
The Isabelle Programming Tutorial (draft)

by Christian Urban with contributions from:

Stefan Berghofer
Sascha Böhme
Jeremy Dawson

Alexander Krauss

March 13, 2009

Contents

1 Introduction 3

1.1 Intended Audience and Prior Knowledge 3

1.2 Existing Documentation . 3

1.3 Typographic Conventions . 4

1.4 Acknowledgements . 5

2 First Steps 6

2.1 Including ML-Code . 6

2.2 Debugging and Printing . 7

2.3 Combinators . 9

2.4 Antiquotations . 12

2.5 Terms and Types . 13

2.6 Constructing Terms and Types Manually 15

2.7 Type-Checking . 18

2.8 Theorems . 21

2.9 Theorem Attributes . 22

2.10 Theories, Contexts and Local Theories (TBD) 25

2.11 Storing Theorems (TBD) . 25

2.12 Pretty-Printing (TBD) . 26

2.13 Misc (TBD) . 26

3 Parsing 27

3.1 Building Generic Parsers . 27

3.2 Parsing Theory Syntax . 33

3.3 Parsing Inner Syntax . 37

3.4 Parsing Specifications . 38

3.5 New Commands and Keyword Files . 40

4 Tactical Reasoning 45

4.1 Basics of Reasoning with Tactics . 45

4.2 Simple Tactics . 50

1

4.3 Tactic Combinators . 56

4.4 Simplifier Tactics . 60

4.5 Simprocs . 66

4.6 Conversions . 71

4.7 Structured Proofs (TBD) . 77

5 How to Write a Definitional Package (TBD) 78

5.1 Preliminaries . 79

5.2 Parsing and Typing the Specification 84

5.3 The General Construction Principle . 92

5.4 Code . 93

5.4.1 Definitions . 93

5.4.2 Induction Principles . 95

5.4.3 Introduction Rules . 97

A Recipes 101

A.1 Useful Document Antiquotations . 101

A.2 Restricting the Runtime of a Function 104

A.3 Measuring Time . 105

A.4 Configuration Options . 105

A.5 Storing Data . 107

A.6 Executing an External Application . 108

A.7 Writing an Oracle . 108

A.8 SAT Solver . 110

A.9 User Space Type-Systems . 111

B Solutions to Most Exercises 112

C Comments for Authors 116

2

Chapter 1

Introduction

If your next project requires you to program on the ML-level of Isabelle, then this
tutorial is for you. It will guide you through the first steps of Isabelle programming,
and also explain tricks of the trade. The best way to get to know the ML-level of
Isabelle is by experimenting with the many code examples included in the tutorial.
The code is as far as possible checked against recent versions of Isabelle. If something
does not work, then please let us know. If you have comments, criticism or like to
add to the tutorial, please feel free—you are most welcome! The tutorial is meant to
be gentle and comprehensive. To achieve this we need your feedback.

1.1 Intended Audience and Prior Knowledge

This tutorial targets readers who already know how to use Isabelle for writing the-
ories and proofs. We also assume that readers are familiar with the functional pro-
gramming language ML, the language in which most of Isabelle is implemented. If
you are unfamiliar with either of these two subjects, you should first work through
the Isabelle/HOL tutorial [4] or Paulson’s book on ML [5].

1.2 Existing Documentation

The following documentation about Isabelle programming already exists (and is part
of the distribution of Isabelle):

The Isabelle/Isar Implementation Manual describes Isabelle from a high-level per-
spective, documenting both the underlying concepts and some of the inter-
faces.

The Isabelle Reference Manual is an older document that used to be the main ref-
erence of Isabelle at a time when all proof scripts were written on the ML-level.
Many parts of this manual are outdated now, but some parts, particularly the
chapters on tactics, are still useful.

The Isar Reference Manual provides specification material (like grammars, exam-
ples and so on) about Isar and its implementation. It is currently in the process
of being updated.

3

Then of course there is:

The code is of course the ultimate reference for how things really work. Therefore
you should not hesitate to look at the way things are actually implemented.
More importantly, it is often good to look at code that does similar things as
you want to do and to learn from that code.

1.3 Typographic Conventions

All ML-code in this tutorial is typeset in highlighted boxes, like the following ML-
expression:

ML {*

3 + 4

*}

These boxes corresponds to how code can be processed inside the interactive en-
vironment of Isabelle. It is therefore easy to experiment with what is displayed.
However, for better readability we will drop the enclosing ML {* . . . *} and just
write:

3 + 4

Whenever appropriate we also show the response the code generates when evalu-
ated. This response is prefixed with a ">", like:

3 + 4

> 7

The user-level commands of Isabelle (i.e. the non-ML code) are written in bold, for
example lemma, apply, foobar and so on. We use $ to indicate that a command
needs to be run in a Unix-shell, for example:

$ ls -la

Pointers to further information and Isabelle files are typeset in italic and highlighted
as follows:

Read More
Further information or pointers to files.

A few exercises a scattered around the text. Their solutions are given in Appendix B.
Of course, you learn most, if you first try to solve the exercises on your own, and
then look at the solutions.

4

1.4 Acknowledgements

Financial support for this tutorial was provided by the German Research Council
(DFG) under grant number URB 165/5-1. The following people contributed to the
text:

• Stefan Berghofer wrote nearly all of the ML-code of the simple inductive-
package and the code for the chunk -antiquotation. He also wrote the first
version of the chapter describing the package and has been helpful beyond
measure with answering questions about Isabelle.

• Sascha Böhme contributed the recipes in A.2, A.4, A.5, A.6 and A.7. He also
wrote section 4.6 and helped with recipe A.3.

• Jeremy Dawson wrote the first version of the chapter about parsing.

• Alexander Krauss wrote the first version of the “first-steps” chapter and also
contributed the material on NamedThmsFun.

Please let me know of any omissions. Responsibility for any remaining errors lies
with me.

This document is still in the process of being written! All of
the text is still under constructions. Sections and chapters
that are under heavy construction are marked with TBD.

This document was compiled with:
Isabelle repository snapshot f1cb00030d4f (12-Mar-2009)

5

Chapter 2

First Steps

Isabelle programming is done in ML. Just like lemmas and proofs, ML-code in Isabelle
is part of a theory. If you want to follow the code given in this chapter, we assume
you are working inside the theory starting with

theory FirstSteps
imports Main
begin
. . .

We also generally assume you are working with HOL. The given examples might
need to be adapted slightly if you work in a different logic.

2.1 Including ML-Code

The easiest and quickest way to include code in a theory is by using the ML-command.
For example:

ML {*

3 + 4

*}

> 7

Like normal Isabelle proof scripts, ML-commands can be evaluated by using the
advance and undo buttons of your Isabelle environment. The code inside the ML-
command can also contain value and function bindings, and even those can be un-
done when the proof script is retracted. As mentioned in the Introduction, we will
drop the ML {* . . . *} scaffolding whenever we show code. The lines prefixed with
">" are not part of the code, rather they indicate what the response is when the code
is evaluated.

Once a portion of code is relatively stable, you usually want to export it to a separate
ML-file. Such files can then be included in a theory by using the uses-command in
the header of the theory, like:

6

theory FirstSteps
imports Main
uses "file_to_be_included.ML" . . .
begin
. . .

2.2 Debugging and Printing

During development you might find it necessary to inspect some data in your code.
This can be done in a “quick-and-dirty” fashion using the function warning. For
example

warning "any string"

> "any string"

will print out "any string" inside the response buffer of Isabelle. This function ex-
pects a string as argument. If you develop under PolyML, then there is a convenient,
though again “quick-and-dirty”, method for converting values into strings, namely
the function makestring :

warning (makestring 1)

> "1"

However makestring only works if the type of what is converted is monomorphic
and not a function.

The function warning should only be used for testing purposes, because any output
this function generates will be overwritten as soon as an error is raised. For printing
anything more serious and elaborate, the function tracing is more appropriate.
This function writes all output into a separate tracing buffer. For example:

tracing "foo"

> "foo"

It is also possible to redirect the “channel” where the string foo is printed to a
separate file, e.g. to prevent ProofGeneral from choking on massive amounts of trace
output. This redirection can be achieved with the code:

val strip_specials =

let

fun strip ("\^A" :: _ :: cs) = strip cs

| strip (c :: cs) = c :: strip cs

| strip [] = [];

in implode o strip o explode end;

7

fun redirect_tracing stream =

Output.tracing_fn := (fn s =>

(TextIO.output (stream, (strip_specials s));

TextIO.output (stream, "\n");

TextIO.flushOut stream))

Calling redirect_tracing with (TextIO.openOut "foo.bar") will cause that all
tracing information is printed into the file foo.bar.

You can print out error messages with the function error ; for example:

if 0=1 then true else (error "foo")

> Exception- ERROR "foo" raised

> At command "ML".

Most often you want to inspect data of type term, cterm or thm. Isabelle contains
elaborate pretty-printing functions for printing them, but for quick-and-dirty solu-
tions they are far too unwieldy. A simple way to transform a term into a string is to
use the function Syntax.string_of_term.

Syntax.string_of_term @{context} @{term "1::nat"}

> "\^E\^Fterm\^E\^E\^Fconst\^Fname=HOL.one_class.one\^E1\^E\^F\^E\^E\^F\^E"

This produces a string with some additional information encoded in it. The string
can be properly printed by using the function warning.

warning (Syntax.string_of_term @{context} @{term "1::nat"})

> "1"

A cterm can be transformed into a string by the following function.

fun str_of_cterm ctxt t =

Syntax.string_of_term ctxt (term_of t)

In this example the function term_of extracts the term from a cterm. If there are
more than one cterms to be printed, you can use the function commas to separate
them.

fun str_of_cterms ctxt ts =

commas (map (str_of_cterm ctxt) ts)

The easiest way to get the string of a theorem is to transform it into a cterm using the
function crep_thm. Theorems also include schematic variables, such as ?P, ?Q and
so on. In order to improve the readability of theorems we convert these schematic
variables into free variables using the function Variable.import_thms.

8

fun no_vars ctxt thm =

let

val ((_, [thm’]), _) = Variable.import_thms true [thm] ctxt

in

thm’

end

fun str_of_thm ctxt thm =

str_of_cterm ctxt (#prop (crep_thm (no_vars ctxt thm)))

Again the function commas helps with printing more than one theorem.

fun str_of_thms ctxt thms =

commas (map (str_of_thm ctxt) thms)

2.3 Combinators

For beginners perhaps the most puzzling parts in the existing code of Isabelle are the
combinators. At first they seem to greatly obstruct the comprehension of the code,
but after getting familiar with them, they actually ease the understanding and also
the programming.

The simplest combinator is I, which is just the identity function defined as

fun I x = x

Another simple combinator is K, defined as

fun K x = fn _ => x

K “wraps” a function around the argument x. However, this function ignores its
argument. As a result, K defines a constant function always returning x.

