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Chapter 1

Introduction

The purpose of this document is to guide the reader through the first steps in
Isabelle programming, and to provide recipes for solving common problems.

1.1 Intended Audience and Prior Knowledge

This cookbook targets an audience who already knows how to use the Is-
abelle system to write theories and proofs, but without using ML. You should
also be familiar with the Standard ML programming language, which is used
for Isabelle programming. If you are unfamiliar with any of these two sub-
jects, you should first work through the Isabelle/HOL tutorial [?] and Paul-
son’s book on Standard ML [?].

1.2 Primary Documentation

The Implementation Manual [?] describes Isabelle from a programmer’s
perspective, documenting both the underlying concepts and the con-
crete interfaces.

The Isabelle Reference Manual [?] is an older document that used to be
the main reference, when all reasoning happened on the ML level.
Many parts of it are outdated now, but some parts, mainly the chapters
on tactics, are still useful.

The code is of course the ultimate reference for how things really work.
Therefore you should not hesitate to look at the way things are actu-
ally implemented. More importantly, it is often good to look at code
that does similar things as you want to do, to learn from other people’s
code.
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Since Isabelle is not a finished product, these manuals, just like the imple-
mentation itself, are always under construction. This can be dificult and
frustrating at times, when interfaces are changing frequently. But it is a
reality that progress means changing things (FIXME: need some short and
convincing comment that this is a strategy, not a problem that should be
solved).
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Chapter 2

First Steps

Isabelle programming happens in an enhanced dialect of Standard ML, which
adds antiquotations containing references to the logical context.
Just like all lemmas or proofs, all ML code that you write lives in a theory,
where it is embedded using the ML command:

ML {*

3 + 4

*}

The ML command takes an arbitrary ML expression, which is evaluated. It
can also contain value or function bindings.

2.1 Antiquotations

The main advantage of embedding all code in a theory is that the code
can contain references to entities that are defined in the theory. Let us for
example, print out the name of the current theory:

ML {* Context.theory_name @{theory} *}

The @{theory} antiquotation is substituted with the current theory, whose
name can then be extracted using a the function Context.theory_name.
Note that antiquotations are statically scoped. The function

ML {*

fun current_thyname () = Context.theory_name @{theory}

*}

does not return the name of the current theory. Instead, we have defined the
constant function that always returns the string "CookBook", which is the
name of @{theory} at the point where the code is embedded. Operationally
speaking, @{theory} is not replaced with code that will look up the current
theory in some (destructive) data structure and return it. Instead, it is really
replaced with the theory value.
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In the course of this introduction, we will learn about more of these an-
toquotations, which greatly simplify programming, since you can directly
access all kinds of logical elements from ML.

2.2 Terms

We can simply quote Isabelle terms from ML using the @{term : : : } antiquo-
tation:

ML {* @{term "(a::nat) + b = c"} *}

This shows the term a + b = c in the internal representation, with all gory
details. Terms are just an ML datatype, and they are defined in Pure/term.ML.
The representation of terms uses deBruin indices: Bound variables are rep-
resented by the constructor Bound, and the index refers to the number of
lambdas we have to skip until we hit the lambda that binds the variable.
The names of bound variables are kept at the abstractions, but they are just
comments. See [Impl. Man., ch. ??] for more details.

Read More Terms are described in detail in [Impl. Man., ch. ??]. Their definition and
many useful operations can be found in Pure/term.ML.
In a similar way we can quote types and theorems:

ML {* @{typ "(int * nat) list"} *}

ML {* @{thm allI} *}

In the default setup, types and theorems are printed as strings.

Sometimes the internal representation can be surprisingly different from
what you see at the user level, because the layer of parsing/type check-
ing/pretty printing can be quite thick.

Exercise 2.2.1. Look at the internal term representation of the following
terms, and find out why they are represented like this.

