
The Isabelle Programmer’s Cookbook
(fragment)

with contributions by:

Alexander Krauss
Jeremy Dawson
Stefan Berghofer

September 9, 2008

Contents

1 Introduction 2

1.1 Intended Audience and Prior Knowledge 2

1.2 Existing Documentation . 2

2 First Steps 4

2.1 Antiquotations . 4

2.2 Terms . 5

2.3 Type checking . 6

2.4 Theorems . 7

2.5 Tactical reasoning . 8

2.6 Case Study: Relation Composition 9

2.7 A tactic . 10

3 Parsing 16

3.1 Parsing Isar input . 16

3.2 The Scan structure . 17

3.3 The OuterLex structure . 20

3.4 The OuterParse structure . 20

3.5 The SpecParse structure . 22

3.6 The Args structure . 23

3.7 Attributes, and the Attrib structure 25

3.8 Methods, and the Method structure 27

4 Recipes 29

1

Chapter 1

Introduction

The purpose of this cookbook is to guide the reader through the first steps in
Isabelle programming, and to provide recipes for solving common problems.

1.1 Intended Audience and Prior Knowledge

This cookbook targets an audience who already knows how to use Isabelle
for writing theories and proofs. It is also assumed that the reader is familiar
with the Standard ML programming language, in which most of Isabelle is
implemented. If you are unfamiliar with any of these two subjects, you
should first work through the Isabelle/HOL tutorial [1] and Paulson’s book
on Standard ML [2].

1.2 Existing Documentation

The following documents about ML-coding for Isabelle already exist (they
are included in the Isabelle distribution):

The Implementation Manual describes Isabelle from a programmer’s per-
spective, documenting both the underlying concepts and the concrete
interfaces.

The Isabelle Reference Manual is an older document that used to be the
main reference, when all reasoning happened on the ML level. Many
parts of it are outdated now, but some parts, mainly the chapters on
tactics, are still useful.

Then of ourse there is:

2

The code is of course the ultimate reference for how things really work.
Therefore you should not hesitate to look at the way things are actu-
ally implemented. More importantly, it is often good to look at code
that does similar things as you want to do, to learn from other people’s
code.

Since Isabelle is not a finished product, these manuals, just like the imple-
mentation itself, are always under construction. This can be difficult and
frustrating at times, especially when interfaces changes occur frequently.
But it is a reality that progress means changing things (FIXME: need some
short and convincing comment that this is a strategy, not a problem that
should be solved).

3

Chapter 2

First Steps

Isabelle programming is done Standard ML, however it often uses an an-
tiquotation mehanism to refer to the logical context of Isabelle. The ML-
code that one writes is, just like lemmas and proofs in Isabelle, part of a
theory. If you want to follow the code written in this chapter, we assume
you are working inside the theory defined as
theory CookBook
imports Main
begin
The easiest and quickest way to include code in a theory is by using the ML
command. For example

ML {*

3 + 4

*}

The expression inside ML commands is emmediately evaluated like “nor-
mal” proof scripts by using the advance and retreat buttons of your Isabelle
environment. The code inside the ML command can also contain value- and
function bindings. FIXME can one

undo them
like Isabelle
lemmas/proofs -
probably not

2.1 Antiquotations

The main advantage of embedding all code in a theory is that the code can
contain references to entities that are defined on the logical level of Isabelle.
This is done using antiquotations. For example, one can print out the name
of the current theory by typing

ML {* Context.theory_name @{theory} *}

where @{theory} is an antiquotation that is substituted with the current the-
ory (remember that we assumed we are inside the theory CookBook). The

4

name of this theory can be extrated using a the function Context.theory_name.
So the code above returns the string "CookBook".

Note that antiquotations are statically scoped, that is the value is determined
at “compile-time” not “run-time”. For example the function

ML {*

fun current_thyname () = Context.theory_name @{theory}

*}

does not return the name of the current theory, if it is run in a different
theory. Instead, the code above defines the constant function that always
returns the string "CookBook", no matter where the function is called. Op-
erationally speaking, @{theory} is not replaced with code that will look up
the current theory in some data structure and return it. Instead, it is literally
replaced with the value representing the theory name.

In the course of this introduction, we will learn more about these antoquo-
tations: they greatly simplify Isabelle programming since one can directly
access all kinds of logical elements from ML.

2.2 Terms

We can simply quote Isabelle terms from ML using the @{term : : : } antiquo-
tation:

ML {* @{term "(a::nat) + b = c"} *}

This shows the term a + b = c in the internal representation with all gory
details. Terms are just an ML datatype, and they are defined in Pure/term.ML.

The representation of terms uses deBruin indices: bound variables are rep-
resented by the constructor Bound, and the index refers to the number of
lambdas we have to skip until we hit the lambda that binds the variable.
The names of bound variables are kept at the abstractions, but they should
be treated just as comments. See [FIXME ref] for more details.

Terms are described in detail in [FIXME ref]. Their definition and many useful Read More
operations can be found in Pure/term.ML.
In a similar way we can quote types and theorems:

ML {* @{typ "(int * nat) list"} *}

ML {* @{thm allI} *}

In the default setup, types and theorems are printed as strings.

Sometimes the internal representation can be surprisingly different from
what you see at the user level, because the layer of parsing/type check-
ing/pretty printing can be quite thick.

5

Exercise 2.2.1. Look at the internal term representation of the following
terms, and find out why they are represented like this.

� case x of 0) 0 | Suc y) y

� �(x, y). P y x

� {[x] |x. x � -2}

Hint: The third term is already quite big, and the pretty printer may omit parts
of it by default. If you want to see all of it, you can use print_depth 50 to set
the limit to a value high enough.