The next combinator is reverse application, |>, defined as:

fun x |> f = f x

While just syntactic sugar for the usual function application, the purpose of this
combinator is to implement functions in a “waterfall fashion”. Consider for example
the function

fun inc_by_five x =1

x |> (fn x => x + 1)2

|> (fn x => (x, x))3

|> fst4

|> (fn x => x + 4)5

9

which increments its argument x by 5. It does this by first incrementing the argu-
ment by 1 (Line 2); then storing the result in a pair (Line 3); taking the first compo-
nent of the pair (Line 4) and finally incrementing the first component by 4 (Line 5).
This kind of cascading manipulations of values is quite common when dealing with
theories (for example by adding a definition, followed by lemmas and so on). The
reverse application allows you to read what happens in a top-down manner. This
kind of coding should also be familiar, if you have been exposed to Haskell’s do-
notation. Writing the function inc_by_five using the reverse application is much
clearer than writing

fun inc_by_five x = fst ((fn x => (x, x)) (x + 1)) + 4

or

fun inc_by_five x =

((fn x => x + 4) o fst o (fn x => (x, x)) o (fn x => x + 1)) x

and typographically more economical than

fun inc_by_five x =

let val y1 = x + 1

val y2 = (y1, y1)

val y3 = fst y2

val y4 = y3 + 4

in y4 end

Another reason why the let-bindings in the code above are better to be avoided: it is
more than easy to get the intermediate values wrong, not to mention the nightmares
the maintenance of this code causes!

(FIXME: give a real world example involving theories)

Similarly, the combinator #> is the reverse function composition. It can be used to
define the following function

val inc_by_six =

(fn x => x + 1)

#> (fn x => x + 2)

#> (fn x => x + 3)

which is the function composed of first the increment-by-one function and then
increment-by-two, followed by increment-by-three. Again, the reverse function com-
position allows you to read the code top-down.

The remaining combinators described in this section add convenience for the “wa-
terfall method” of writing functions. The combinator tap allows you to get hold of
an intermediate result (to do some side-calculations for instance). The function

10

fun inc_by_three x =1

x |> (fn x => x + 1)2

|> tap (fn x => tracing (makestring x))3

|> (fn x => x + 2)4

increments the argument first by 1 and then by 2. In the middle (Line 3), however,
it uses tap for printing the “plus-one” intermediate result inside the tracing buffer.
The function tap can only be used for side-calculations, because any value that is
computed cannot be merged back into the “main waterfall”. To do this, you can use
the next combinator.

The combinator ‘ is similar to tap, but applies a function to the value and returns
the result together with the value (as a pair). For example the function

fun inc_as_pair x =

x |> ‘(fn x => x + 1)

|> (fn (x, y) => (x, y + 1))

takes x as argument, and then increments x, but also keeps x. The intermediate
result is therefore the pair (x + 1, x). After that, the function increments the right-
hand component of the pair. So finally the result will be (x + 1, x + 1).

The combinators |>> and ||> are defined for functions manipulating pairs. The first
applies the function to the first component of the pair, defined as

fun (x, y) |>> f = (f x, y)

and the second combinator to the second component, defined as

fun (x, y) ||> f = (x, f y)

With the combinator |-> you can re-combine the elements from a pair. This combi-
nator is defined as

fun (x, y) |-> f = f x y

and can be used to write the following roundabout version of the double function:

fun double x =

x |> (fn x => (x, x))

|-> (fn x => fn y => x + y)

Recall that |> is the reverse function applications. Recall also that the related reverse
function composition is #>. In fact all the combinators |->, |>> and ||> described
above have related combinators for function composition, namely #->, #>> and ##>.
Using #->, for example, the function double can also be written as:

11

val double =

(fn x => (x, x))

#-> (fn x => fn y => x + y)

(FIXME: find a good exercise for combinators)

Read More
The most frequently used combinator are defined in the files Pure/library.ML and
Pure/General/basics.ML. Also [Impl. Man., Sec. B.1] contains further information about
combinators.

2.4 Antiquotations

The main advantage of embedding all code in a theory is that the code can con-
tain references to entities defined on the logical level of Isabelle. By this we mean
definitions, theorems, terms and so on. This kind of reference is realised with an-
tiquotations. For example, one can print out the name of the current theory by
typing

Context.theory_name @{theory}

> "FirstSteps"

where @{theory} is an antiquotation that is substituted with the current theory
(remember that we assumed we are inside the theory FirstSteps). The name of
this theory can be extracted using the function Context.theory_name.

Note, however, that antiquotations are statically linked, that is their value is deter-
mined at “compile-time”, not “run-time”. For example the function

fun not_current_thyname () = Context.theory_name @{theory}

does not return the name of the current theory, if it is run in a different theory.
Instead, the code above defines the constant function that always returns the string
"FirstSteps", no matter where the function is called. Operationally speaking, the
antiquotation @{theory} is not replaced with code that will look up the current
theory in some data structure and return it. Instead, it is literally replaced with the
value representing the theory name.

In a similar way you can use antiquotations to refer to proved theorems: @{thm . . . }
for a single theorem

@{thm allI}

> (
∧
x. ?P x) =⇒ ∀ x. ?P x

and @{thms . . . } for more than one

12

@{thms conj_ac}

> (?P ∧ ?Q) = (?Q ∧ ?P)

> (?P ∧ ?Q ∧ ?R) = (?Q ∧ ?P ∧ ?R)

> ((?P ∧ ?Q) ∧ ?R) = (?P ∧ ?Q ∧ ?R)

You can also refer to the current simpset. To illustrate this we implement the function
that extracts the theorem names stored in a simpset.

fun get_thm_names_from_ss simpset =

let

val {simps,...} = MetaSimplifier.dest_ss simpset

in

map #1 simps

end

The function dest_ss returns a record containing all information stored in the
simpset. We are only interested in the You can now use get_thm_names_from_ss

to obtain all names of theorems stored in the current simpset. This simpset can be
referred to using the antiquotation @{simpset}.

get_thm_names_from_ss @{simpset}

> ["Nat.of_nat_eq_id", "Int.of_int_eq_id", "Nat.One_nat_def", . . .]

Again, this way or referencing simpsets makes you independent from additions of
lemmas to the simpset by the user that potentially cause loops.

While antiquotations have many applications, they were originally introduced in
order to avoid explicit bindings for theorems such as:

val allI = thm "allI"

These bindings are difficult to maintain and also can be accidentally overwritten by
the user. This often broke Isabelle packages. Antiquotations solve this problem, since
they are “linked” statically at compile-time. However, this static linkage also limits
their usefulness in cases where data needs to be build up dynamically. In the course
of this chapter you will learn more about these antiquotations: they can simplify
Isabelle programming since one can directly access all kinds of logical elements from
th ML-level.

2.5 Terms and Types

One way to construct terms of Isabelle is by using the antiquotation @{term . . . } .
For example:

13

@{term "(a::nat) + b = c"}

> Const ("op =", . . .) $

> (Const ("HOL.plus_class.plus", . . .) $. . . $. . .) $. . .

This will show the term a + b = c, but printed using the internal representation of
this term. This internal representation corresponds to the datatype term.

The internal representation of terms uses the usual de Bruijn index mechanism
where bound variables are represented by the constructor Bound. The index in Bound

refers to the number of Abstractions (Abs) we have to skip until we hit the Abs that
binds the corresponding variable. However, in Isabelle the names of bound vari-
ables are kept at abstractions for printing purposes, and so should be treated only as
“comments”. Application in Isabelle is realised with the term-constructor $.

Read More
Terms are described in detail in [Impl. Man., Sec. 2.2]. Their definition and many useful
operations are implemented in Pure/term.ML.

Sometimes the internal representation of terms can be surprisingly different from
what you see at the user-level, because the layers of parsing/type-checking/pretty
printing can be quite elaborate.

Exercise 2.5.1. Look at the internal term representation of the following terms, and
find out why they are represented like this:

• case x of 0 ⇒ 0 | Suc y ⇒ y

• λ(x, y). P y x

• {[x] |x. x ≤ -2}

Hint: The third term is already quite big, and the pretty printer may omit parts of it
by default. If you want to see all of it, you can use the following ML-function to set the
printing depth to a higher value:

print_depth 50

The antiquotation @{prop . . . } constructs terms of propositional type, inserting the
invisible Trueprop -coercions whenever necessary. Consider for example the pairs

(@{term "P x"}, @{prop "P x"})

> (Free ("P", . . .) $ Free ("x", . . .),
> Const ("Trueprop", . . .) $ (Free ("P", . . .) $ Free ("x", . . .)))

where a coercion is inserted in the second component and

14

(@{term "P x =⇒ Q x"}, @{prop "P x =⇒ Q x"})

> (Const ("==>", . . .) $. . . $. . . , Const ("==>", . . .) $. . . $. . .)

where it is not (since it is already constructed by a meta-implication).

Types can be constructed using the antiquotation @{typ . . . }. For example:

@{typ "bool ⇒ nat"}

> bool ⇒ nat

Read More
Types are described in detail in [Impl. Man., Sec. 2.1]. Their definition and many useful
operations are implemented in Pure/type.ML.

2.6 Constructing Terms and Types Manually

While antiquotations are very convenient for constructing terms, they can only con-
struct fixed terms (remember they are “linked” at compile-time). However, you often
need to construct terms dynamically. For example, a function that returns the impli-
cation

∧
(x::τ). P x =⇒ Q x taking P, Q and the type τ as arguments can only

be written as:

fun make_imp P Q tau =

let

val x = Free ("x", tau)

in

Logic.all x (Logic.mk_implies (P $ x, Q $ x))

end

The reason is that you cannot pass the arguments P, Q and tau into an antiquotation.
For example the following does not work.

fun make_wrong_imp P Q tau = @{prop "
∧
x. P x =⇒ Q x"}

To see this apply @{term S}, @{term T} and @{typ nat} to both functions. With
make_imp we obtain the intended term involving the given arguments

make_imp @{term S} @{term T} @{typ nat}

> Const . . . $

> Abs ("x", Type ("nat",[]),

> Const . . . $ (Free ("S", . . .) $. . .) $ (Free ("T", . . .) $. . .))

whereas with make_wrong_imp we obtain a term involving the P and Q from the
antiquotation.

15

make_wrong_imp @{term S} @{term T} @{typ nat}

> Const . . . $

> Abs ("x", . . . ,
> Const . . . $ (Const . . . $ (Free ("P", . . .) $. . .)) $

> (Const . . . $ (Free ("Q", . . .) $. . .)))

Although types of terms can often be inferred, there are many situations where you
need to construct types manually, especially when defining constants. For example
the function returning a function type is as follows:

fun make_fun_type tau1 tau2 = Type ("fun", [tau1, tau2])

This can be equally written with the combinator --> as:

fun make_fun_type tau1 tau2 = tau1 --> tau2

A handy function for manipulating terms is map_types : it takes a function and ap-
plies it to every type in a term. You can, for example, change every nat in a term
into an int using the function:

fun nat_to_int t =

(case t of

@{typ nat} => @{typ int}

| Type (s, ts) => Type (s, map nat_to_int ts)

| _ => t)

An example as follows:

map_types nat_to_int @{term "a = (1::nat)"}

> Const ("op =", "int ⇒ int ⇒ bool")

> $ Free ("a", "int") $ Const ("HOL.one_class.one", "int")

Read More
There are many functions in Pure/term.ML, Pure/logic.ML and HOL/Tools/hologic.ML

that make such manual constructions of terms and types easier.

Have a look at these files and try to solve the following two exercises:

Exercise 2.6.1. Write a function rev_sum : term -> term that takes a term of the
form t1 + t2 + . . . + tn (whereby n might be zero) and returns the reversed sum
tn + . . . + t2 + t1. Assume the t i can be arbitrary expressions and also note that
+ associates to the left. Try your function on some examples.

Exercise 2.6.2. Write a function which takes two terms representing natural numbers
in unary notation (like Suc (Suc (Suc 0))), and produce the number representing
their sum.