� case x of 0 ) 0 | Suc y ) y

� �(x, y). P y x

� {[x] |x. x � -2}

Hint: The third term is already quite big, and the pretty printer may omit parts
of it by default. If you want to see all of it, you can use print_depth 50 to set
the limit to a value high enough.
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2.3 Type checking

We can freely construct and manipulate terms, since they are just arbitrary
unchecked trees. However, we eventually want to see if a term is wellformed
in a certain context.
Type checking is done via cterm_of, which turns a term into a cterm, a
certified term. Unlike terms, which are just trees, cterms are abstract objects
that are guaranteed to be type-correct, and can only be constructed via the
official interfaces.
Type checking is always relative to a theory context. For now we can use the
@{theory} antiquotation to get hold of the theory at the current point:
ML {*

let

val natT = @{typ "nat"}

val zero = @{term "0::nat"}(*Const ("HOL.zero_class.zero", natT)*)

in

cterm_of @{theory}

(Const ("HOL.plus_class.plus", natT --> natT --> natT)

$ zero $ zero)

end

*}

ML {*

@{const_name plus}

*}

ML {*

@{term "{ [x::int] | x. x � -2 }"}

*}

The internal names of constants like zero or + are often more complex than
one first expects. Here, the extra prefixes zero_class and plus_class are
present because the constants are defined within a type class. Guessing such
internal names can be extremely hard, which is why the system provides
another antiquotation: @{const_name plus} gives just this name.

Exercise 2.3.1. Write a function rev_sum : term -> term that takes a term
of the form t1 + t2 + : : : + tn and returns the reversed sum tn + : : : + t2

+ t1. Note that + associates to the left. Try your function on some examples,
and see if the result typechecks.

Exercise 2.3.2. Write a function which takes two terms representing natural
numbers in unary (like Suc (Suc (Suc 0))), and produce the unary number
representing their sum.

Exercise 2.3.3. Look at the functions defined in Pure/logic.ML and HOL/hologic.ML

and see if they can make your life easier.
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2.4 Theorems

Just like cterms, theorems (of type thm) are abstract objects that can only
be built by going through the kernel interfaces, which means that all your
proofs will be checked. The basic rules of the Isabelle/Pure logical frame-
work are defined in Pure/thm.ML.
Using these rules, which are just ML functions, you can do simple natural
deduction proofs on the ML level. For example, the statement [[

V
x. P x =)

Q x; P t ]] =) Q t can be proved like this1:

ML {*

let

val thy = @{theory}

val nat = HOLogic.natT

val x = Free ("x", nat)

val t = Free ("t", nat)

val P = Free ("P", nat --> HOLogic.boolT)

val Q = Free ("Q", nat --> HOLogic.boolT)

val A1 = Logic.all x

(Logic.mk_implies (HOLogic.mk_Trueprop (P $ x),

HOLogic.mk_Trueprop (Q $ x)))

|> cterm_of thy

val A2 = HOLogic.mk_Trueprop (P $ t)

|> cterm_of thy

val Pt_implies_Qt =

assume A1

|> forall_elim (cterm_of thy t)

val Qt = implies_elim Pt_implies_Qt (assume A2)

in

Qt

|> implies_intr A2

|> implies_intr A1

end

*}

2.5 Tactical reasoning

The goal-oriented tactical style is similar to the apply style at the user level.
Reasoning is centered around a goal, which is modified in a sequence of
proof steps until it is solved.
A goal (or goal state) is a special thm, which by convention is an implication:

1Note that |> is just reverse application. This combinator, and several variants are de-
fined in Pure/General/basics.ML
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A1 =) : : : =) An =) #(C)

Since the final result C could again be an implication, there is the # around
the final result, which protects its premises from being misinterpreted as
open subgoals. The protection # :: prop ) prop is just the identity and
used as a syntactic marker.
Now tactics are just functions that map a goal state to a (lazy) sequence of
successor states, hence the type of a tactic is

thm -> thm Seq.seq

See Pure/General/seq.ML for the implementation of lazy sequences.
Of course, tactics are expected to behave nicely and leave the final conclu-
sion C intact. In order to start a tactical proof for A, we just set up the trivial
goal A =) #(A) and run the tactic on it. When the subgoal is solved, we
have just #(A) and can remove the protection.
The operations in Pure/goal.ML do just that and we can use them.
Let us transcribe a simple apply style proof from the tutorial[?] into ML:

lemma disj_swap: "P _ Q =) Q _ P"

apply (erule disjE)

apply (rule disjI2)

apply assumption

apply (rule disjI1)

apply assumption

done

ML {*

let

val ctxt = @{context}

val goal = @{prop "P _ Q =) Q _ P"}

in

Goal.prove ctxt ["P", "Q"] [] goal (fn _ =>

eresolve_tac [disjE] 1

THEN resolve_tac [disjI2] 1

THEN assume_tac 1

THEN resolve_tac [disjI1] 1

THEN assume_tac 1)

end

*}

Tactics that affect only a certain subgoal, take a subgoal number as an inte-
ger parameter. Here we always work on the first subgoal, following exactly
the apply script.
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2.6 Case Study: Relation Composition