2.3 Type checking

We can freely construct and manipulate terms, since they are just arbitrary
unchecked trees. However, we eventually want to see if a term is wellformed
in a certain context.

Type checking is done via cterm_of, which turns a term into a cterm, a
certified term. Unlike terms, which are just trees, cterms are abstract objects
that are guaranteed to be type-correct, and can only be constructed via the
official interfaces.

Type checking is always relative to a theory context. For now we can use the
@{theory} antiquotation to get hold of the theory at the current point:

ML {*

let

val natT = @{typ "nat"}

val zero = @{term "0::nat"}(*Const ("HOL.zero_class.zero", natT)*)

in

cterm_of @{theory}

(Const ("HOL.plus_class.plus", natT --> natT --> natT)

$ zero $ zero)

end

*}

ML {*

@{const_name plus}

*}

ML {*

@{term "{ [x::int] | x. x � -2 }"}

*}

The internal names of constants like zero or + are often more complex than
one first expects. Here, the extra prefixes zero_class and plus_class are

6

present because the constants are defined within a type class. Guessing such
internal names can be extremely hard, which is why the system provides
another antiquotation: @{const_name plus} gives just this name.

Exercise 2.3.1. Write a function rev_sum : term -> term that takes a term
of the form t1 + t2 + : : : + tn and returns the reversed sum tn + : : : + t2

+ t1. Note that + associates to the left. Try your function on some examples,
and see if the result typechecks.

Exercise 2.3.2. Write a function which takes two terms representing natural
numbers in unary (like Suc (Suc (Suc 0))), and produce the unary number
representing their sum.

Exercise 2.3.3. Look at the functions defined in Pure/logic.ML and HOL/hologic.ML

and see if they can make your life easier.

2.4 Theorems

Just like cterms, theorems (of type thm) are abstract objects that can only
be built by going through the kernel interfaces, which means that all your
proofs will be checked. The basic rules of the Isabelle/Pure logical frame-
work are defined in Pure/thm.ML.

Using these rules, which are just ML functions, you can do simple natural
deduction proofs on the ML level. For example, the statement [[

V
x. P x =)

Q x; P t]] =) Q t can be proved like this1:

ML {*

let

val thy = @{theory}

val nat = HOLogic.natT

val x = Free ("x", nat)

val t = Free ("t", nat)

val P = Free ("P", nat --> HOLogic.boolT)

val Q = Free ("Q", nat --> HOLogic.boolT)

val A1 = Logic.all x

(Logic.mk_implies (HOLogic.mk_Trueprop (P $ x),

HOLogic.mk_Trueprop (Q $ x)))

|> cterm_of thy

val A2 = HOLogic.mk_Trueprop (P $ t)

|> cterm_of thy

val Pt_implies_Qt =

1Note that |> is just reverse application. This combinator, and several variants are de-
fined in Pure/General/basics.ML

7

assume A1

|> forall_elim (cterm_of thy t)

val Qt = implies_elim Pt_implies_Qt (assume A2)

in

Qt

|> implies_intr A2

|> implies_intr A1

end

*}

2.5 Tactical reasoning

The goal-oriented tactical style is similar to the apply style at the user level.
Reasoning is centered around a goal, which is modified in a sequence of
proof steps until it is solved.

A goal (or goal state) is a special thm, which by convention is an implication:

A1 =) : : : =) An =) #(C)

Since the final result C could again be an implication, there is the # around
the final result, which protects its premises from being misinterpreted as
open subgoals. The protection # :: prop) prop is just the identity and
used as a syntactic marker.

Now tactics are just functions that map a goal state to a (lazy) sequence of
successor states, hence the type of a tactic is

thm -> thm Seq.seq

See Pure/General/seq.ML for the implementation of lazy sequences.

Of course, tactics are expected to behave nicely and leave the final conclu-
sion C intact. In order to start a tactical proof for A, we just set up the trivial
goal A =) #(A) and run the tactic on it. When the subgoal is solved, we
have just #(A) and can remove the protection.

The operations in Pure/goal.ML do just that and we can use them.

Let us transcribe a simple apply style proof from the tutorial[1] into ML:

lemma disj_swap: "P _ Q =) Q _ P"

apply (erule disjE)

apply (rule disjI2)

apply assumption

apply (rule disjI1)

apply assumption

done

ML {*

8

let

val ctxt = @{context}

val goal = @{prop "P _ Q =) Q _ P"}

in

Goal.prove ctxt ["P", "Q"] [] goal (fn _ =>

eresolve_tac [disjE] 1

THEN resolve_tac [disjI2] 1

THEN assume_tac 1

THEN resolve_tac [disjI1] 1

THEN assume_tac 1)

end

*}

Tactics that affect only a certain subgoal, take a subgoal number as an inte-
ger parameter. Here we always work on the first subgoal, following exactly
the apply script.

2.6 Case Study: Relation Composition

Note: This is completely unfinished. I hoped to have a section with a nontrivial
example, but I ran into several problems.
Recall that HOL has special syntax for set comprehensions: {f x y |x y. P

x y} abbreviates "{u. 9 x y. u = f x y ^ P x y}".

We will automatically prove statements of the following form:

{(l1 x, r1 x) |x. P1 x} O {(l2 x, r2 x) |x. P2 x} =

{(l2 x, r1 y) |x y. r2 x = l1 y ^ P2 x ^ P1 y}

In Isabelle, relation composition is defined to be consistent with function
composition, that is, the relation applied “first” is written on the right hand
side. This different from what many textbooks do.

The above statement about composition is not proved automatically by simp ,
and it cannot be solved by a fixed set of rewrite rules, since the number of
(implicit) quantifiers may vary. Here, we only have one bound variable in
each comprehension, but in general there can be more. On the other hand,
auto proves the above statement quickly, by breaking the equality into two
parts and proving them separately. However, if e.g. P1 is a complicated
expression, the automated tools may get confused.

