]" in spec)
|
|
544 |
apply simp
|
|
545 |
done
|
|
546 |
|
|
547 |
lemma ntimes_closed_form_bounded_nil_aux:
|
|
548 |
shows "max (rsize RZERO) (rsize (RNTIMES r 0)) = 1 + rsize r"
|
|
549 |
by auto
|
|
550 |
|
|
551 |
lemma ntimes_closed_form_bounded_nil:
|
|
552 |
assumes "\<forall>s. rsize (rders_simp r s) \<le> N"
|
|
553 |
shows " rsize (rders_simp (RNTIMES r 0) s) \<le> 1 + rsize r"
|
|
554 |
using assms ntimes_closed_form_bounded1 by auto
|
|
555 |
|
|
556 |
lemma ntimes_ineq1:
|
|
557 |
shows "(rsize (RNTIMES r n)) \<ge> 1 + rsize r"
|
|
558 |
by simp
|
|
559 |
|
|
560 |
lemma ntimes_ineq2:
|
|
561 |
shows "1 + rsize r \<le>
|
|
562 |
max ((Suc (card (sizeNregex (Suc (N + rsize (RNTIMES r n))))) * (Suc (N + rsize (RNTIMES r n))))) (rsize (RNTIMES r n))"
|
|
563 |
by (meson le_max_iff_disj ntimes_ineq1)
|
|
564 |
|
|
565 |
lemma ntimes_closed_form_bounded:
|
|
566 |
assumes "\<forall>s. rsize (rders_simp r s) \<le> N"
|
|
567 |
shows "rsize (rders_simp (RNTIMES r (Suc n)) s) \<le>
|
|
568 |
max ((Suc (card (sizeNregex (Suc (N + rsize (RNTIMES r n))))) * (Suc (N + rsize (RNTIMES r n))))) (rsize (RNTIMES r n))"
|
|
569 |
proof(cases s)
|
|
570 |
case Nil
|
|
571 |
then show "rsize (rders_simp (RNTIMES r (Suc n)) s)
|
|
572 |
\<le> max (Suc (card (sizeNregex (Suc (N + rsize (RNTIMES r n))))) * Suc (N + rsize (RNTIMES r n))) (rsize (RNTIMES r n))"
|
|
573 |
by simp
|
|
574 |
next
|
|
575 |
case (Cons a list)
|
|
576 |
|
|
577 |
then have "rsize (rders_simp (RNTIMES r (Suc n)) s) =
|
|
578 |
rsize (rsimp (RALTS ((map (optermsimp r) (nupdates list r [Some ([a], n)])))))"
|
|
579 |
using ntimes_closed_form by fastforce
|
|
580 |
also have "... \<le> Suc (rsizes (rdistinct ((map (optermsimp r) (nupdates list r [Some ([a], n)]))) {}))"
|
|
581 |
using alts_simp_control by blast
|
|
582 |
also have "... \<le> Suc (card (sizeNregex (Suc (N + rsize (RNTIMES r n))))) * (Suc (N + rsize (RNTIMES r n)))"
|
|
583 |
using ntimes_control_bounded[OF assms]
|
|
584 |
by (metis add_mono le_add1 mult_Suc plus_1_eq_Suc)
|
|
585 |
also have "... \<le> max (Suc (card (sizeNregex (Suc (N + rsize (RNTIMES r n))))) * Suc (N + rsize (RNTIMES r n))) (rsize (RNTIMES r n))"
|
|
586 |
by simp
|
|
587 |
finally show ?thesis by simp
|
|
588 |
qed
|
|
589 |
|
|
590 |
|
|
591 |
lemma ntimes_closed_form_boundedA:
|
|
592 |
assumes "\<forall>s. rsize (rders_simp r s) \<le> N"
|
|
593 |
shows "\<exists>N'. \<forall>s. rsize (rders_simp (RNTIMES r n) s) \<le> N'"
|
|
594 |
apply(case_tac n)
|
|
595 |
using assms ntimes_closed_form_bounded_nil apply blast
|
|
596 |
using assms ntimes_closed_form_bounded by blast
|
|
597 |
|
|
598 |
|
|
599 |
lemma star_closed_form_nonempty_bounded:
|
|
600 |
assumes "\<forall>s. rsize (rders_simp r s) \<le> N" and "s \<noteq> []"
|
|
601 |
shows "rsize (rders_simp (RSTAR r) s) \<le>
|
|
602 |
((Suc (card (sizeNregex (Suc (N + rsize (RSTAR r))))) * (Suc (N + rsize (RSTAR r))))) "
|
|
603 |
proof(cases s)
|
|
604 |
case Nil
|
|
605 |
then show ?thesis
|
|
606 |
using local.Nil by fastforce
|
|
607 |
next
|
|
608 |
case (Cons a list)
|
|
609 |
then have "rsize (rders_simp (RSTAR r) s) =
|
|
610 |
rsize (rsimp (RALTS ((map (\<lambda>s1. RSEQ (rders_simp r s1) (RSTAR r)) (star_updates list r [[a]])))))"
|
|
611 |
using star_closed_form by fastforce
|
|
612 |
also have "... \<le> Suc (rsizes (rdistinct (map (\<lambda>s1. RSEQ (rders_simp r s1) (RSTAR r)) (star_updates list r [[a]])) {}))"
|
|
613 |
using alts_simp_control by blast
|
|
614 |
also have "... \<le> Suc (card (sizeNregex (Suc (N + rsize (RSTAR r))))) * (Suc (N + rsize (RSTAR r)))"
|
|
615 |