Note: This is completely unfinished. I hoped to have a section with a nontrivial
example, but I ran into several problems.
Recall that HOL has special syntax for set comprehensions: {f x y |x y. P

x y} abbreviates "{u. 9 x y. u = f x y ^ P x y}".
We will automatically prove statements of the following form:

{(l1 x, r1 x) |x. P1 x} O {(l2 x, r2 x) |x. P2 x} =

{(l2 x, r1 y) |x y. r2 x = l1 y ^ P2 x ^ P1 y}

In Isabelle, relation composition is defined to be consistent with function
composition, that is, the relation applied “first” is written on the right hand
side. This different from what many textbooks do.
The above statement about composition is not proved automatically by simp ,
and it cannot be solved by a fixed set of rewrite rules, since the number of
(implicit) quantifiers may vary. Here, we only have one bound variable in
each comprehension, but in general there can be more. On the other hand,
auto proves the above statement quickly, by breaking the equality into two
parts and proving them separately. However, if e.g. P1 is a complicated
expression, the automated tools may get confused.
Our goal is now to develop a small procedure that can compute (with proof)
the composition of two relation comprehensions, which can be used to ex-
tend the simplifier.

2.7 A tactic

Let’s start with a step-by-step proof of the above statement

lemma "{(l1 x, r1 x) |x. P1 x} O {(l2

x, r2 x) |x. P2 x}

= {(l2 x, r1 y) |x y. r2 x = l1 y ^ P2 x ^ P1 y}"

apply (rule set_ext)

apply (rule iffI)

apply (erule rel_compE) — �

apply (erule CollectE) — eliminate Collect, 9 , ^, and pairs
apply (erule CollectE)

apply (erule exE)

apply (erule exE)

apply (erule conjE)

apply (erule conjE)

apply (erule Pair_inject)

apply (erule Pair_inject)

apply (simp only:)

9



apply (rule CollectI) — introduce them again
apply (rule exI)

apply (rule exI)

apply (rule conjI)

apply (rule refl)

apply (rule conjI)

apply (rule sym)

apply (assumption)

apply (rule conjI)

apply assumption

apply assumption

apply (erule CollectE) — �

apply (erule exE)+

apply (erule conjE)+

apply (simp only:)

apply (rule rel_compI)

apply (rule CollectI)

apply (rule exI)

apply (rule conjI)

apply (rule refl)

apply assumption

apply (rule CollectI)

apply (rule exI)

apply (rule conjI)

apply (subst Pair_eq)

apply (rule conjI)

apply assumption

apply (rule refl)

apply assumption

done

The reader will probably need to step through the proof and verify that there
is nothing spectacular going on here. The apply script just applies the usual
elimination and introduction rules in the right order.
This script is of course totally unreadable. But we are not trying to produce
pretty Isar proofs here. We just want to find out which rules are needed and
how they must be applied to complete the proof. And a detailed apply-style
proof can often be turned into a tactic quite easily. Of course we must resist
the temptation to use auto , blast and friends, since their behaviour is not
predictable enough. But the simple rule and erule methods are fine.
Notice that this proof depends only in one detail on the concrete equation
that we want to prove: The number of bound variables in the comprehen-
sion corresponds to the number of existential quantifiers that we have to
eliminate and introduce again. In fact this is the only reason why the equa-
tions that we want to prove are not just instances of a single rule.
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Here is the ML equivalent of the tactic script above:

ML {*

val compr_compose_tac =

rtac @{thm set_ext}

THEN' rtac @{thm iffI}

THEN' etac @{thm rel_compE}

THEN' etac @{thm CollectE}

THEN' etac @{thm CollectE}

THEN' (fn i => REPEAT (etac @{thm exE} i))