Our goal is now to develop a small procedure that can compute (with proof)
the composition of two relation comprehensions, which can be used to ex-
tend the simplifier.

9

2.7 A tactic

Let’s start with a step-by-step proof of the above statement

lemma "{(l1 x, r1 x) |x. P1 x} O {(l2

x, r2 x) |x. P2 x}

= {(l2 x, r1 y) |x y. r2 x = l1 y ^ P2 x ^ P1 y}"

apply (rule set_ext)

apply (rule iffI)

apply (erule rel_compE) — �

apply (erule CollectE) — eliminate Collect, 9 , ^, and pairs
apply (erule CollectE)

apply (erule exE)

apply (erule exE)

apply (erule conjE)

apply (erule conjE)

apply (erule Pair_inject)

apply (erule Pair_inject)

apply (simp only:)

apply (rule CollectI) — introduce them again
apply (rule exI)

apply (rule exI)

apply (rule conjI)

apply (rule refl)

apply (rule conjI)

apply (rule sym)

apply (assumption)

apply (rule conjI)

apply assumption

apply assumption

apply (erule CollectE) — �

apply (erule exE)+

apply (erule conjE)+

apply (simp only:)

apply (rule rel_compI)

apply (rule CollectI)

apply (rule exI)

apply (rule conjI)

apply (rule refl)

apply assumption

apply (rule CollectI)

apply (rule exI)

apply (rule conjI)

apply (subst Pair_eq)

apply (rule conjI)

apply assumption

apply (rule refl)

10

apply assumption

done

The reader will probably need to step through the proof and verify that there
is nothing spectacular going on here. The apply script just applies the usual
elimination and introduction rules in the right order.

This script is of course totally unreadable. But we are not trying to produce
pretty Isar proofs here. We just want to find out which rules are needed and
how they must be applied to complete the proof. And a detailed apply-style
proof can often be turned into a tactic quite easily. Of course we must resist
the temptation to use auto , blast and friends, since their behaviour is not
predictable enough. But the simple rule and erule methods are fine.

Notice that this proof depends only in one detail on the concrete equation
that we want to prove: The number of bound variables in the comprehen-
sion corresponds to the number of existential quantifiers that we have to
eliminate and introduce again. In fact this is the only reason why the equa-
tions that we want to prove are not just instances of a single rule.

Here is the ML equivalent of the tactic script above:

ML {*

val compr_compose_tac =

rtac @{thm set_ext}

THEN' rtac @{thm iffI}

THEN' etac @{thm rel_compE}

THEN' etac @{thm CollectE}

THEN' etac @{thm CollectE}

THEN' (fn i => REPEAT (etac @{thm exE} i))

THEN' etac @{thm conjE}

THEN' etac @{thm conjE}

THEN' etac @{thm Pair_inject}

THEN' etac @{thm Pair_inject}

THEN' asm_full_simp_tac HOL_basic_ss

THEN' rtac @{thm CollectI}

THEN' (fn i => REPEAT (rtac @{thm exI} i))

THEN' rtac @{thm conjI}

THEN' rtac @{thm refl}

THEN' rtac @{thm conjI}

THEN' rtac @{thm sym}

THEN' assume_tac

THEN' rtac @{thm conjI}

THEN' assume_tac

THEN' assume_tac

THEN' etac @{thm CollectE}

THEN' (fn i => REPEAT (etac @{thm exE} i))

THEN' etac @{thm conjE}

THEN' etac @{thm conjE}

THEN' etac @{thm conjE}

11

THEN' asm_full_simp_tac HOL_basic_ss

THEN' rtac @{thm rel_compI}

THEN' rtac @{thm CollectI}

THEN' (fn i => REPEAT (rtac @{thm exI} i))

THEN' rtac @{thm conjI}

THEN' rtac @{thm refl}

THEN' assume_tac

THEN' rtac @{thm CollectI}

THEN' (fn i => REPEAT (rtac @{thm exI} i))

THEN' rtac @{thm conjI}

THEN' simp_tac (HOL_basic_ss addsimps [@{thm Pair_eq}])

THEN' rtac @{thm conjI}

THEN' assume_tac

THEN' rtac @{thm refl}

THEN' assume_tac

*}

lemma test1: "{(l1 x, r1 x) |x. P1 x} O {(l2

x, r2 x) |x. P2 x}

= {(l2 x, r1 y) |x y. r2 x = l1 y ^ P2 x ^ P1 y}"

by (tactic "compr_compose_tac 1")

lemma test3: "{(l1 x, r1 x) |x. P1 x} O {(l2 x z, r2 x z) |x z. P2 x

z}

= {(l2 x z, r1 y) |x y z. r2 x z = l1 y ^ P2 x z ^ P1 y}"

by (tactic "compr_compose_tac 1")

So we have a tactic that works on at least two examples. Getting it really
right requires some more effort. Consider the goal
lemma "{(n, Suc n) |n. n > 0} O {(n, Suc n) |n. P n}

= {(n, Suc m)|n m. Suc n = m ^ P n ^ m > 0}"

This is exactly an instance of test1 , but our tactic fails on it with the usual
uninformative empty result requence.

We are now in the frequent situation that we need to debug. One simple
instrument for this is print_tac, which is the same as all_tac (the identity
for THEN), i.e. it does nothing, but it prints the current goal state as a side
effect. Another debugging option is of course to step through the interactive
apply script.

Finding the problem could be taken as an exercise for the patient reader,
and we will go ahead with the solution.

The problem is that in this instance the simplifier does more than it did
in the general version of lemma test1 . Since l1 and l2 are just the iden-
tity function, the equation corresponding to l1 y = r2 x becomes m = Suc

n. Then the simplifier eagerly replaces all occurences of m by Suc n which
destroys the structure of the proof.