16

There are a few subtle issues with constants. They usually crop up when pattern
matching terms or types, or when constructing them. While it is perfectly ok to write
the function is_true as follows

fun is_true @{term True} = true

| is_true _ = false

this does not work for picking out ∀ -quantified terms. Because the function

fun is_all (@{term All} $ _) = true

| is_all _ = false

will not correctly match the formula ∀ x. P x :

is_all @{term "∀ x::nat. P x"}

> false

The problem is that the @term -antiquotation in the pattern fixes the type of the
constant All to be (’a ⇒ bool) ⇒ bool for an arbitrary, but fixed type ’a. A
properly working alternative for this function is

fun is_all (Const ("All", _) $ _) = true

| is_all _ = false

because now

is_all @{term "∀ x::nat. P x"}

> true

matches correctly (the first wildcard in the pattern matches any type and the second
any term).

However there is still a problem: consider the similar function that attempts to pick
out Nil -terms:

fun is_nil (Const ("Nil", _)) = true

| is_nil _ = false

Unfortunately, also this function does not work as expected, since

is_nil @{term "Nil"}

> false

The problem is that on the ML-level the name of a constant is more subtle than you
might expect. The function is_all worked correctly, because All is such a funda-
mental constant, which can be referenced by Const ("All", some_type). How-
ever, if you look at

17

@{term "Nil"}

> Const ("List.list.Nil", . . .)

the name of the constant Nil depends on the theory in which the term constructor
is defined (List) and also in which datatype (list). Even worse, some constants
have a name involving type-classes. Consider for example the constants for zero

and (op *) :

(@{term "0::nat"}, @{term "op *"})

> (Const ("HOL.zero_class.zero", . . .),
> Const ("HOL.times_class.times", . . .))

While you could use the complete name, for example Const ("List.list.Nil",

some_type), for referring to or matching against Nil, this would make the code
rather brittle. The reason is that the theory and the name of the datatype can eas-
ily change. To make the code more robust, it is better to use the antiquotation
@{const_name . . . }. With this antiquotation you can harness the variable parts of
the constant’s name. Therefore a functions for matching against constants that have
a polymorphic type should be written as follows.

fun is_nil_or_all (Const (@{const_name "Nil"}, _)) = true

| is_nil_or_all (Const (@{const_name "All"}, _) $ _) = true

| is_nil_or_all _ = false

Occasional you have to calculate what the “base” name of a given constant is. For
this you can use the function Sign.extern_const or Long_Name.base_name. For
example:

Sign.extern_const @{theory} "List.list.Nil"

> "Nil"

The difference between both functions is that extern_const returns the smallest
name that is still unique, whereas base_name always strips off all qualifiers.

Read More
Functions about naming are implemented in Pure/General/name_space.ML; functions
about signatures in Pure/sign.ML.

2.7 Type-Checking

You can freely construct and manipulate terms and types, since they are just arbi-
trary unchecked trees. However, you eventually want to see if a term is well-formed,
or type-checks, relative to a theory. Type-checking is done via the function cterm_of,
which converts a term into a cterm, a certified term. Unlike terms, which are just

18

trees, cterms are abstract objects that are guaranteed to be type-correct, and they
can only be constructed via “official interfaces”.

Type-checking is always relative to a theory context. For now we use the @{theory}

antiquotation to get hold of the current theory. For example you can write:

cterm_of @{theory} @{term "(a::nat) + b = c"}

> a + b = c

This can also be written with an antiquotation:

@{cterm "(a::nat) + b = c"}

> a + b = c

Attempting to obtain the certified term for

@{cterm "1 + True"}

> Type unification failed . . .

yields an error (since the term is not typable). A slightly more elaborate example
that type-checks is:

let

val natT = @{typ "nat"}

val zero = @{term "0::nat"}

in

cterm_of @{theory}

(Const (@{const_name plus}, natT --> natT --> natT) $ zero $ zero)

end

> 0 + 0

In Isabelle also types need can be certified. For example, you obtain the certified
type for the Isablle type nat ⇒ bool on the ML-level as follows:

ctyp_of @{theory} (@{typ nat} --> @{typ bool})

> nat ⇒ bool

Read More
For functions related to cterms and ctyps see the file Pure/thm.ML.

Exercise 2.7.1. Check that the function defined in Exercise 2.6.1 returns a result that
type-checks.

Remember that in Isabelle a term contains enough typing information (constants,
free variables and abstractions all have typing information) so that it is always clear
what the type of a term is. Given a well-typed term, the function type_of returns
the type of a term. Consider for example:

19

type_of (@{term "f::nat ⇒ bool"} $ @{term "x::nat"})

> bool

To calculate the type, this function traverses the whole term and will detect any
typing inconsistency. For examle changing the type of the variable x from nat to
int will result in the error message:

type_of (@{term "f::nat ⇒ bool"} $ @{term "x::int"})

> *** Exception- TYPE ("type_of: type mismatch in application" . . .

Since the complete traversal might sometimes be too costly and not necessary, there
is the function fastype_of, which also returns the type of a term.

fastype_of (@{term "f::nat ⇒ bool"} $ @{term "x::nat"})

> bool

However, efficiency is gained on the expense of skiping some tests. You can see this
in the following example

fastype_of (@{term "f::nat ⇒ bool"} $ @{term "x::int"})

> bool

where no error is detected.

Sometimes it is a bit inconvenient to construct a term with complete typing anno-
tations, especially in cases where the typing information is redundant. A short-cut
is to use the “place-holder” type dummyT and then let type-inference figure out the
complete type. An example is as follows:

let

val c = Const (@{const_name "plus"}, dummyT)

val o = @{term "1::nat"}

val v = Free ("x", dummyT)

in

Syntax.check_term @{context} (c $ o $ v)

end

> Const ("HOL.plus_class.plus", "nat ⇒ nat ⇒ nat") $

> Const ("HOL.one_class.one", "nat") $ Free ("x", "nat")

Instead of giving explicitly the type for the constant plus and the free variable x, the
type-inference filles in the missing information.

Read More
See Pure/Syntax/syntax.ML where more functions about reading, checking and pretty-
printing of terms are defined. Fuctions related to the type inference are implemented in
Pure/type.ML and Pure/type_infer.ML.

(FIXME: say something about sorts)

20

2.8 Theorems

Just like cterms, theorems are abstract objects of type thm that can only be build
by going through interfaces. As a consequence, every proof in Isabelle is correct by
construction. This follows the tradition of the LCF approach [2].

To see theorems in “action”, let us give a proof on the ML-level for the following
statement:

lemma
assumes assm1: "

∧
(x::nat). P x =⇒ Q x"

and assm2: "P t"

shows "Q t"

The corresponding ML-code is as follows:1

let

val assm1 = @{cprop "
∧
(x::nat). P x =⇒ Q x"}

val assm2 = @{cprop "(P::nat⇒bool) t"}

val Pt_implies_Qt =

assume assm1

|> forall_elim @{cterm "t::nat"};

val Qt = implies_elim Pt_implies_Qt (assume assm2);

in

Qt

|> implies_intr assm2

|> implies_intr assm1

end

> [[
∧
x. P x =⇒ Q x; P t]] =⇒ Q t

This code-snippet constructs the following proof:

∧
x. P x =⇒ Q x `

∧
x. P x =⇒ Q x

(assume)∧
x. P x =⇒ Q x ` P t =⇒ Q t

(
∧

-elim)
P t ` P t

(assume)∧
x. P x =⇒ Q x, P t ` Q t

(=⇒-elim)∧
x. P x =⇒ Q x ` P t =⇒ Q t

(=⇒-intro)

` [[
∧
x. P x =⇒ Q x; P t]] =⇒ Q t

(=⇒-intro)

However, while we obtained a theorem as result, this theorem is not yet stored in
Isabelle’s theorem database. So it cannot be referenced later on. How to store
theorems will be explained in Section 2.11.

Read More
For the functions assume, forall_elim etc see [Impl. Man., Sec. 2.3]. The basic functions
for theorems are defined in Pure/thm.ML.

(FIXME: how to add case-names to goal states - maybe in the next section)

1Note that |> is reverse application. See Section 2.3.

21

2.9 Theorem Attributes

Theorem attributes are [simp], [OF . . .], [symmetric] and so on. Such attributes
are neither tags nor flags annotated to theorems, but functions that do further pro-
cessing once a theorem is proven. In particular, it is not possible to find out what are
all theorems that have a given attribute in common, unless of course the function
behind the attribute stores the theorems in a retrivable datastructure.

If you want to print out all currently known attributes a theorem can have, you can
use the function:

Attrib.print_attributes @{theory}

> COMP: direct composition with rules (no lifting)

> HOL.dest: declaration of Classical destruction rule

> HOL.elim: declaration of Classical elimination rule

> . . .

To explain how to write your own attribute, let us start with an extremely simple
version of the attribute [symmetric]. The purpose of this attribute is to produce the
“symmetric” version of an equation. The main function behind this attribute is

val my_symmetric = Thm.rule_attribute (fn _ => fn thm => thm RS @{thm sym})

where the function Thm.rule_attribute expects a function taking a context (which
we ignore in the code above) and a theorem (thm), and returns another theo-
rem (namely thm resolved with the lemma sym : s = t =⇒ t = s). The function
Thm.rule_attribute then returns an attribute.

Before we can use the attribute, we need to set it up. This can be done using the
function Attrib.add_attributes as follows.

setup {*

Attrib.add_attributes

[("my_sym", Attrib.no_args my_symmetric, "applying the sym rule")] *}

The attribute does not expect any further arguments (unlike [OF . . .], for example,
which can take a list of theorems as argument). Therefore we use the function
Attrib.no_args. Later on we will also consider attributes taking further arguments.
An example for the attribute [my_sym] is the proof

lemma test[my_sym]: "2 = Suc (Suc 0)" by simp

which stores the theorem Suc (Suc 0) = 2 under the name test. We can also use
the attribute when referring to this theorem.

thm test[my_sym]

> 2 = Suc (Suc 0)

The purpose of Thm.rule_attribute is to directly manipulate theorems. Another
usage of attributes is to add and delete theorems from stored data. For example
the attribute [simp] adds or deletes a theorem from the current simpset. For these

22

applications, you can use Thm.declaration_attribute. To illustrate this function,
let us introduce a reference containing a list of theorems.

val my_thms = ref ([]:thm list)

A word of warning: such references must not be used in any code that is meant to
be more than just for testing purposes! Here it is only used to illustrate matters.
We will show later how to store data properly without using references. The func-
tion Thm.declaration_attribute expects us to provide two functions that add and
delete theorems from this list. For this we use the two functions:

fun my_thms_add thm ctxt =

(my_thms := Thm.add_thm thm (!my_thms); ctxt)

fun my_thms_del thm ctxt =

(my_thms := Thm.del_thm thm (!my_thms); ctxt)

These functions take a theorem and a context and, for what we are explaining here
it is sufficient that they just return the context unchanged. They change however
the reference my_thms, whereby the function Thm.add_thm adds a theorem if it is
not already included in the list, and Thm.del_thm deletes one. Both functions use
the predicate Thm.eq_thm_prop which compares theorems according to their proved
propositions (modulo alpha-equivalence).

You can turn both functions into attributes using

val my_add = Thm.declaration_attribute my_thms_add

val my_del = Thm.declaration_attribute my_thms_del

and set up the attributes as follows

setup {*

Attrib.add_attributes

[("my_thms", Attrib.add_del_args my_add my_del,

"maintaining a list of my_thms")] *}

Now if you prove the lemma attaching the attribute [my_thms]

lemma trueI_2[my_thms]: "True" by simp

then you can see the lemma is added to the initially empty list.