THEN' etac @{thm conjE}

THEN' etac @{thm conjE}

THEN' etac @{thm Pair_inject}

THEN' etac @{thm Pair_inject}

THEN' asm_full_simp_tac HOL_basic_ss

THEN' rtac @{thm CollectI}

THEN' (fn i => REPEAT (rtac @{thm exI} i))

THEN' rtac @{thm conjI}

THEN' rtac @{thm refl}

THEN' rtac @{thm conjI}

THEN' rtac @{thm sym}

THEN' assume_tac

THEN' rtac @{thm conjI}

THEN' assume_tac

THEN' assume_tac

THEN' etac @{thm CollectE}

THEN' (fn i => REPEAT (etac @{thm exE} i))

THEN' etac @{thm conjE}

THEN' etac @{thm conjE}

THEN' etac @{thm conjE}

THEN' asm_full_simp_tac HOL_basic_ss

THEN' rtac @{thm rel_compI}

THEN' rtac @{thm CollectI}

THEN' (fn i => REPEAT (rtac @{thm exI} i))

THEN' rtac @{thm conjI}

THEN' rtac @{thm refl}

THEN' assume_tac

THEN' rtac @{thm CollectI}

THEN' (fn i => REPEAT (rtac @{thm exI} i))

THEN' rtac @{thm conjI}

THEN' simp_tac (HOL_basic_ss addsimps [@{thm Pair_eq}])

THEN' rtac @{thm conjI}

THEN' assume_tac

THEN' rtac @{thm refl}

THEN' assume_tac

*}

lemma test1: "{(l1 x, r1 x) |x. P1 x} O {(l2

x, r2 x) |x. P2 x}
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= {(l2 x, r1 y) |x y. r2 x = l1 y ^ P2 x ^ P1 y}"

by (tactic "compr_compose_tac 1")

lemma test3: "{(l1 x, r1 x) |x. P1 x} O {(l2 x z, r2 x z) |x z. P2 x

z}

= {(l2 x z, r1 y) |x y z. r2 x z = l1 y ^ P2 x z ^ P1 y}"

by (tactic "compr_compose_tac 1")

So we have a tactic that works on at least two examples. Getting it really
right requires some more effort. Consider the goal

lemma "{(n, Suc n) |n. n > 0} O {(n, Suc n) |n. P n}

= {(n, Suc m)|n m. Suc n = m ^ P n ^ m > 0}"

This is exactly an instance of test1 , but our tactic fails on it with the usual
uninformative empty result requence.
We are now in the frequent situation that we need to debug. One simple
instrument for this is print_tac, which is the same as all_tac (the identity
for THEN), i.e. it does nothing, but it prints the current goal state as a side
effect. Another debugging option is of course to step through the interactive
apply script.
Finding the problem could be taken as an exercise for the patient reader,
and we will go ahead with the solution.
The problem is that in this instance the simplifier does more than it did
in the general version of lemma test1 . Since l1 and l2 are just the iden-
tity function, the equation corresponding to l1 y = r2 x becomes m = Suc

n. Then the simplifier eagerly replaces all occurences of m by Suc n which
destroys the structure of the proof.
This is perhaps the most important lesson to learn, when writing tactics:
Avoid automation at all cost!!!.
Let us look at the proof state at the point where the simplifier is invoked:

1.
V
x xa y z n na.

[[x = (xa, z); P n; 0 < na; xa = n; y = Suc n; y = na; z = Suc na ]]
=) x 2 {(n, Suc m) |n m. Suc n = m ^ P n ^ 0 < m}

2.
V
x. x 2 {(n, Suc m) |n m. Suc n = m ^ P n ^ 0 < m} =)

x 2 {(n, Suc n) |n. 0 < n} O {(n, Suc n) |n. P n}

Like in the apply proof, we now want to eliminate the equations that “define”
x, xa and z. The other equations are just there by coincidence, and we must
not touch them.
For such purposes, there is the internal tactic hyp_subst_single. Its job is
to take exactly one premise of the form v = t, where v is a variable, and
replace v in the whole subgoal. The hypothesis to eliminate is given by its
position.
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We can use this tactic to eliminate x :

apply (tactic "single_hyp_subst_tac 0 1")

1.
V
x xa y z n na.

[[P n; 0 < na; xa = n; y = Suc n; y = na; z = Suc na ]]
=) (xa, z) 2 {(n, Suc m) |n m. Suc n = m ^ P n ^ 0 < m}