This is perhaps the most important lesson to learn, when writing tactics:

12

Avoid automation at all cost!!!.

Let us look at the proof state at the point where the simplifier is invoked:

1.
V
x xa y z n na.

[[x = (xa, z); P n; 0 < na; xa = n; y = Suc n; y = na; z = Suc na]]
=) x 2 {(n, Suc m) |n m. Suc n = m ^ P n ^ 0 < m}

2.
V
x. x 2 {(n, Suc m) |n m. Suc n = m ^ P n ^ 0 < m} =)

x 2 {(n, Suc n) |n. 0 < n} O {(n, Suc n) |n. P n}

Like in the apply proof, we now want to eliminate the equations that “define”
x, xa and z. The other equations are just there by coincidence, and we must
not touch them.

For such purposes, there is the internal tactic hyp_subst_single. Its job is
to take exactly one premise of the form v = t, where v is a variable, and
replace v in the whole subgoal. The hypothesis to eliminate is given by its
position.

We can use this tactic to eliminate x :

apply (tactic "single_hyp_subst_tac 0 1")

1.
V
x xa y z n na.

[[P n; 0 < na; xa = n; y = Suc n; y = na; z = Suc na]]
=) (xa, z) 2 {(n, Suc m) |n m. Suc n = m ^ P n ^ 0 < m}

2.
V
x. x 2 {(n, Suc m) |n m. Suc n = m ^ P n ^ 0 < m} =)

x 2 {(n, Suc n) |n. 0 < n} O {(n, Suc n) |n. P n}

apply (tactic "single_hyp_subst_tac 2 1")

apply (tactic "single_hyp_subst_tac 2 1")

apply (tactic "single_hyp_subst_tac 3 1")

apply (rule CollectI) — introduce them again
apply (rule exI)

apply (rule exI)

apply (rule conjI)

apply (rule refl)

apply (rule conjI)

apply (assumption)

apply (rule conjI)

apply assumption

apply assumption

apply (erule CollectE) — �

apply (erule exE)+

apply (erule conjE)+

apply (tactic "single_hyp_subst_tac 0 1")

apply (rule rel_compI)

apply (rule CollectI)

13

apply (rule exI)

apply (rule conjI)

apply (rule refl)

apply assumption

apply (rule CollectI)

apply (rule exI)

apply (rule conjI)

apply (subst Pair_eq)

apply (rule conjI)

apply assumption

apply (rule refl)

apply assumption

done

ML {*

val compr_compose_tac =

rtac @{thm set_ext}

THEN' rtac @{thm iffI}

THEN' etac @{thm rel_compE}

THEN' etac @{thm CollectE}

THEN' etac @{thm CollectE}

THEN' (fn i => REPEAT (etac @{thm exE} i))

THEN' etac @{thm conjE}

THEN' etac @{thm conjE}

THEN' etac @{thm Pair_inject}

THEN' etac @{thm Pair_inject}

THEN' single_hyp_subst_tac 0

THEN' single_hyp_subst_tac 2

THEN' single_hyp_subst_tac 2

THEN' single_hyp_subst_tac 3

THEN' rtac @{thm CollectI}

THEN' (fn i => REPEAT (rtac @{thm exI} i))

THEN' rtac @{thm conjI}

THEN' rtac @{thm refl}

THEN' rtac @{thm conjI}

THEN' assume_tac

THEN' rtac @{thm conjI}

THEN' assume_tac

THEN' assume_tac

THEN' etac @{thm CollectE}

THEN' (fn i => REPEAT (etac @{thm exE} i))

THEN' etac @{thm conjE}

THEN' etac @{thm conjE}

THEN' etac @{thm conjE}

THEN' single_hyp_subst_tac 0

THEN' rtac @{thm rel_compI}

THEN' rtac @{thm CollectI}

14

THEN' (fn i => REPEAT (rtac @{thm exI} i))

THEN' rtac @{thm conjI}

THEN' rtac @{thm refl}

THEN' assume_tac

THEN' rtac @{thm CollectI}

THEN' (fn i => REPEAT (rtac @{thm exI} i))

THEN' rtac @{thm conjI}

THEN' stac @{thm Pair_eq}

THEN' rtac @{thm conjI}

THEN' assume_tac

THEN' rtac @{thm refl}

THEN' assume_tac

*}

lemma "{(n, Suc n) |n. n > 0 ^ A} O {(n, Suc n) |n m. P m n}

= {(n, Suc m)|n m' m. Suc n = m ^ P m' n ^ (m > 0 ^ A)}"

apply (tactic "compr_compose_tac 1")

done

The next step is now to turn this tactic into a simplification procedure. This
just means that we need some code that builds the term of the composed
relation.

use "comp_simproc"

15

Chapter 3

Parsing

Lots of Standard ML code is given in this document, for various reasons,
including:

� direct quotation of code found in the Isabelle source files, or simplified
versions of such code

� identifiers found in the Isabelle source code, with their types (or spe-
cialisations of their types)

� code examples, which can be run by the reader, to help illustrate the
behaviour of functions found in the Isabelle source code

� ancillary functions, not from the Isabelle source code, which enable
the reader to run relevant code examples

� type abbreviations, which help explain the uses of certain functions

3.1 Parsing Isar input

The typical parsing function has the type 'src -> 'res * 'src, with input
of type 'src, returning a result of type 'res, which is (or is derived from)
the first part of the input, and also returning the remainder of the input.
(In the common case, when it is clear what the “remainder of the input”
means, we will just say that the functions “returns” the value of type 'res).
An exception is raised if an appropriate value cannot be produced from the
input. A range of exceptions can be used to identify different reasons for the
failure of a parse.