!my_thms

> ["True"]

You can also add theorems using the command declare.

declare test[my_thms] trueI_2[my_thms add]

The add is the default operation and does not need to be given. This declaration will
cause the theorem list to be updated as follows.

23

!my_thms

> ["True", "Suc (Suc 0) = 2"]

The theorem trueI_2 only appears once, since the function Thm.add_thm tests for
duplicates, before extending the list. Deletion from the list works as follows:

declare test[my_thms del]

After this, the theorem list is again:

!my_thms

> ["True"]

We used in this example two functions declared as Thm.declaration_attribute,
but there can be any number of them. We just have to change the parser for reading
the arguments accordingly.

However, as said at the beginning of this example, using references for storing the-
orems is not the received way of doing such things. The received way is to start a
“data slot” in a context by using the functor GenericDataFun :

structure Data = GenericDataFun

(type T = thm list

val empty = []

val extend = I

fun merge _ = Thm.merge_thms)

To use this data slot, you only have to change my_thms_add and my_thms_del to:

val thm_add = Data.map o Thm.add_thm

val thm_del = Data.map o Thm.del_thm

where Data.map updates the data appropriately in the context. Since storing the-
orems in a special list is such a common task, there is the functor NamedThmsFun,
which does most of the work for you. To obtain such a named theorem lists, you just
declare

structure FooRules = NamedThmsFun

(val name = "foo"

val description = "Rules for foo");

and set up the FooRules with the command

setup {* FooRules.setup *}

This code declares a data slot where the theorems are stored, an attribute foo (with
the add and del options for adding and deleting theorems) and an internal ML
interface to retrieve and modify the theorems.

24

Furthermore, the facts are made available on the user-level under the dynamic fact
name foo. For example you can declare three lemmas to be of the kind foo by:

lemma rule1[foo]: "A" sorry
lemma rule2[foo]: "B" sorry
lemma rule3[foo]: "C" sorry

and undeclare the first one by:

declare rule1[foo del]

and query the remaining ones with:

thm foo

> ?C

> ?B

On the ML-level the rules marked with foo can be retrieved using the function
FooRules.get :

FooRules.get @{context}

> ["?C","?B"]

Read More
For more information see Pure/Tools/named_thms.ML and also the recipe in Section ??
about storing arbitrary data.

(FIXME What are: theory_attributes, proof_attributes?)

Read More
FIXME: Pure/more_thm.ML Pure/Isar/attrib.ML

2.10 Theories, Contexts and Local Theories (TBD)

(FIXME: expand)

(FIXME: explain setup)

There are theories, proof contexts and local theories (in this order, if you want to
order them).

In contrast to an ordinary theory, which simply consists of a type signature, as well
as tables for constants, axioms and theorems, a local theory also contains additional
context information, such as locally fixed variables and local assumptions that may
be used by the package. The type local_theory is identical to the type of proof
contexts Proof.context, although not every proof context constitutes a valid local
theory.

2.11 Storing Theorems (TBD)

PureThy.add_thms_dynamic

25

2.12 Pretty-Printing (TBD)

Pretty.big_list, Pretty.brk, Pretty.block, Pretty.chunks

2.13 Misc (TBD)

DatatypePackage.get_datatype @{theory} "List.list"

26

Chapter 3

Parsing

Isabelle distinguishes between outer and inner syntax. Theory commands, such as
definition, inductive and so on, belong to the outer syntax, whereas items inside
double quotation marks, such as terms, types and so on, belong to the inner syntax.
For parsing inner syntax, Isabelle uses a rather general and sophisticated algorithm,
which is driven by priority grammars. Parsers for outer syntax are built up by func-
tional parsing combinators. These combinators are a well-established technique for
parsing, which has, for example, been described in Paulson’s classic ML-book [5].
Isabelle developers are usually concerned with writing these outer syntax parsers,
either for new definitional packages or for calling tactics with specific arguments.

Read More
The library for writing parser combinators is split up, roughly, into two parts. The first
part consists of a collection of generic parser combinators defined in the structure Scan in
the file Pure/General/scan.ML. The second part of the library consists of combinators for
dealing with specific token types, which are defined in the structure OuterParse in the file
Pure/Isar/outer_parse.ML.

3.1 Building Generic Parsers

Let us first have a look at parsing strings using generic parsing combinators. The
function $$ takes a string as argument and will “consume” this string from a given
input list of strings. “Consume” in this context means that it will return a pair con-
sisting of this string and the rest of the input list. For example:

($$ "h") (explode "hello")

> ("h", ["e", "l", "l", "o"])

($$ "w") (explode "world")

> ("w", ["o", "r", "l", "d"])

The function $$ will either succeed (as in the two examples above) or raise the
exception FAIL if no string can be consumed. For example trying to parse

27

($$ "x") (explode "world")

> Exception FAIL raised

will raise the exception FAIL. There are three exceptions used in the parsing combi-
nators:

• FAIL is used to indicate that alternative routes of parsing might be explored.

• MORE indicates that there is not enough input for the parser. For example in
($$ "h") [].

• ABORT is the exception that is raised when a dead end is reached. It is used for
example in the function !! (see below).

However, note that these exceptions are private to the parser and cannot be accessed
by the programmer (for example to handle them).

Slightly more general than the parser $$ is the function Scan.one, in that it takes a
predicate as argument and then parses exactly one item from the input list satisfying
this predicate. For example the following parser either consumes an "h" or a "w" :

let

val hw = Scan.one (fn x => x = "h" orelse x = "w")

val input1 = (explode "hello")

val input2 = (explode "world")

in

(hw input1, hw input2)

end

> (("h", ["e", "l", "l", "o"]),("w", ["o", "r", "l", "d"]))

Two parser can be connected in sequence by using the function --. For example
parsing h, e and l in this sequence you can achieve by:

(($$ "h") -- ($$ "e") -- ($$ "l")) (explode "hello")

> ((("h", "e"), "l"), ["l", "o"])

Note how the result of consumed strings builds up on the left as nested pairs.

If, as in the previous example, you want to parse a particular string, then you should
use the function Scan.this_string :

Scan.this_string "hell" (explode "hello")

> ("hell", ["o"])

Parsers that explore alternatives can be constructed using the function ||. For ex-
ample, the parser (p || q) returns the result of p, in case it succeeds, otherwise it
returns the result of q. For example:

28

let

val hw = ($$ "h") || ($$ "w")

val input1 = (explode "hello")

val input2 = (explode "world")

in

(hw input1, hw input2)

end

> (("h", ["e", "l", "l", "o"]), ("w", ["o", "r", "l", "d"]))

The functions |-- and --| work like the sequencing function for parsers, except
that they discard the item being parsed by the first (respectively second) parser. For
example:

let

val just_e = ($$ "h") |-- ($$ "e")

val just_h = ($$ "h") --| ($$ "e")

val input = (explode "hello")

in

(just_e input, just_h input)

end

> (("e", ["l", "l", "o"]),("h", ["l", "l", "o"]))

The parser Scan.optional p x returns the result of the parser p, if it succeeds;
otherwise it returns the default value x. For example:

let

val p = Scan.optional ($$ "h") "x"

val input1 = (explode "hello")

val input2 = (explode "world")

in

(p input1, p input2)

end

> (("h", ["e", "l", "l", "o"]), ("x", ["w", "o", "r", "l", "d"]))

The function Scan.option works similarly, except no default value can be given.
Instead, the result is wrapped as an option -type. For example:

let

val p = Scan.option ($$ "h")

val input1 = (explode "hello")

val input2 = (explode "world")

in

(p input1, p input2)

end

> ((SOME "h", ["e", "l", "l", "o"]), (NONE, ["w", "o", "r", "l", "d"]))

The function !! helps to produce appropriate error messages during parsing. For ex-
ample if you want to parse that p is immediately followed by q, or start a completely
different parser r, you might write:

29

(p -- q) || r

However, this parser is problematic for producing an appropriate error message, in
case the parsing of (p -- q) fails. Because in that case you lose the information
that p should be followed by q. To see this consider the case in which p is present in
the input, but not q. That means (p -- q) will fail and the alternative parser r will
be tried. However in many circumstance this will be the wrong parser for the input
“p-followed-by-q” and therefore will also fail. The error message is then caused by
the failure of r, not by the absence of q in the input. This kind of situation can
be avoided when using the function !!. This function aborts the whole process of
parsing in case of a failure and prints an error message. For example if you invoke
the parser

(!! (fn _ => "foo") ($$ "h"))

on "hello", the parsing succeeds

(!! (fn _ => "foo") ($$ "h")) (explode "hello")

> ("h", ["e", "l", "l", "o"])

but if you invoke it on "world"

(!! (fn _ => "foo") ($$ "h")) (explode "world")

> Exception ABORT raised

then the parsing aborts and the error message foo is printed. In order to see the
error message properly, you need to prefix the parser with the function Scan.error.
For example:

Scan.error (!! (fn _ => "foo") ($$ "h"))

> Exception Error "foo" raised

This “prefixing” is usually done by wrappers such as OuterSyntax.command (see
Section 3.5 which explains this function in more detail).

Let us now return to our example of parsing (p -- q) || r. If you want to generate
the correct error message for p-followed-by-q, then you have to write:

fun p_followed_by_q p q r =

let

val err_msg = (fn _ => p ^ " is not followed by " ^ q)

in

($$ p -- (!! err_msg ($$ q))) || ($$ r -- $$ r)

end

Running this parser with the "h" and "e", and the input "holle"

30

Scan.error (p_followed_by_q "h" "e" "w") (explode "holle")

> Exception ERROR "h is not followed by e" raised

produces the correct error message. Running it with

Scan.error (p_followed_by_q "h" "e" "w") (explode "wworld")

> (("w", "w"), ["o", "r", "l", "d"])

yields the expected parsing.

The function Scan.repeat p will apply a parser p as often as it succeeds. For exam-
ple:

Scan.repeat ($$ "h") (explode "hhhhello")

> (["h", "h", "h", "h"], ["e", "l", "l", "o"])

Note that Scan.repeat stores the parsed items in a list. The function Scan.repeat1

is similar, but requires that the parser p succeeds at least once.

Also note that the parser would have aborted with the exception MORE, if you had
run it only on just "hhhh". This can be avoided by using the wrapper Scan.finite
and the “stopper-token” Symbol.stopper. With them you can write:

Scan.finite Symbol.stopper (Scan.repeat ($$ "h")) (explode "hhhh")

> (["h", "h", "h", "h"], [])

Symbol.stopper is the “end-of-input” indicator for parsing strings; other stoppers
need to be used when parsing, for example, tokens. However, this kind of manually
wrapping is often already done by the surrounding infrastructure.

The function Scan.repeat can be used with Scan.one to read any string as in

let

val p = Scan.repeat (Scan.one Symbol.not_eof)

val input = (explode "foo bar foo")

in

Scan.finite Symbol.stopper p input

end

> (["f", "o", "o", " ", "b", "a", "r", " ", "f", "o", "o"], [])

where the function Symbol.not_eof ensures that we do not read beyond the end of
the input string (i.e. stopper symbol).

The function Scan.unless p q takes two parsers: if the first one can parse the
input, then the whole parser fails; if not, then the second is tried. Therefore

31

Scan.unless ($$ "h") ($$ "w") (explode "hello")

> Exception FAIL raised

fails, while

Scan.unless ($$ "h") ($$ "w") (explode "world")

> ("w",["o", "r", "l", "d"])

succeeds.

