--- a/CookBook/FirstSteps.thy Wed Mar 04 13:15:29 2009 +0000
+++ b/CookBook/FirstSteps.thy Wed Mar 04 13:50:47 2009 +0000
@@ -154,15 +154,26 @@
text {*
The easiest way to get the string of a theorem is to transform it
- into a @{ML_type cterm} using the function @{ML crep_thm}.
+ into a @{ML_type cterm} using the function @{ML crep_thm}. Theorems
+ also include schematic variables, such as @{text "?P"}, @{text "?Q"}
+ and so on. In order to improve the readability of theorems we convert
+ these schematic variables into free variables using the
+ function @{ML Variable.import_thms}.
*}
-ML{*fun str_of_thm ctxt thm =
- let
- val {prop, ...} = crep_thm thm
- in
- str_of_cterm ctxt prop
- end*}
+ML{*fun no_vars ctxt thm =
+let
+ val ((_, [thm']), _) = Variable.import_thms true [thm] ctxt
+in
+ thm'
+end
+
+fun str_of_thm ctxt thm =
+let
+ val {prop, ...} = crep_thm (no_vars ctxt thm)
+in
+ str_of_cterm ctxt prop
+end*}
text {*
Again the function @{ML commas} helps with printing more than one theorem.
@@ -171,7 +182,6 @@
ML{*fun str_of_thms ctxt thms =
commas (map (str_of_thm ctxt) thms)*}
-
section {* Combinators\label{sec:combinators} *}
text {*
--- a/CookBook/Solutions.thy Wed Mar 04 13:15:29 2009 +0000
+++ b/CookBook/Solutions.thy Wed Mar 04 13:50:47 2009 +0000
@@ -1,6 +1,5 @@
theory Solutions
imports Base
-uses "infix_conv.ML"
begin
chapter {* Solutions to Most Exercises\label{ch:solutions} *}
--- a/CookBook/Tactical.thy Wed Mar 04 13:15:29 2009 +0000
+++ b/CookBook/Tactical.thy Wed Mar 04 13:50:47 2009 +0000
@@ -1,6 +1,5 @@
theory Tactical
imports Base FirstSteps
-uses "infix_conv.ML"
begin
chapter {* Tactical Reasoning\label{chp:tactical} *}
@@ -479,21 +478,10 @@
takes an additional number as argument that makes explicit which premise
should be instantiated.
- To improve readability of the theorems we produce below, we shall use
- the following function
-*}
-
-ML{*fun no_vars ctxt thm =
-let
- val ((_, [thm']), _) = Variable.import_thms true [thm] ctxt
-in
- thm'
-end*}
-
-text {*
- that transform the schematic variables of a theorem into free variables.
- Using this function for the first @{ML RS}-expression above would produce
- the more readable result:
+ To improve readability of the theorems we produce below, we shall use the
+ function @{ML no_vars} from Section~\ref{sec:printing}, which transforms
+ schematic variables into free ones. Using this function for the first @{ML
+ RS}-expression above produces the more readable result:
@{ML_response_fake [display,gray]
"no_vars @{context} (@{thm disjI1} RS @{thm conjI})" "\<lbrakk>P; Q\<rbrakk> \<Longrightarrow> (P \<or> Qa) \<and> Q"}
@@ -1018,7 +1006,7 @@
*}
-section {* Simplifier Tactics (TBD) *}
+section {* Simplifier Tactics *}
text {*
A lot of convenience in the reasoning with Isabelle derives from its
@@ -1188,9 +1176,11 @@
@{ML_response_fake [display,gray]
"print_parts @{context} ss1"
"Simplification rules:
- ??.unknown: ?A1 - ?B1 \<inter> ?C1 \<equiv> ?A1 - ?B1 \<union> (?A1 - ?C1)
+ ??.unknown: A - B \<inter> C \<equiv> A - B \<union> (A - C)
Congruences rules:"}
+ (FIXME: Why does it print out ??.unknown)
+
Adding the congruence rule @{thm [source] UN_cong}
*}
@@ -1202,10 +1192,9 @@
@{ML_response_fake [display,gray]
"print_parts @{context} ss2"
"Simplification rules:
- ??.unknown: ?A1 - ?B1 \<inter> ?C1 \<equiv> ?A1 - ?B1 \<union> (?A1 - ?C1)
+ ??.unknown: A - B \<inter> C \<equiv> A - B \<union> (A - C)
Congruences rules:
- UNION: \<lbrakk>?A1 = ?B1; \<And>x. x \<in> ?B1 \<Longrightarrow> ?C1 x = ?D1 x\<rbrakk> \<Longrightarrow>
- \<Union>x\<in>?A1. ?C1 x \<equiv> \<Union>x\<in>?B1. ?D1 x"}
+ UNION: \<lbrakk>A = B; \<And>x. x \<in> B \<Longrightarrow> C x = D x\<rbrakk> \<Longrightarrow> \<Union>x\<in>A. C x \<equiv> \<Union>x\<in>B. D x"}
Notice that we had to add these lemmas as meta-equations. The @{ML empty_ss}
expects this form of the simplification and congruence rules. However, even
@@ -1240,14 +1229,14 @@
@{ML_response_fake [display,gray]
"print_parts @{context} HOL_ss"
"Simplification rules:
- Pure.triv_forall_equality: (\<And>x. PROP ?V) \<equiv> PROP ?V
- HOL.the_eq_trivial: THE x. x = ?y \<equiv> ?y
- HOL.the_sym_eq_trivial: THE y. ?y = y \<equiv> ?y
+ Pure.triv_forall_equality: (\<And>x. PROP V) \<equiv> PROP V
+ HOL.the_eq_trivial: THE x. x = y \<equiv> y
+ HOL.the_sym_eq_trivial: THE ya. y = ya \<equiv> y
\<dots>
Congruences rules:
HOL.simp_implies: \<dots>
- \<Longrightarrow> (PROP ?P =simp=> PROP ?Q) \<equiv> (PROP ?P' =simp=> PROP ?Q')
- op -->: \<lbrakk>?P \<equiv> ?P'; ?P' \<Longrightarrow> ?Q \<equiv> ?Q'\<rbrakk> \<Longrightarrow> ?P \<longrightarrow> ?Q \<equiv> ?P' \<longrightarrow> ?Q'"}
+ \<Longrightarrow> (PROP P =simp=> PROP Q) \<equiv> (PROP P' =simp=> PROP Q')
+ op -->: \<lbrakk>P \<equiv> P'; P' \<Longrightarrow> Q \<equiv> Q'\<rbrakk> \<Longrightarrow> P \<longrightarrow> Q \<equiv> P' \<longrightarrow> Q'"}
The main point of these simpsets is that they are small enough to
--- a/CookBook/infix_conv.ML Wed Mar 04 13:15:29 2009 +0000
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,9 +0,0 @@
-signature INFIX_CONV =
-sig
- val then_conv : Thm.conv * Thm.conv -> Thm.conv
- val else_conv : Thm.conv * Thm.conv -> Thm.conv
-end
-
-structure InfixConv : INFIX_CONV = Conv
-
-open InfixConv
Binary file cookbook.pdf has changed