This contrasts the standard parsing function in Standard ML, which is of type
type ('res, 'src) reader = 'src -> ('res * 'src) option; (for ex-
ample, List.getItem and Substring.getc). However, much of the dis-

16

cussion at FIX file:/home/jeremy/html/ml/SMLBasis/string-cvt.html is rel-
evant.

Naturally one may convert between the two different sorts of parsing func-
tions as follows:

open StringCvt ;

type ('res, 'src) ex_reader = 'src -> 'res * 'src

(* ex_reader : ('res, 'src) reader -> ('res, 'src) ex_reader *)

fun ex_reader rdr src = Option.valOf (rdr src) ;

(* reader : ('res, 'src) ex_reader -> ('res, 'src) reader *)

fun reader exrdr src = SOME (exrdr src) handle _ => NONE ;

3.2 The Scan structure

The source file is src/General/scan.ML. This structure provides functions
for using and combining parsing functions of the type 'src -> 'res *

'src. Three exceptions are used:

exception MORE of string option; (*need more input (prompt)*)

exception FAIL of string option; (*try alternatives (reason of failure)*)

exception ABORT of string; (*dead end*)

Many functions in this structure (generally those with names composed of
symbols) are declared as infix.

Some functions from that structure are

|-- : ('src -> 'res1 * 'src') * ('src' -> 'res2 * 'src'') ->

'src -> 'res2 * 'src''

--| : ('src -> 'res1 * 'src') * ('src' -> 'res2 * 'src'') ->

'src -> 'res1 * 'src''

-- : ('src -> 'res1 * 'src') * ('src' -> 'res2 * 'src'') ->

'src -> ('res1 * 'res2) * 'src''

^^ : ('src -> string * 'src') * ('src' -> string * 'src'') ->

'src -> string * 'src''

These functions parse a result off the input source twice.

|-- and --| return the first result and the second result, respectively.

-- returns both.

^^ returns the result of concatenating the two results (which must be strings).

17

Note how, although the types 'src, 'src' and 'src'' will normally be the
same, the types as shown help suggest the behaviour of the functions.

:-- : ('src -> 'res1 * 'src') * ('res1 -> 'src' -> 'res2 * 'src'') ->

'src -> ('res1 * 'res2) * 'src''

:|-- : ('src -> 'res1 * 'src') * ('res1 -> 'src' -> 'res2 * 'src'') ->

'src -> 'res2 * 'src''

These are similar to |-- and --|, except that the second parsing function
can depend on the result of the first.

>> : ('src -> 'res1 * 'src') * ('res1 -> 'res2) -> 'src -> 'res2 * 'src'

|| : ('src -> 'res_src) * ('src -> 'res_src) -> 'src -> 'res_src

p >> f applies a function f to the result of a parse.

|| tries a second parsing function if the first one fails by raising an exception
of the form FAIL .

succeed : 'res -> ('src -> 'res * 'src) ;

fail : ('src -> 'res_src) ;

!! : ('src * string option -> string) ->

('src -> 'res_src) -> ('src -> 'res_src) ;

succeed r returns r, with the input unchanged. fail always fails, raising
exception FAIL NONE. !! f only affects the failure mode, turning a failure
that raises FAIL into a failure that raises ABORT This is used to pre-
vent recovery from the failure — thus, in !! parse1 || parse2, if parse1
fails, it won’t recover by trying parse2.

one : ('si -> bool) -> ('si list -> 'si * 'si list) ;

some : ('si -> 'res option) -> ('si list -> 'res * 'si list) ;

These require the input to be a list of items: they fail, raising MORE NONE if
the list is empty. On other failures they raise FAIL NONE

one p takes the first item from the list if it satisfies p, otherwise fails.

some f takes the first item from the list and applies f to it, failing if this
returns NONE.

many : ('si -> bool) -> 'si list -> 'si list * 'si list ;

18

many p takes items from the input until it encounters one which does not
satisfy p. If it reaches the end of the input it fails, raising MORE NONE.

many1 (with the same type) fails if the first item does not satisfy p.

option : ('src -> 'res * 'src) -> ('src -> 'res option * 'src)

optional : ('src -> 'res * 'src) -> 'res -> ('src -> 'res * 'src)

option: where the parser f succeeds with result r or raises FAIL , option
f gives the result SOME r or NONE.

optional: if parser f fails by raising FAIL , optional f default provides
the result default.

repeat : ('src -> 'res * 'src) -> 'src -> 'res list * 'src

repeat1 : ('src -> 'res * 'src) -> 'src -> 'res list * 'src

bulk : ('src -> 'res * 'src) -> 'src -> 'res list * 'src

repeat f repeatedly parses an item off the remaining input until f fails with
FAIL

repeat1 is as for repeat, but requires at least one successful parse.

lift : ('src -> 'res * 'src) -> ('ex * 'src -> 'res * ('ex * 'src))

lift changes the source type of a parser by putting in an extra component
'ex, which is ignored in the parsing.

The Scan structure also provides the type lexicon, HOW DO THEY WORK
?? TO BE COMPLETED

dest_lexicon: lexicon -> string list ;

make_lexicon: string list list -> lexicon ;

empty_lexicon: lexicon ;

extend_lexicon: string list list -> lexicon -> lexicon ;

merge_lexicons: lexicon -> lexicon -> lexicon ;

is_literal: lexicon -> string list -> bool ;

literal: lexicon -> string list -> string list * string list ;

Two lexicons, for the commands and keywords, are stored and can be re-
trieved by:

val (command_lexicon, keyword_lexicon) = OuterSyntax.get_lexicons () ;

val commands = Scan.dest_lexicon command_lexicon ;

val keywords = Scan.dest_lexicon keyword_lexicon ;

19

3.3 The OuterLex structure

The source file is src/Pure/Isar/outer_lex.ML. In some other source files its
name is abbreviated:

structure T = OuterLex;

This structure defines the type token. (The types OuterLex.token, OuterParse.token
and SpecParse.token are all the same).