The functions Scan.repeat and Scan.unless can be combined to read any input
until a certain marker symbol is reached. In the example below the marker symbol
is a "*".

let

val p = Scan.repeat (Scan.unless ($$ "*") (Scan.one Symbol.not_eof))

val input1 = (explode "fooooo")

val input2 = (explode "foo*ooo")

in

(Scan.finite Symbol.stopper p input1,

Scan.finite Symbol.stopper p input2)

end

> ((["f", "o", "o", "o", "o", "o"], []),

> (["f", "o", "o"], ["*", "o", "o", "o"]))

After parsing is done, you nearly always want to apply a function on the parsed
items. One way to do this is the function (p >> f), which runs first the parser p and
upon successful completion applies the function f to the result. For example

let

fun double (x,y) = (x ^ x, y ^ y)

in

(($$ "h") -- ($$ "e") >> double) (explode "hello")

end

> (("hh", "ee"), ["l", "l", "o"])

doubles the two parsed input strings; or

let

val p = Scan.repeat (Scan.one Symbol.not_eof)

val input = (explode "foo bar foo")

in

Scan.finite Symbol.stopper (p >> implode) input

end

> ("foo bar foo",[])

32

where the single-character strings in the parsed output are transformed back into
one string.

The function Scan.ahead parses some input, but leaves the original input unchanged.
For example:

Scan.ahead (Scan.this_string "foo") (explode "foo")

> ("foo", ["f", "o", "o"])

The function Scan.lift takes a parser and a pair as arguments. This function ap-
plies the given parser to the second component of the pair and leaves the first com-
ponent untouched. For example

Scan.lift (($$ "h") -- ($$ "e")) (1,(explode "hello"))

> (("h", "e"), (1, ["l", "l", "o"]))

(FIXME: In which situations is this useful? Give examples.)

Exercise 3.1.1. Write a parser that parses an input string so that any comment en-
closed inside (* . . . *) is replaced by a the same comment but enclosed inside (** . . . **)
in the output string. To enclose a string, you can use the function enclose s1 s2 s

which produces the string s1 ^ s ^ s2.

3.2 Parsing Theory Syntax

Most of the time, however, Isabelle developers have to deal with parsing tokens, not
strings. These token parsers have the type:

type ’a parser = OuterLex.token list -> ’a * OuterLex.token list

The reason for using token parsers is that theory syntax, as well as the parsers for the
arguments of proof methods, use the type OuterLex.token (which is identical to the
type OuterParse.token). However, there are also handy parsers for ML-expressions
and ML-files.

Read More
The parser functions for the theory syntax are contained in the structure OuterParse

defined in the file Pure/Isar/outer_parse.ML. The definition for tokens is in the file
Pure/Isar/outer_lex.ML.

The structure OuterLex defines several kinds of tokens (for example Ident for iden-
tifiers, Keyword for keywords and Command for commands). Some token parsers take
into account the kind of tokens.

The first example shows how to generate a token list out of a string using the function
OuterSyntax.scan. It is given the argument Position.none since, at the moment,
we are not interested in generating precise error messages. The following code

33

OuterSyntax.scan Position.none "hello world"

> [Token (. . . ,(Ident, "hello"), . . .),
> Token (. . . ,(Space, " "), . . .),
> Token (. . . ,(Ident, "world"), . . .)]

produces three tokens where the first and the last are identifiers, since "hello" and
"world" do not match any other syntactic category.1 The second indicates a space.

Many parsing functions later on will require spaces, comments and the like to have
already been filtered out. So from now on we are going to use the functions filter
and OuterLex.is_proper do this. For example:

let

val input = OuterSyntax.scan Position.none "hello world"

in

filter OuterLex.is_proper input

end

> [Token (. . . ,(Ident, "hello"), . . .), Token (. . . ,(Ident, "world"), . . .)]

For convenience we define the function:

fun filtered_input str =

filter OuterLex.is_proper (OuterSyntax.scan Position.none str)

If you now parse

filtered_input "inductive | for"

> [Token (. . . ,(Command, "inductive"), . . .),
> Token (. . . ,(Keyword, "|"), . . .),
> Token (. . . ,(Keyword, "for"), . . .)]

you obtain a list consisting of only a command and two keyword tokens. If you
want to see which keywords and commands are currently known to Isabelle, type in
the following code (you might have to adjust the print_depth in order to see the
complete list):

let

val (keywords, commands) = OuterKeyword.get_lexicons ()

in

(Scan.dest_lexicon commands, Scan.dest_lexicon keywords)

end

> (["}", "{", . . .], ["⇀↽", "↽", . . .])

The parser OuterParse.$$$ parses a single keyword. For example:

1Note that because of a possible a bug in the PolyML runtime system the result is printed as "?",
instead of the tokens.

34

let

val input1 = filtered_input "where for"

val input2 = filtered_input "| in"

in

(OuterParse.$$$ "where" input1, OuterParse.$$$ "|" input2)

end

> (("where", . . .), ("|", . . .))

Like before, you can sequentially connect parsers with --. For example:

let

val input = filtered_input "| in"

in

(OuterParse.$$$ "|" -- OuterParse.$$$ "in") input

end

> (("|", "in"),[])

The parser OuterParse.enum s p parses a possibly empty list of items recognised
by the parser p, where the items being parsed are separated by the string s. For
example:

let

val input = filtered_input "in | in | in foo"

in

(OuterParse.enum "|" (OuterParse.$$$ "in")) input

end

> (["in", "in", "in"],[. . .])

OuterParse.enum1 works similarly, except that the parsed list must be non-empty.
Note that we had to add a string "foo" at the end of the parsed string, otherwise the
parser would have consumed all tokens and then failed with the exception MORE. Like
in the previous section, we can avoid this exception using the wrapper Scan.finite.
This time, however, we have to use the “stopper-token” OuterLex.stopper. We can
write:

let

val input = filtered_input "in | in | in"

in

Scan.finite OuterLex.stopper

(OuterParse.enum "|" (OuterParse.$$$ "in")) input

end

> (["in", "in", "in"],[])

The following function will help to run examples.

35

fun parse p input = Scan.finite OuterLex.stopper (Scan.error p) input

The function OuterParse.!!! can be used to force termination of the parser in
case of a dead end, just like Scan.!! (see previous section), except that the error
message is fixed to be "Outer syntax error" with a relatively precise description
of the failure. For example:

let

val input = filtered_input "in |"

val parse_bar_then_in = OuterParse.$$$ "|" -- OuterParse.$$$ "in"

in

parse (OuterParse.!!! parse_bar_then_in) input

end

> Exception ERROR "Outer syntax error: keyword "|" expected,

> but keyword in was found" raised

Exercise 3.2.1. (FIXME) A type-identifier, for example ’a, is a token of kind Keyword.
It can be parsed using the function OuterParse.type_ident.

(FIXME: or give parser for numbers)

Whenever there is a possibility that the processing of user input can fail, it is a good
idea to give as much information about where the error occured. For this Isabelle
can attach positional information to tokens and then thread this information up the
processing chain. To see this, modify the function filtered_input described earlier
to

fun filtered_input’ str =

filter OuterLex.is_proper (OuterSyntax.scan (Position.line 7) str)

where we pretend the parsed string starts on line 7. An example is

filtered_input’ "foo \n bar"

> [Token (("foo", ({line=7, end_line=7}, {line=7})), (Ident, "foo"), . . .),
> Token (("bar", ({line=8, end_line=8}, {line=8})), (Ident, "bar"), . . .)]

in which the "\n" causes the second token to be in line 8.

By using the parser OuterParse.position you can decode the positional informa-
tion and return it as part of the parsed input. For example

let

val input = (filtered_input’ "where")

in

parse (OuterParse.position (OuterParse.$$$ "where")) input

end

> (("where", {line=7, end_line=7}), [])

36

Read More
The functions related to positions are implemented in the file Pure/General/position.ML.

3.3 Parsing Inner Syntax

There is usually no need to write your own parser for parsing inner syntax, that is
for terms and types: you can just call the pre-defined parsers. Terms can be parsed
using the function OuterParse.term. For example:

let

val input = OuterSyntax.scan Position.none "foo"

in

OuterParse.term input

end

> ("\^E\^Ftoken\^Efoo\^E\^F\^E", [])

The function OuterParse.prop is similar, except that it gives a different error mes-
sage, when parsing fails. As you can see, the parser not just returns the parsed
string, but also some encoded information. You can decode the information with the
function YXML.parse. For example

YXML.parse "\^E\^Ftoken\^Efoo\^E\^F\^E"

> XML.Elem ("token", [], [XML.Text "foo"])

The result of the decoding is an XML-tree. You can see better what is going on if you
replace Position.none by Position.line 42, say:

let

val input = OuterSyntax.scan (Position.line 42) "foo"

in

YXML.parse (fst (OuterParse.term input))

end

> XML.Elem ("token", [("line", "42"), ("end_line", "42")], [XML.Text "foo"])

The positional information is stored as part of an XML-tree so that code called later
on will be able to give more precise error messages.

Read More
The functions to do with input and output of XML and YXML are defined in
Pure/General/xml.ML and Pure/General/yxml.ML.

37

3.4 Parsing Specifications

There are a number of special purpose parsers that help with parsing specifications
of function definitions, inductive predicates and so on. In Capter 5, for example, we
will need to parse specifications for inductive predicates of the form:

simple inductive
even and odd

where
even0: "even 0"

| evenS: "odd n =⇒ even (Suc n)"

| oddS: "even n =⇒ odd (Suc n)"

and

simple inductive
trcl for R :: "’a ⇒ ’a ⇒ bool"

where
base: "trcl R x x"

| step: "trcl R x y =⇒ R y z =⇒ trcl R x z"

For this we are going to use the parser:

val spec_parser =1

OuterParse.opt_target --2

OuterParse.fixes --3

OuterParse.for_fixes --4

Scan.optional5

(OuterParse.$$$ "where" |--6

OuterParse.!!!7

(OuterParse.enum1 "|"8

(SpecParse.opt_thm_name ":" -- OuterParse.prop))) []9

Note that the parser does not parse the keyword simple inductive, even if it is meant
to process definitions as shown above. The parser of the keyword will be given by
the infrastructure that will eventually call spec_parser.

To see what the parser returns, let us parse the string corresponding to the definition
of even and odd :

let

val input = filtered_input

("even and odd " ^

"where " ^

" even0[intro]: \"even 0\" " ^

"| evenS[intro]: \"odd n =⇒ even (Suc n)\" " ^

"| oddS[intro]: \"even n =⇒ odd (Suc n)\"")

in

parse spec_parser input

end

> ((((NONE, [(even, NONE, NoSyn), (odd, NONE, NoSyn)]), []),

> [((even0, . . .), "\^E\^Ftoken\^Eeven 0\^E\^F\^E"),

> ((evenS, . . .), "\^E\^Ftoken\^Eodd n =⇒ even (Suc n)\^E\^F\^E"),

> ((oddS, . . .), "\^E\^Ftoken\^Eeven n =⇒ odd (Suc n)\^E\^F\^E")]), [])

38

As you see, the result is a “nested” four-tuple consisting of an optional locale (in this
case NONE); a list of variables with optional type-annotation and syntax-annotation;
a list of for-fixes (fixed variables; in this case there are none); and a list of rules
where every rule has optionally a name and an attribute.

In Line 2 of the parser, the function OuterParse.opt_target reads a target in order
to indicate a locale in which the specification is made. For example

parse OuterParse.opt_target (filtered_input "(in test)")

> (SOME "test",[])

returns the locale "test" ; if no target is given, like in the case of even and odd, the
function returns NONE.