2.
V
x. x 2 {(n, Suc m) |n m. Suc n = m ^ P n ^ 0 < m} =)

x 2 {(n, Suc n) |n. 0 < n} O {(n, Suc n) |n. P n}

apply (tactic "single_hyp_subst_tac 2 1")

apply (tactic "single_hyp_subst_tac 2 1")

apply (tactic "single_hyp_subst_tac 3 1")

apply (rule CollectI) — introduce them again
apply (rule exI)

apply (rule exI)

apply (rule conjI)

apply (rule refl)

apply (rule conjI)

apply (assumption)

apply (rule conjI)

apply assumption

apply assumption

apply (erule CollectE) — �

apply (erule exE)+

apply (erule conjE)+

apply (tactic "single_hyp_subst_tac 0 1")

apply (rule rel_compI)

apply (rule CollectI)

apply (rule exI)

apply (rule conjI)

apply (rule refl)

apply assumption

apply (rule CollectI)

apply (rule exI)

apply (rule conjI)

apply (subst Pair_eq)

apply (rule conjI)

apply assumption

apply (rule refl)

apply assumption

done

ML {*

val compr_compose_tac =

rtac @{thm set_ext}

THEN' rtac @{thm iffI}
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THEN' etac @{thm rel_compE}

THEN' etac @{thm CollectE}

THEN' etac @{thm CollectE}

THEN' (fn i => REPEAT (etac @{thm exE} i))

THEN' etac @{thm conjE}

THEN' etac @{thm conjE}

THEN' etac @{thm Pair_inject}

THEN' etac @{thm Pair_inject}

THEN' single_hyp_subst_tac 0

THEN' single_hyp_subst_tac 2

THEN' single_hyp_subst_tac 2

THEN' single_hyp_subst_tac 3

THEN' rtac @{thm CollectI}

THEN' (fn i => REPEAT (rtac @{thm exI} i))

THEN' rtac @{thm conjI}

THEN' rtac @{thm refl}

THEN' rtac @{thm conjI}

THEN' assume_tac

THEN' rtac @{thm conjI}

THEN' assume_tac

THEN' assume_tac

THEN' etac @{thm CollectE}

THEN' (fn i => REPEAT (etac @{thm exE} i))

THEN' etac @{thm conjE}

THEN' etac @{thm conjE}

THEN' etac @{thm conjE}

THEN' single_hyp_subst_tac 0

THEN' rtac @{thm rel_compI}

THEN' rtac @{thm CollectI}

THEN' (fn i => REPEAT (rtac @{thm exI} i))

THEN' rtac @{thm conjI}

THEN' rtac @{thm refl}

THEN' assume_tac

THEN' rtac @{thm CollectI}

THEN' (fn i => REPEAT (rtac @{thm exI} i))

THEN' rtac @{thm conjI}

THEN' stac @{thm Pair_eq}

THEN' rtac @{thm conjI}

THEN' assume_tac

THEN' rtac @{thm refl}

THEN' assume_tac

*}

lemma "{(n, Suc n) |n. n > 0 ^ A} O {(n, Suc n) |n m. P m n}

= {(n, Suc m)|n m' m. Suc n = m ^ P m' n ^ (m > 0 ^ A)}"

apply (tactic "compr_compose_tac 1")

done

The next step is now to turn this tactic into a simplification procedure. This
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just means that we need some code that builds the term of the composed
relation.

use "comp_simproc"
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Chapter 3

Recipes

Accumulate a list of theorems under a name

Problem: Your tool foo works with special rules, called foo -rules.
Users should be able to declare foo -rules in the theory, which are then used
by some method.

ML {*

structure FooRules = NamedThmsFun(

val name = "foo"

val description = "Rules for foo"

);

*}

setup FooRules.setup

This declares a context data slot where the theorems are stored, an attribute
foo (with the usual add and del options to declare new rules, and the inter-
nal ML interface to retrieve and modify the facts.
Furthermore, the facts are made available under the dynamic fact name foo :

lemma rule1[foo]: "A" sorry
lemma rule2[foo]: "B" sorry

declare rule1[foo del]

thm foo

ML {*

FooRules.get @{context};

*}

Read More XXX
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