Input text is split up into tokens, and the input source type for many parsing
functions is token list.

The datatype definition (which is not published in the signature) is

datatype token = Token of Position.T * (token_kind * string);

but here are some runnable examples for viewing tokens:

FIXME

begin{verbatim} type token = T.token ; val toks : token list = OuterSyntax.scan

``theory,imports;begin x.y.z apply ?v1 ?'a 'a -- || 44 simp (* xx *) {

* fff * }'' ; print_depth 20 ; List.map T.text_of toks ; val proper_toks

= List.filter T.is_proper toks ; List.map T.kind_of proper_toks ; List.map

T.unparse proper_toks ; List.map T.val_of proper_toks ; end{verbatim}

The function is proper : token -> bool identifies tokens which are not
white space or comments: many parsing functions assume require spaces or
comments to have been filtered out.

There is a special end-of-file token:

val (tok_eof : token, is_eof : token -> bool) = T.stopper ;

(* end of file token *)

3.4 The OuterParse structure

The source file is src/Pure/Isar/outer parse.ML. In some other source
files its name is abbreviated:

structure P = OuterParse;

20

Here the parsers use token list as the input source type.

Some of the parsers simply select the first token, provided that it is of
the right kind (as returned by T.kind of): these are command, keyword,

short ident, long ident, sym ident, term var, type ident, type var,

number, string, alt string, verbatim, sync, eof Others select the first
token, provided that it is one of several kinds, (eg, name, xname, text,

typ).

type 'a tlp = token list -> 'a * token list ; (* token list parser *)

$$$: string -> string tlp

nat : int tlp ;

maybe : 'a tlp -> 'a option tlp ;

$$$ s returns the first token, if it equals s and s is a keyword.

nat returns the first token, if it is a number, and evaluates it.

maybe: if p returns r, then maybe p returns SOME r ; if the first token is an
underscore, it returns NONE.

A few examples:

P.list : 'a tlp -> 'a list tlp ; (* likewise P.list1 *)

P.and_list : 'a tlp -> 'a list tlp ; (* likewise P.and_list1 *)

val toks : token list = OuterSyntax.scan "44 ,_, 66,77" ;

val proper_toks = List.filter T.is_proper toks ;

P.list P.nat toks ; (* OK, doesn't recognize white space *)

P.list P.nat proper_toks ; (* fails, doesn't recognize what follows ',' *)

P.list (P.maybe P.nat) proper_toks ; (* fails, end of input *)

P.list (P.maybe P.nat) (proper_toks @ [tok_eof]) ; (* OK *)

val toks : token list = OuterSyntax.scan "44 and 55 and 66 and 77" ;

P.and_list P.nat (List.filter T.is_proper toks @ [tok_eof]) ; (* ??? *)

The following code helps run examples:

fun parse_str tlp str =

let val toks : token list = OuterSyntax.scan str ;

val proper_toks = List.filter T.is_proper toks @ [tok_eof] ;

val (res, rem_toks) = tlp proper_toks ;

val rem_str = String.concat

(Library.separate " " (List.map T.unparse rem_toks)) ;

in (res, rem_str) end ;

Some examples from src/Pure/Isar/outer parse.ML

21

val type_args =

type_ident >> Library.single ||

$$$ "(" |-- !!! (list1 type_ident --| $$$ ")") ||

Scan.succeed [];

There are three ways parsing a list of type arguments can succeed. The
first line reads a single type argument, and turns it into a singleton list.
The second line reads ”(”, and then the remainder, ignoring the ”(” ; the
remainder consists of a list of type identifiers (at least one), and then a ”)”
which is also ignored. The !!! ensures that if the parsing proceeds this far
and then fails, it won’t try the third line (see the description of Scan.!!).
The third line consumes no input and returns the empty list.

fun triple2 (x, (y, z)) = (x, y, z);

val arity = xname -- ($$$ "::" |-- !!! (

Scan.optional ($$$ "(" |-- !!! (list1 sort --| $$$ ")")) []

-- sort)) >> triple2;

The parser arity reads a typename t, then “::” (which is ignored), then
optionally a list ss of sorts and then another sort s. The result (t; (ss; s)) is
transformed by triple2 to (t; ss; s). The second line reads the optional list
of sorts: it reads first “(” and last “)”, which are both ignored, and between
them a comma-separated list of sorts. If this list is absent, the default []
provides the list of sorts.

parse_str P.type_args "('a, 'b) ntyp" ;

parse_str P.type_args "'a ntyp" ;

parse_str P.type_args "ntyp" ;

parse_str P.arity "ty :: tycl" ;

parse_str P.arity "ty :: (tycl1, tycl2) tycl" ;

3.5 The SpecParse structure

The source file is src/Pure/Isar/spec parse.ML. This structure contains
token list parsers for more complicated values. For example,

open SpecParse ;

attrib : Attrib.src tok_rdr ;

attribs : Attrib.src list tok_rdr ;

22

opt_attribs : Attrib.src list tok_rdr ;

xthm : (thmref * Attrib.src list) tok_rdr ;

xthms1 : (thmref * Attrib.src list) list tok_rdr ;

parse_str attrib "simp" ;

parse_str opt_attribs "hello" ;

val (ass, "") = parse_str attribs "[standard, xxxx, simp, intro, OF sym]" ;

map Args.dest_src ass ;

val (asrc, "") = parse_str attrib "THEN trans [THEN sym]" ;

parse_str xthm "mythm [attr]" ;

parse_str xthms1 "thm1 [attr] thms2" ;

As you can see, attributes are described using types of the Args structure,
described below.