The function OuterParse.fixes in Line 3 reads an and-separated list of variables
that can include optional type annotations and syntax translations. For example:2

let

val input = filtered_input

"foo::\"int ⇒ bool\" and bar::nat (\"BAR\" 100) and blonk"

in

parse OuterParse.fixes input

end

> ([(foo, SOME "\^E\^Ftoken\^Eint ⇒ bool\^E\^F\^E", NoSyn),

> (bar, SOME "\^E\^Ftoken\^Enat\^E\^F\^E", Mixfix ("BAR", [], 100)),

> (blonk, NONE, NoSyn)],[])

Whenever types are given, they are stored in the SOMEs. The types are not yet used to
type the variables: this must be done by type-inference later on. Since types are part
of the inner syntax they are strings with some encoded information (see previous
section). If a syntax translation is present for a variable, then it is stored in the
Mixfix datastructure; no syntax translation is indicated by NoSyn.

Read More
The datastructre for sytax annotations is defined in Pure/Syntax/mixfix.ML.

Similarly, the function OuterParse.for_fixes in Line 4: it reads the same and-
separated list of variables as fixes, but requires that this list is prefixed by the
keyword for.

parse OuterParse.for_fixes (filtered_input "for foo and bar and blink")

> ([(foo, NONE, NoSyn), (bar, NONE, NoSyn), (blink, NONE, NoSyn)],[])

Lines 5 to 9 in the function spec_parser implement the parser for a list of introduc-
tion rules, that is propositions with theorem annotations. The introduction rules are
propositions parsed by OuterParse.prop. However, they can include an optional
theorem name plus some attributes. For example

2Note that in the code we need to write \"int ⇒ bool\" in order to properly escape the double
quotes in the compound type.

39

let

val input = filtered_input "foo_lemma[intro,dest!]:"

val ((name, attrib), _) = parse (SpecParse.thm_name ":") input

in

(name, map Args.dest_src attrib)

end

> (foo_lemma, [(("intro", []), . . .), (("dest", [. . .]), . . .)])

The function opt_thm_name is the “optional” variant of thm_name. Theorem names
can contain attributes. The name has to end with ":"—see the argument of the
function SpecParse.opt_thm_name in Line 9.

Read More
Attributes and arguments are implemented in the files Pure/Isar/attrib.ML and
Pure/Isar/args.ML.

3.5 New Commands and Keyword Files

Often new commands, for example for providing new definitional principles, need to
be implemented. While this is not difficult on the ML-level, new commands, in order
to be useful, need to be recognised by ProofGeneral. This results in some subtle
configuration issues, which we will explain in this section.

To keep things simple, let us start with a “silly” command that does nothing at all.
We shall name this command foobar. On the ML-level it can be defined as:

let

val do_nothing = Scan.succeed (Toplevel.theory I)

val kind = OuterKeyword.thy_decl

in

OuterSyntax.command "foobar" "description of foobar" kind do_nothing

end

The crucial function OuterSyntax.command expects a name for the command, a
short description, a kind indicator (which we will explain later on more thoroughly)
and a parser producing a top-level transition function (its purpose will also explained
later).

While this is everything you have to do on the ML-level, you need a keyword file that
can be loaded by ProofGeneral. This is to enable ProofGeneral to recognise foobar
as a command. Such a keyword file can be generated with the command-line:

$ isabelle keywords -k foobar some_log_files

The option -k foobar indicates which postfix the name of the keyword file will be
assigned. In the case above the file will be named isar-keywords-foobar.el. This
command requires log files to be present (in order to extract the keywords from

40

theory Command

imports Main
begin
ML {*

let

val do_nothing = Scan.succeed (Toplevel.theory I)

val kind = OuterKeyword.thy_decl

in

OuterSyntax.command "foobar" "description of foobar" kind do_nothing

end

*}

end

Figure 3.1: The file Command.thy is necessary for generating a log file. This log file enables
Isabelle to generate a keyword file containing the command foobar.

them). To generate these log files, you first need to package the code above into a
separate theory file named Command.thy, say—see Figure 3.1 for the complete code.

For our purposes it is sufficient to use the log files of the theories Pure, HOL and
Pure-ProofGeneral, as well as the log file for the theory Command.thy, which con-
tains the new foobar-command. If you target other logics besides HOL, such as
Nominal or ZF, then you need to adapt the log files appropriately.

Pure and HOL are usually compiled during the installation of Isabelle. So log files
for them should be already available. If not, then they can be conveniently compiled
with the help of the build-script from the Isabelle distribution.

$./build -m "Pure"

$./build -m "HOL"

The Pure-ProofGeneral theory needs to be compiled with:

$./build -m "Pure-ProofGeneral" "Pure"

For the theory Command.thy, you first need to create a “managed” subdirectory with:

$ isabelle mkdir FoobarCommand

This generates a directory containing the files:

./IsaMakefile

./FoobarCommand/ROOT.ML

./FoobarCommand/document

./FoobarCommand/document/root.tex

You need to copy the file Command.thy into the directory FoobarCommand and add
the line

41

use_thy "Command";

to the file ./FoobarCommand/ROOT.ML. You can now compile the theory by just typ-
ing:

$ isabelle make

If the compilation succeeds, you have finally created all the necessary log files. They
are stored in the directory

~/.isabelle/heaps/Isabelle2008/polyml-5.2.1_x86-linux/log

or something similar depending on your Isabelle distribution and architecture. One
quick way to assign a shell variable to this directory is by typing

$ ISABELLE_LOGS="$(isabelle getenv -b ISABELLE_OUTPUT)"/log

on the Unix prompt. If you now type ls $ISABELLE_LOGS, then the directory should
include the files:

Pure.gz

HOL.gz

Pure-ProofGeneral.gz

HOL-FoobarCommand.gz

From them you can create the keyword files. Assuming the name of the directory is
in $ISABELLE_LOGS, then the Unix command for creating the keyword file is:

$ isabelle keywords -k foobar

$ISABELLE_LOGS/{Pure.gz,HOL.gz,Pure-ProofGeneral.gz,HOL-FoobarCommand.gz}

The result is the file isar-keywords-foobar.el. It should contain the string foobar

twice.3 This keyword file needs to be copied into the directory ~/.isabelle/etc. To
make Isabelle aware of this keyword file, you have to start Isabelle with the option
-k foobar, that is:

$ isabelle emacs -k foobar a_theory_file

If you now build a theory on top of Command.thy, then the command foobar can be
used. Similarly with any other new command.

At the moment foobar is not very useful. Let us refine it a bit next by letting it take
a proposition as argument and printing this proposition inside the tracing buffer.

The crucial part of a command is the function that determines the behaviour of the
command. In the code above we used a “do-nothing”-function, which because of
Scan.succeed does not parse any argument, but immediately returns the simple
toplevel function Toplevel.theory I. We can replace this code by a function that

3To see whether things are fine, check that grep foobar on this file returns something non-empty.

42

first parses a proposition (using the parser OuterParse.prop), then prints out the
tracing information (using a new top-level function trace_top_lvl) and finally does
nothing. For this you can write:

let

fun trace_top_lvl str =

Toplevel.theory (fn thy => (tracing str; thy))

val trace_prop = OuterParse.prop >> trace_top_lvl

val kind = OuterKeyword.thy_decl

in

OuterSyntax.command "foobar" "traces a proposition" kind trace_prop

end

Now you can type

foobar "True ∧ False"

> "True ∧ False"

and see the proposition in the tracing buffer.

Note that so far we used thy_decl as the kind indicator for the command. This
means that the command finishes as soon as the arguments are processed. Examples
of this kind of commands are definition and declare. In other cases, commands are
expected to parse some arguments, for example a proposition, and then “open up”
a proof in order to prove the proposition (for example lemma) or prove some other
properties (for example function). To achieve this kind of behaviour, you have to
use the kind indicator thy_goal. Note, however, once you change the “kind” of a
command from thy_decl to thy_goal then the keyword file needs to be re-created.

Below we change foobar so that it takes a proposition as argument and then starts
a proof in order to prove it. Therefore in Line 13, we set the kind indicator to
thy_goal.

let1

fun set_up_thm str ctxt =2

let3

val prop = Syntax.read_prop ctxt str4

in5

Proof.theorem_i NONE (K I) [[(prop,[])]] ctxt6

end;7

8

val prove_prop = OuterParse.prop >>9

(fn str => Toplevel.print o10

Toplevel.local_theory_to_proof NONE (set_up_thm str))11

12

val kind = OuterKeyword.thy_goal13

in14

OuterSyntax.command "foobar" "proving a proposition" kind prove_prop15

end16

43

The function set_up_thm in Lines 2 to 7 takes a string (the proposition to be proved)
and a context as argument. The context is necessary in order to be able to use
Syntax.read_prop, which converts a string into a proper proposition. In Line 6
the function Proof.theorem_i starts the proof for the proposition. Its argument
NONE stands for a locale (which we chose to omit); the argument (K I) stands for
a function that determines what should be done with the theorem once it is proved
(we chose to just forget about it). Lines 9 to 11 contain the parser for the proposition.

If you now type foobar "True ∧ True", you obtain the following proof state:

foobar "True ∧ True"

goal (1 subgoal):

1. True ∧ True

and you can build the proof

foobar "True ∧ True"

apply(rule conjI)

apply(rule TrueI)+

done

(FIXME What do Toplevel.theory Toplevel.print Toplevel.local_theory do?)

(FIXME read a name and show how to store theorems)

44

Chapter 4

Tactical Reasoning

The main reason for descending to the ML-level of Isabelle is to be able to implement
automatic proof procedures. Such proof procedures usually lessen considerably the
burden of manual reasoning, for example, when introducing new definitions. These
proof procedures are centred around refining a goal state using tactics. This is similar
to the apply-style reasoning at the user-level, where goals are modified in a sequence
of proof steps until all of them are solved. However, there are also more structured
operations available on the ML-level that help with the handling of variables and
assumptions.

4.1 Basics of Reasoning with Tactics

To see how tactics work, let us first transcribe a simple apply-style proof into ML.
Suppose the following proof.

lemma disj_swap: "P ∨ Q =⇒ Q ∨ P"

apply(erule disjE)

apply(rule disjI2)

apply(assumption)
apply(rule disjI1)

apply(assumption)
done

This proof translates to the following ML-code.

let

val ctxt = @{context}

val goal = @{prop "P ∨ Q =⇒ Q ∨ P"}

in

Goal.prove ctxt ["P", "Q"] [] goal

(fn _ =>

etac @{thm disjE} 1

THEN rtac @{thm disjI2} 1

THEN atac 1

THEN rtac @{thm disjI1} 1

THEN atac 1)

end

45

> ?P ∨ ?Q =⇒ ?Q ∨ ?P

To start the proof, the function Goal.prove ctxt xs As C tac sets up a goal state
for proving the goal C (that is P ∨ Q =⇒ Q ∨ P in the proof at hand) under the
assumptions As (happens to be empty) with the variables xs that will be generalised
once the goal is proved (in our case P and Q). The tac is the tactic that proves the
goal; it can make use of the local assumptions (there are none in this example). The
functions etac, rtac and atac in the code above correspond to erule, rule and
assumption, respectively. The operator THEN strings the tactics together.

Read More
To learn more about the function Goal.prove see [Impl. Man., Sec. 4.3] and the file
Pure/goal.ML. See Pure/tactic.ML and Pure/tctical.ML for the code of basic tactics
and tactic combinators; see also Chapters 3 and 4 in the old Isabelle Reference Manual, and
Chapter 3 in the Isabelle/Isar Implementation Manual.