by (smt (z3) add_mono_thms_linordered_semiring(1) assms(1) le_add1 map_eq_conv mult_Suc plus_1_eq_Suc star_control_bounded)
|
|
616 |
also have "... \<le> max (Suc (card (sizeNregex (Suc (N + rsize (RSTAR r))))) * Suc (N + rsize (RSTAR r))) (rsize (RSTAR r))"
|
|
617 |
by simp
|
|
618 |
finally show ?thesis by simp
|
|
619 |
qed
|
|
620 |
|
|
621 |
|
|
622 |
|
|
623 |
lemma seq_estimate_bounded:
|
|
624 |
assumes "\<forall>s. rsize (rders_simp r1 s) \<le> N1"
|
|
625 |
and "\<forall>s. rsize (rders_simp r2 s) \<le> N2"
|
|
626 |
shows
|
|
627 |
"rsizes (rdistinct (RSEQ (rders_simp r1 s) r2 # map (rders_simp r2) (vsuf s r1)) {})
|
|
628 |
\<le> (Suc (N1 + (rsize r2)) + (N2 * card (sizeNregex N2)))"
|
|
629 |
proof -
|
|
630 |
have a: "rsizes (rdistinct (map (rders_simp r2) (vsuf s r1)) {}) \<le> N2 * card (sizeNregex N2)"
|
|
631 |
by (metis assms(2) distinct_list_rexp_upto ex_map_conv mult.commute)
|
|
632 |
|
|
633 |
have "rsizes (rdistinct (RSEQ (rders_simp r1 s) r2 # map (rders_simp r2) (vsuf s r1)) {}) \<le>
|
|
634 |
rsize (RSEQ (rders_simp r1 s) r2) + rsizes (rdistinct (map (rders_simp r2) (vsuf s r1)) {})"
|
|
635 |
using triangle_inequality_distinct by blast
|
|
636 |
also have "... \<le> rsize (RSEQ (rders_simp r1 s) r2) + N2 * card (sizeNregex N2)"
|
|
637 |
by (simp add: a)
|
|
638 |
also have "... \<le> Suc (N1 + (rsize r2) + N2 * card (sizeNregex N2))"
|
|
639 |
by (simp add: assms(1))
|
|
640 |
finally show ?thesis
|
|
641 |
by force
|
|
642 |
qed
|
|
643 |
|
|
644 |
|
|
645 |
lemma seq_closed_form_bounded2:
|
|
646 |
assumes "\<forall>s. rsize (rders_simp r1 s) \<le> N1"
|
|
647 |
and "\<forall>s. rsize (rders_simp r2 s) \<le> N2"
|
|
648 |
shows "rsize (rders_simp (RSEQ r1 r2) s)
|
|
649 |
\<le> max (2 + N1 + (rsize r2) + (N2 * card (sizeNregex N2))) (rsize (RSEQ r1 r2))"
|
|
650 |
proof(cases s)
|
|
651 |
case Nil
|
|
652 |
then show "rsize (rders_simp (RSEQ r1 r2) s)
|
|
653 |
\<le> max (2 + N1 + (rsize r2) + (N2 * card (sizeNregex N2))) (rsize (RSEQ r1 r2))"
|
|
654 |
by simp
|
|
655 |
next
|
|
656 |
case (Cons a list)
|
|
657 |
then have "rsize (rders_simp (RSEQ r1 r2) s) =
|
|
658 |
rsize (rsimp (RALTS ((RSEQ (rders_simp r1 s) r2) # (map (rders_simp r2) (vsuf s r1)))))"
|
|
659 |
using seq_closed_form_variant by (metis list.distinct(1))
|
|
660 |
also have "... \<le> Suc (rsizes (rdistinct (RSEQ (rders_simp r1 s) r2 # map (rders_simp r2) (vsuf s r1)) {}))"
|
|
661 |
using alts_simp_control by blast
|
|
662 |
also have "... \<le> 2 + N1 + (rsize r2) + (N2 * card (sizeNregex N2))"
|
|
663 |
using seq_estimate_bounded[OF assms] by auto
|
|
664 |
ultimately show "rsize (rders_simp (RSEQ r1 r2) s)
|
|
665 |
\<le> max (2 + N1 + (rsize r2) + N2 * card (sizeNregex N2)) (rsize (RSEQ r1 r2))"
|
|
666 |
by auto
|
|
667 |
qed
|
|
668 |
|
|
669 |
lemma rders_simp_bounded:
|
|
670 |
shows "\<exists>N. \<forall>s. rsize (rders_simp r s) \<le> N"
|
|
671 |
apply(induct r)
|
|
672 |
apply(rule_tac x = "Suc 0 " in exI)
|
|
673 |
using three_easy_cases0 apply force
|
|
674 |
using three_easy_cases1 apply blast
|
|
675 |
using three_easy_casesC apply blast
|
|
676 |
apply(erule exE)+
|
|
677 |
apply(rule exI)
|
|
678 |
apply(rule allI)
|
|
679 |
apply(rule seq_closed_form_bounded2)
|
|
680 |
apply(assumption)
|
|
681 |
apply(assumption)
|
|
682 |
apply (metis alts_closed_form_bounded size_list_estimation')
|
|
683 |
using star_closed_form_bounded apply blast
|
|
684 |
using ntimes_closed_form_boundedA by blast
|
|
685 |
|
|
686 |
|
|
687 |
unused_thms
|
|
688 |
export_code rders_simp rsimp rder in Scala module_name Example
|
|
689 |
|
|
690 |
|
|
691 |
end
|