3.6 The Args structure

The source file is src/Pure/Isar/args.ML. The primary type of this struc-
ture is the src datatype; the single constructors not published in the sig-
nature, but Args.src and Args.dest src are in fact the constructor and
destructor functions. Note that the types Attrib.src and Method.src are
in fact Args.src.

src : (string * Args.T list) * Position.T -> Args.src ;

dest_src : Args.src -> (string * Args.T list) * Position.T ;

Args.pretty_src : Proof.context -> Args.src -> Pretty.T ;

fun pr_src ctxt src = Pretty.string_of (Args.pretty_src ctxt src) ;

val thy = ML_Context.the_context () ;

val ctxt = ProofContext.init thy ;

map (pr_src ctxt) ass ;

So an Args.src consists of the first word, then a list of further “arguments”,
of type Args.T, with information about position in the input.

(* how an Args.src is parsed *)

P.position : 'a tlp -> ('a * Position.T) tlp ;

P.arguments : Args.T list tlp ;

val parse_src : Args.src tlp =

23

P.position (P.xname -- P.arguments) >> Args.src ;

val ((first_word, args), pos) = Args.dest_src asrc ;

map Args.string_of args ;

The Args structure contains more parsers and parser transformers for which
the input source type is Args.T list. For example,

type 'a atlp = Args.T list -> 'a * Args.T list ;

open Args ;

nat : int atlp ; (* also Args.int *)

thm_sel : PureThy.interval list atlp ;

list : 'a atlp -> 'a list atlp ;

attribs : (string -> string) -> Args.src list atlp ;

opt_attribs : (string -> string) -> Args.src list atlp ;

(* parse_atl_str : 'a atlp -> (string -> 'a * string) ;

given an Args.T list parser, to get a string parser *)

fun parse_atl_str atlp str =

let val (ats, rem_str) = parse_str P.arguments str ;

val (res, rem_ats) = atlp ats ;

in (res, String.concat (Library.separate " "

(List.map Args.string_of rem_ats @ [rem_str]))) end ;

parse_atl_str Args.int "-1-," ;

parse_atl_str (Scan.option Args.int) "x1-," ;

parse_atl_str Args.thm_sel "(1-,4,13-22)" ;

val (ats as atsrc :: _, "") = parse_atl_str (Args.attribs I)

"[THEN trans [THEN sym], simp, OF sym]" ;

From here, an attribute is interpreted using Attrib.attribute.

Args has a large number of functions which parse an Args.src and also
refer to a generic context. Note the use of Scan.lift for this. (as does
Attrib - RETHINK THIS)

(Args.syntax shown below has type specialised)

type ('res, 'src) parse_fn = 'src -> 'res * 'src ;

type 'a cgatlp = ('a, Context.generic * Args.T list) parse_fn ;

Scan.lift : 'a atlp -> 'a cgatlp ;

term : term cgatlp ;

24

typ : typ cgatlp ;

Args.syntax : string -> 'res cgatlp -> src -> ('res, Context.generic) parse_fn ;

Attrib.thm : thm cgatlp ;

Attrib.thms : thm list cgatlp ;

Attrib.multi_thm : thm list cgatlp ;

(* parse_cgatl_str : 'a cgatlp -> (string -> 'a * string) ;

given a (Context.generic * Args.T list) parser, to get a string parser *)

fun parse_cgatl_str cgatlp str =

let

(* use the current generic context *)

val generic = Context.Theory thy ;

val (ats, rem_str) = parse_str P.arguments str ;

(* ignore any change to the generic context *)

val (res, (_, rem_ats)) = cgatlp (generic, ats) ;

in (res, String.concat (Library.separate " "

(List.map Args.string_of rem_ats @ [rem_str]))) end ;

3.7 Attributes, and the Attrib structure

The type attribute is declared in src/Pure/thm.ML. The source file for
the Attrib structure is src/Pure/Isar/attrib.ML. Most attributes use a
theorem to change a generic context (for example, by declaring that the
theorem should be used, by default, in simplification), or change a theorem
(which most often involves referring to the current theory). The functions
Thm.rule attribute and Thm.declaration attribute create attributes of
these kinds.

type attribute = Context.generic * thm -> Context.generic * thm;

type 'a trf = 'a -> 'a ; (* transformer of a given type *)

Thm.rule_attribute : (Context.generic -> thm -> thm) -> attribute ;

Thm.declaration_attribute : (thm -> Context.generic trf) -> attribute ;

Attrib.print_attributes : theory -> unit ;

Attrib.pretty_attribs : Proof.context -> src list -> Pretty.T list ;

List.app Pretty.writeln (Attrib.pretty_attribs ctxt ass) ;

An attribute is stored in a theory as indicated by:

25

Attrib.add_attributes :

(bstring * (src -> attribute) * string) list -> theory trf ;

(*

Attrib.add_attributes [("THEN", THEN_att, "resolution with rule")] ;

*)

where the first and third arguments are name and description of the at-
tribute, and the second is a function which parses the attribute input text
(including the attribute name, which has necessarily already been parsed).
Here, THEN att is a function declared in the code for the structure Attrib,
but not published in its signature. The source file src/Pure/Isar/attrib.ML
shows the use of Attrib.add attributes to add a number of attributes.

FullAttrib.THEN_att : src -> attribute ;

FullAttrib.THEN_att atsrc (generic, ML_Context.thm "sym") ;

FullAttrib.THEN_att atsrc (generic, ML_Context.thm "all_comm") ;

Attrib.syntax : attribute cgatlp -> src -> attribute ;

Attrib.no_args : attribute -> src -> attribute ;

When this is called as syntax scan src (gc, th) the generic context gc
is used (and potentially changed to gc') by scan in parsing to obtain an
attribute attr which would then be applied to (gc', th). The source for
parsing the attribute is the arguments part of src, which must all be con-
sumed by the parse.