Note that in the code above we use antiquotations for referencing the theorems.
Many theorems also have ML-bindings with the same name. Therefore, we could also
just have written etac disjE 1, or in case where there are no ML-binding obtain the
theorem dynamically using the function thm ; for example etac (thm "disjE") 1 .
Both ways however are considered bad style! The reason is that the binding for
disjE can be re-assigned by the user and thus one does not have complete control
over which theorem is actually applied. This problem is nicely prevented by using
antiquotations, because then the theorems are fixed statically at compile-time.

During the development of automatic proof procedures, you will often find it neces-
sary to test a tactic on examples. This can be conveniently done with the command
apply(tactic {* . . . *}). Consider the following sequence of tactics

val foo_tac =

(etac @{thm disjE} 1

THEN rtac @{thm disjI2} 1

THEN atac 1

THEN rtac @{thm disjI1} 1

THEN atac 1)

and the Isabelle proof:

lemma "P ∨ Q =⇒ Q ∨ P"

apply(tactic {* foo_tac *})

done

By using tactic {* . . . *} you can call from the user-level of Isabelle the tactic
foo_tac or any other function that returns a tactic.

The tactic foo_tac is just a sequence of simple tactics stringed together by THEN. As
can be seen, each simple tactic in foo_tac has a hard-coded number that stands for
the subgoal analysed by the tactic (1 stands for the first, or top-most, subgoal). This
hard-coding of goals is sometimes wanted, but usually it is not. To avoid the explicit
numbering, you can write

46

val foo_tac’ =

(etac @{thm disjE}

THEN’ rtac @{thm disjI2}

THEN’ atac

THEN’ rtac @{thm disjI1}

THEN’ atac)

and then give the number for the subgoal explicitly when the tactic is called. So in
the next proof you can first discharge the second subgoal, and subsequently the first.

lemma "P1 ∨ Q1 =⇒ Q1 ∨ P1"

and "P2 ∨ Q2 =⇒ Q2 ∨ P2"

apply(tactic {* foo_tac’ 2 *})

apply(tactic {* foo_tac’ 1 *})

done

This kind of addressing is more difficult to achieve when the goal is hard-coded
inside the tactic. For most operators that combine tactics (THEN is only one such
operator) a “primed” version exists.

The tactics foo_tac and foo_tac’ are very specific for analysing goals being only
of the form P ∨ Q =⇒ Q ∨ P. If the goal is not of this form, then they return the
error message:

*** empty result sequence -- proof command failed

*** At command "apply".

This means the tactics failed. The reason for this error message is that tactics are
functions mapping a goal state to a (lazy) sequence of successor states. Hence the
type of a tactic is:

type tactic = thm -> thm Seq.seq

By convention, if a tactic fails, then it should return the empty sequence. Therefore,
if you write your own tactics, they should not raise exceptions willy-nilly; only in
very grave failure situations should a tactic raise the exception THM.

The simplest tactics are no_tac and all_tac. The first returns the empty sequence
and is defined as

fun no_tac thm = Seq.empty

which means no_tac always fails. The second returns the given theorem wrapped
in a single member sequence; it is defined as

fun all_tac thm = Seq.single thm

which means all_tac always succeeds, but also does not make any progress with
the proof.

47

The lazy list of possible successor goal states shows through at the user-level of
Isabelle when using the command back. For instance in the following proof there
are two possibilities for how to apply foo_tac’ : either using the first assumption or
the second.

lemma " [[P ∨ Q; P ∨ Q]] =⇒ Q ∨ P"

apply(tactic {* foo_tac’ 1 *})

back
done

By using back, we construct the proof that uses the second assumption. While in the
proof above, it does not really matter which assumption is used, in more interesting
cases provability might depend on exploring different possibilities.

Read More
See Pure/General/seq.ML for the implementation of lazy sequences. In day-to-day
Isabelle programming, however, one rarely constructs sequences explicitly, but uses the pre-
defined tactics and tactic combinators instead.

It might be surprising that tactics, which transform one goal state to the next, are
functions from theorems to theorem (sequences). The surprise resolves by knowing
that every goal state is indeed a theorem. To shed more light on this, let us modify
the code of all_tac to obtain the following tactic

fun my_print_tac ctxt thm =

let

val _ = warning (str_of_thm ctxt thm)

in

Seq.single thm

end

which prints out the given theorem (using the string-function defined in Section 2.2)
and then behaves like all_tac. With this tactic we are in the position to inspect
every goal state in a proof. Consider now the proof in Figure 4.1: as can be seen,
internally every goal state is an implication of the form

A1 =⇒ . . . =⇒ An =⇒ (C)

where C is the goal to be proved and the A i are the subgoals. So after setting
up the lemma, the goal state is always of the form C =⇒ (C) ; when the proof
is finished we are left with (C). Since the goal C can potentially be an implication,
there is a “protector” wrapped around it (in from of an outermost constant Const
("prop", bool ⇒ bool) ; however this constant is invisible in the figure). This
wrapper prevents that premises of C are mis-interpreted as open subgoals. While
tactics can operate on the subgoals (the A i above), they are expected to leave the
conclusion C intact, with the exception of possibly instantiating schematic variables.
If you use the predefined tactics, which we describe in the next section, this will
always be the case.

48

lemma shows " [[A; B]] =⇒ A ∧ B"

apply(tactic {* my_print_tac @{context} *})

goal (1 subgoal):

1. [[A; B]] =⇒ A ∧ B

internal goal state:
([[A; B]] =⇒ A ∧ B) =⇒ ([[A; B]] =⇒ A ∧ B)

apply(rule conjI)

apply(tactic {* my_print_tac @{context} *})

goal (2 subgoals):

1. [[A; B]] =⇒ A

2. [[A; B]] =⇒ B

internal goal state:
([[A; B]] =⇒ A) =⇒ ([[A; B]] =⇒ B) =⇒ ([[A; B]] =⇒ A ∧ B)

apply(assumption)
apply(tactic {* my_print_tac @{context} *})

goal (1 subgoal):

1. [[A; B]] =⇒ B

internal goal state:
([[A; B]] =⇒ B) =⇒ ([[A; B]] =⇒ A ∧ B)

apply(assumption)
apply(tactic {* my_print_tac @{context} *})

No subgoals!

internal goal state:
[[A; B]] =⇒ A ∧ B

done

Figure 4.1: The figure shows a proof where each intermediate goal state is printed
by the Isabelle system and by my_print_tac. The latter shows the goal state as
represented internally (highlighted boxes). This tactic shows that every goal state in
Isabelle is represented by a theorem: when you start the proof of [[A; B]] =⇒ A ∧ B

the theorem is ([[A; B]] =⇒ A ∧ B) =⇒ ([[A; B]] =⇒ A ∧ B) ; when you finish
the proof the theorem is [[A; B]] =⇒ A ∧ B.

49

Read More
For more information about the internals of goals see [Impl. Man., Sec. 3.1].

4.2 Simple Tactics

Let us start with explaining the simple tactic print_tac, which is quite useful for
low-level debugging of tactics. It just prints out a message and the current goal
state. Unlike my_print_tac shown earlier, it prints the goal state as the user would
see it. For example, processing the proof

lemma shows "False =⇒ True"

apply(tactic {* print_tac "foo message" *})

gives:

foo message

False =⇒ True

1. False =⇒ True

Another simple tactic is the function atac, which, as shown in the previous section,
corresponds to the assumption command.

lemma shows "P =⇒ P"

apply(tactic {* atac 1 *})

No subgoals!

Similarly, rtac, dtac, etac and ftac correspond to rule, drule, erule and frule,
respectively. Each of them takes a theorem as argument and attempts to apply it to
a goal. Below are three self-explanatory examples.

lemma shows "P ∧ Q"

apply(tactic {* rtac @{thm conjI} 1 *})

goal (2 subgoals):

1. P

2. Q

lemma shows "P ∧ Q =⇒ False"

apply(tactic {* etac @{thm conjE} 1 *})

goal (1 subgoal):

1. [[P; Q]] =⇒ False

lemma shows "False ∧ True =⇒ False"

apply(tactic {* dtac @{thm conjunct2} 1 *})

goal (1 subgoal):

1. True =⇒ False

Note the number in each tactic call. Also as mentioned in the previous section, most
basic tactics take such a number as argument: this argument addresses the subgoal
the tacics are analysing. In the proof below, we first split up the conjunction in the
second subgoal by focusing on this subgoal first.

50

lemma shows "Foo" and "P ∧ Q"

apply(tactic {* rtac @{thm conjI} 2 *})

goal (3 subgoals):

1. Foo

2. P

3. Q

The function resolve_tac is similar to rtac, except that it expects a list of theorems
as arguments. From this list it will apply the first applicable theorem (later theorems
that are also applicable can be explored via the lazy sequences mechanism). Given
the code

val resolve_tac_xmp = resolve_tac [@{thm impI}, @{thm conjI}]

an example for resolve_tac is the following proof where first an outermost impli-
cation is analysed and then an outermost conjunction.

lemma shows "C −→ (A ∧ B)" and "(A −→ B) ∧ C"

apply(tactic {* resolve_tac_xmp 1 *})

apply(tactic {* resolve_tac_xmp 2 *})

goal (3 subgoals):

1. C =⇒ A ∧ B

2. A −→ B

3. C

Similarl versions taking a list of theorems exist for the tactics dtac (dresolve_tac),
etac (eresolve_tac) and so on.

Another simple tactic is cut_facts_tac. It inserts a list of theorems into the assump-
tions of the current goal state. For example

lemma shows "True 6= False"

apply(tactic {* cut_facts_tac [@{thm True_def}, @{thm False_def}] 1 *})

produces the goal state

goal (1 subgoal):

1. [[True ≡ (λx. x) = (λx. x); False ≡ ∀ P. P]] =⇒ True 6= False

Since rules are applied using higher-order unification, an automatic proof procedure
might become too fragile, if it just applies inference rules as shown above. The rea-
son is that a number of rules introduce meta-variables into the goal state. Consider
for example the proof

lemma shows "∀ x∈A. P x =⇒ Q x"

apply(tactic {* dtac @{thm bspec} 1 *})

goal (2 subgoals):

1. ?x ∈ A

2. P ?x =⇒ Q x

where the application of rule bspec generates two subgoals involving the meta-
variable ?x. Now, if you are not careful, tactics applied to the first subgoal might
instantiate this meta-variable in such a way that the second subgoal becomes un-
provable. If it is clear what the ?x should be, then this situation can be avoided by

51

introducing a more constraint version of the bspec -rule. Such constraints can be
given by pre-instantiating theorems with other theorems. One function to do this is
RS

@{thm disjI1} RS @{thm conjI}

> [[?P1; ?Q]] =⇒ (?P1 ∨ ?Q1) ∧ ?Q

which in the example instantiates the first premise of the conjI -rule with the rule
disjI1. If the instantiation is impossible, as in the case of

@{thm conjI} RS @{thm mp}

> *** Exception- THM ("RSN: no unifiers", 1,

> [" [[?P; ?Q]] =⇒ ?P ∧ ?Q", " [[?P −→ ?Q; ?P]] =⇒ ?Q"]) raised

then the function raises an exception. The function RSN is similar to RS, but takes
an additional number as argument that makes explicit which premise should be
instantiated.