For example, for Attrib.no args attr src, the attribute parser simply re-
turns attr, requiring that the arguments part of src must be empty.

Some examples from src/Pure/Isar/attrib.ML, modified:

fun rot_att_n n (gc, th) = (gc, rotate_prems n th) ;

rot_att_n : int -> attribute ;

val rot_arg = Scan.lift (Scan.optional Args.int 1 : int atlp) : int cgatlp ;

val rotated_att : src -> attribute =

Attrib.syntax (rot_arg >> rot_att_n : attribute cgatlp) ;

val THEN_arg : int cgatlp = Scan.lift

(Scan.optional (Args.bracks Args.nat : int atlp) 1 : int atlp) ;

Attrib.thm : thm cgatlp ;

THEN_arg -- Attrib.thm : (int * thm) cgatlp ;

26

fun THEN_att_n (n, tht) (gc, th) = (gc, th RSN (n, tht)) ;

THEN_att_n : int * thm -> attribute ;

val THEN_att : src -> attribute = Attrib.syntax

(THEN_arg -- Attrib.thm >> THEN_att_n : attribute cgatlp);

The functions I’ve called rot arg and THEN arg read an optional argument,
which for rotated is an integer, and for THEN is a natural enclosed in square
brackets; the default, if the argument is absent, is 1 in each case. Functions
rot att n and THEN att n turn these into attributes, where THEN att n also
requires a theorem, which is parsed by Attrib.thm. Infix operators -- and
>> are in the structure Scan.

3.8 Methods, and the Method structure

The source file is src/Pure/Isar/method.ML. The type method is defined by
the datatype declaration

(* datatype method = Meth of thm list -> cases_tactic; *)

RuleCases.NO_CASES : tactic -> cases_tactic ;

In fact RAW METHOD CASES (below) is exactly the constructor Meth. A cases tactic

is an elaborated version of a tactic. NO CASES tac is a cases tactic which
consists of a cases tactic without any further case information. For fur-
ther details see the description of structure RuleCases below. The list of
theorems to be passed to a method consists of the current facts in the proof.

RAW_METHOD : (thm list -> tactic) -> method ;

METHOD : (thm list -> tactic) -> method ;

SIMPLE_METHOD : tactic -> method ;

SIMPLE_METHOD' : (int -> tactic) -> method ;

SIMPLE_METHOD'' : ((int -> tactic) -> tactic) -> (int -> tactic) -> method ;

RAW_METHOD_CASES : (thm list -> cases_tactic) -> method ;

METHOD_CASES : (thm list -> cases_tactic) -> method ;

A method is, in its simplest form, a tactic; applying the method is to apply
the tactic to the current goal state.

27

Applying RAW METHOD tacf creates a tactic by applying tacf to the current
facts, and applying that tactic to the goal state.

METHOD is similar but also first applies Goal.conjunction tac to all sub-
goals.

SIMPLE METHOD tac inserts the facts into all subgoals and then applies tacf.

SIMPLE METHOD' tacf inserts the facts and then applies tacf to subgoal 1.

SIMPLE METHOD'' quant tacf does this for subgoal(s) selected by quant,
which may be, for example, ALLGOALS (all subgoals), TRYALL (try all sub-
goals, failure is OK), FIRSTGOAL (try subgoals until it succeeds once), (fn
tacf => tacf 4) (subgoal 4), etc (see the Tactical structure, [?, Chapter
4]).

A method is stored in a theory as indicated by:

Method.add_method :

(bstring * (src -> Proof.context -> method) * string) -> theory trf ;

(*

*)

where the first and third arguments are name and description of the method,
and the second is a function which parses the method input text (including
the method name, which has necessarily already been parsed).

Here, xxx is a function declared in the code for the structure Method, but
not published in its signature. The source file src/Pure/Isar/method.ML

shows the use of Method.add method to add a number of methods.

28

Chapter 4

Recipes

Accumulate a list of theorems under a name

Problem: Your tool foo works with special rules, called foo -rules.

Users should be able to declare foo -rules in the theory, which are then used
by some method.

ML {*

structure FooRules = NamedThmsFun(

val name = "foo"

val description = "Rules for foo"

);

*}

setup FooRules.setup

This declares a context data slot where the theorems are stored, an attribute
foo (with the usual add and del options to declare new rules, and the inter-
nal ML interface to retrieve and modify the facts.

Furthermore, the facts are made available under the dynamic fact name foo :

lemma rule1[foo]: "A" sorry
lemma rule2[foo]: "B" sorry

declare rule1[foo del]

thm foo

ML {*

FooRules.get @{context};

*}

XXX Read More

29

30

Bibliography

[1] T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL: A Proof Assistant
for Higher-Order Logic. Springer, 2002. LNCS Tutorial 2283.

[2] L. C. Paulson. ML for the Working Programmer. 2nd edition, 1996.

[3] M. Wenzel. The Isabelle/Isar Implementation. http://isabelle.in.tum.de/
doc/implementation.pdf.

31

http://isabelle.in.tum.de/doc/implementation.pdf
http://isabelle.in.tum.de/doc/implementation.pdf

	Introduction
	Intended Audience and Prior Knowledge
	Existing Documentation

	First Steps
	Antiquotations
	Terms
	Type checking
	Theorems
	Tactical reasoning
	Case Study: Relation Composition
	A tactic

	Parsing
	Parsing Isar input
	The Scan structure
	The OuterLex structure
	The OuterParse structure
	The SpecParse structure
	The Args structure
	Attributes, and the Attrib structure
	Methods, and the Method structure

	Recipes