To improve readability of the theorems we produce below, we shall use the func-
tion no_vars from Section 2.2, which transforms schematic variables into free ones.
Using this function for the first RS -expression above produces the more readable
result:

no_vars @{context} (@{thm disjI1} RS @{thm conjI})

> [[P; Q]] =⇒ (P ∨ Qa) ∧ Q

If you want to instantiate more than one premise of a theorem, you can use the
function MRS :

no_vars @{context} ([@{thm disjI1}, @{thm disjI2}] MRS @{thm conjI})

> [[P; Q]] =⇒ (P ∨ Qa) ∧ (Pa ∨ Q)

If you need to instantiate lists of theorems, you can use the functions RL and MRL.
For example in the code below, every theorem in the second list is instantiated with
every theorem in the first.

[@{thm impI}, @{thm disjI2}] RL [@{thm conjI}, @{thm disjI1}]

> [[[P =⇒ Q; Qa]] =⇒ (P −→ Q) ∧ Qa,

> [[Q; Qa]] =⇒ (P ∨ Q) ∧ Qa,

> (P =⇒ Q) =⇒ (P −→ Q) ∨ Qa,

> Q =⇒ (P ∨ Q) ∨ Qa]

Read More
The combinators for instantiating theorems are defined in Pure/drule.ML.

52

fun sp_tac {prems, params, asms, concl, context, schematics} =

let

val str_of_params = str_of_cterms context params

val str_of_asms = str_of_cterms context asms

val str_of_concl = str_of_cterm context concl

val str_of_prems = str_of_thms context prems

val str_of_schms = str_of_cterms context (snd schematics)

val _ = (warning ("params: " ^ str_of_params);

warning ("schematics: " ^ str_of_schms);

warning ("assumptions: " ^ str_of_asms);

warning ("conclusion: " ^ str_of_concl);

warning ("premises: " ^ str_of_prems))

in

no_tac

end

Figure 4.2: A function that prints out the various parameters provided by the tactic
SUBPROOF. It uses the functions defined in Section 2.2 for extracting strings from
cterms and thms.

Often proofs on the ML-level involve elaborate operations on assumptions and
∧

-
quantified variables. To do such operations using the basic tactics shown so far is
very unwieldy and brittle. Some convenience and safety is provided by the tactic
SUBPROOF. This tactic fixes the parameters and binds the various components of a
goal state to a record. To see what happens, assume the function defined in Fig-
ure 4.2, which takes a record and just prints out the content of this record (using the
string transformation functions from in Section 2.2). Consider now the proof:

lemma shows "
∧
x y. A x y =⇒ B y x −→ C (?z y) x"

apply(tactic {* SUBPROOF sp_tac @{context} 1 *})?

The tactic produces the following printout:

params: x, y
schematics: z

assumptions: A x y

conclusion: B y x −→ C (z y) x

premises: A x y

Notice in the actual output the brown colour of the variables x and y. Although they
are parameters in the original goal, they are fixed inside the subproof. By convention
these fixed variables are printed in brown colour. Similarly the schematic variable z.
The assumption, or premise, A x y is bound as cterm to the record-variable asms,
but also as thm to prems.

Notice also that we had to append "?" to the apply-command. The reason is that
SUBPROOF normally expects that the subgoal is solved completely. Since in the
function sp_tac we returned the tactic no_tac, the subproof obviously fails. The

53

question-mark allows us to recover from this failure in a graceful manner so that the
warning messages are not overwritten by an “empty sequence” error message.

If we continue the proof script by applying the impI -rule

apply(rule impI)

apply(tactic {* SUBPROOF sp_tac @{context} 1 *})?

then the tactic prints out:

params: x, y
schematics: z

assumptions: A x y, B y x

conclusion: C (z y) x

premises: A x y, B y x

Now also B y x is an assumption bound to asms and prems.

One convenience of SUBPROOF is that we can apply the assumptions using the usual
tactics, because the parameter prems contains them as theorems. With this you can
easily implement a tactic that behaves almost like atac :

val atac’ = SUBPROOF (fn {prems, ...} => resolve_tac prems 1)

If you apply atac’ to the next lemma

lemma shows " [[B x y; A x y; C x y]] =⇒ A x y"

apply(tactic {* atac’ @{context} 1 *})

it will produce

No subgoals!

The restriction in this tactic which is not present in atac is that it cannot instantiate
any schematic variable. This might be seen as a defect, but it is actually an advantage
in the situations for which SUBPROOF was designed: the reason is that, as mentioned
before, instantiation of schematic variables can affect several goals and can render
them unprovable. SUBPROOF is meant to avoid this.

Notice that atac’ inside SUBPROOF calls resolve_tac with the subgoal number 1

and also the outer call to SUBPROOF in the apply-step uses 1. This is another ad-
vantage of SUBPROOF : the addressing inside it is completely local to the tactic inside
the subproof. It is therefore possible to also apply atac’ to the second goal by just
writing:

lemma shows "True" and " [[B x y; A x y; C x y]] =⇒ A x y"

apply(tactic {* atac’ @{context} 2 *})

apply(rule TrueI)

done

54

Read More
The function SUBPROOF is defined in Pure/subgoal.ML and also described in [Impl. Man.,
Sec. 4.3].

Similar but less powerful functions than SUBPROOF are SUBGOAL and CSUBGOAL. They
allow you to inspect a given subgoal (the former presents the subgoal as a term,
while the latter as a cterm). With this you can implement a tactic that applies a rule
according to the topmost logic connective in the subgoal (to illustrate this we only
analyse a few connectives). The code of the tactic is as follows.

fun select_tac (t, i) =1

case t of2

@{term "Trueprop"} $ t’ => select_tac (t’, i)3

| @{term "op =⇒"} $ _ $ t’ => select_tac (t’, i)4

| @{term "op ∧"} $ _ $ _ => rtac @{thm conjI} i5

| @{term "op −→"} $ _ $ _ => rtac @{thm impI} i6

| @{term "Not"} $ _ => rtac @{thm notI} i7

| Const (@{const_name "All"}, _) $ _ => rtac @{thm allI} i8

| _ => all_tac9

The input of the function is a term representing the subgoal and a number speci-
fying the subgoal of interest. In line 3 you need to descend under the outermost
Trueprop in order to get to the connective you like to analyse. Otherwise goals like
A ∧ B are not properly analysed. Similarly with meta-implications in the next line.
While for the first five patterns we can use the @term -antiquotation to construct the
patterns, the pattern in Line 8 cannot be constructed in this way. The reason is that
an antiquotation would fix the type of the quantified variable. So you really have
to construct the pattern using the basic term-constructors. This is not necessary in
other cases, because their type is always fixed to function types involving only the
type bool. (See Section 2.6 about constructing terms manually.) For the catch-all
pattern, we chose to just return all_tac. Consequently, select_tac never fails.

Let us now see how to apply this tactic. Consider the four goals:

lemma shows "A ∧ B" and "A −→ B −→C" and "∀ x. D x" and "E =⇒ F"

apply(tactic {* SUBGOAL select_tac 4 *})

apply(tactic {* SUBGOAL select_tac 3 *})

apply(tactic {* SUBGOAL select_tac 2 *})

apply(tactic {* SUBGOAL select_tac 1 *})

goal (5 subgoals):

1. A

2. B

3. A =⇒ B −→ C

4.
∧
x. D x

5. E =⇒ F

where in all but the last the tactic applied an introduction rule. Note that we applied
the tactic to the goals in “reverse” order. This is a trick in order to be independent
from the subgoals that are produced by the rule. If we had applied it in the other
order

lemma shows "A ∧ B" and "A −→ B −→C" and "∀ x. D x" and "E =⇒ F"

55

apply(tactic {* SUBGOAL select_tac 1 *})

apply(tactic {* SUBGOAL select_tac 3 *})

apply(tactic {* SUBGOAL select_tac 4 *})

apply(tactic {* SUBGOAL select_tac 5 *})

then we have to be careful to not apply the tactic to the two subgoals produced by
the first goal. To do this can result in quite messy code. In contrast, the “reverse
application” is easy to implement.

Of course, this example is contrived: there are much simpler methods available
in Isabelle for implementing a proof procedure analysing a goal according to its
topmost connective. These simpler methods use tactic combinators, which we will
explain in the next section.

4.3 Tactic Combinators

The purpose of tactic combinators is to build compound tactics out of smaller tactics.
In the previous section we already used THEN, which just strings together two tactics
in a sequence. For example:

lemma shows "(Foo ∧ Bar) ∧ False"

apply(tactic {* rtac @{thm conjI} 1 THEN rtac @{thm conjI} 1 *})

goal (3 subgoals):

1. Foo

2. Bar

3. False

If you want to avoid the hard-coded subgoal addressing, then you can use the
“primed” version of THEN. For example:

lemma shows "(Foo ∧ Bar) ∧ False"

apply(tactic {* (rtac @{thm conjI} THEN’ rtac @{thm conjI}) 1 *})

goal (3 subgoals):

1. Foo

2. Bar

3. False

Here you only have to specify the subgoal of interest only once and it is consistently
applied to the component tactics. For most tactic combinators such a “primed” ver-
sion exists and in what follows we will usually prefer it over the “unprimed” one.

If there is a list of tactics that should all be tried out in sequence, you can use the
combinator EVERY’. For example the function foo_tac’ from page 46 can also be
written as:

val foo_tac’’ = EVERY’ [etac @{thm disjE}, rtac @{thm disjI2},

atac, rtac @{thm disjI1}, atac]

There is even another way of implementing this tactic: in automatic proof procedures
(in contrast to tactics that might be called by the user) there are often long lists of
tactics that are applied to the first subgoal. Instead of writing the code above and
then calling foo_tac’’ 1, you can also just write

56

val foo_tac1 = EVERY1 [etac @{thm disjE}, rtac @{thm disjI2},

atac, rtac @{thm disjI1}, atac]

and call foo_tac1.

With the combinators THEN’, EVERY’ and EVERY1 it must be guaranteed that all
component tactics successfully apply; otherwise the whole tactic will fail. If you
rather want to try out a number of tactics, then you can use the combinator ORELSE’
for two tactics, and FIRST’ (or FIRST1) for a list of tactics. For example, the tactic

val orelse_xmp = rtac @{thm disjI1} ORELSE’ rtac @{thm conjI}

will first try out whether rule disjI applies and after that conjI. To see this consider
the proof

lemma shows "True ∧ False" and "Foo ∨ Bar"

apply(tactic {* orelse_xmp 2 *})

apply(tactic {* orelse_xmp 1 *})

which results in the goal state
goal (3 subgoals):

1. True

2. False

3. Foo

Using FIRST’ we can simplify our select_tac from Page 55 as follows:

val select_tac’ = FIRST’ [rtac @{thm conjI}, rtac @{thm impI},

rtac @{thm notI}, rtac @{thm allI}, K all_tac]

Since we like to mimic the behaviour of select_tac as closely as possible, we must
include all_tac at the end of the list, otherwise the tactic will fail if no rule applies
(we also have to wrap all_tac using the K -combinator, because it does not take a
subgoal number as argument). You can test the tactic on the same goals:

lemma shows "A ∧ B" and "A −→ B −→C" and "∀ x. D x" and "E =⇒ F"

apply(tactic {* select_tac’ 4 *})

apply(tactic {* select_tac’ 3 *})

apply(tactic {* select_tac’ 2 *})

apply(tactic {* select_tac’ 1 *})

goal (5 subgoals):

1. A

2. B

3. A =⇒ B −→ C

4.
∧
x. D x

5. E =⇒ F

Since such repeated applications of a tactic to the reverse order of all subgoals is
quite common, there is the tactic combinator ALLGOALS that simplifies this. Using
this combinator you can simply write:

lemma shows "A ∧ B" and "A −→ B −→C" and "∀ x. D x" and "E =⇒ F"

57

apply(tactic {* ALLGOALS select_tac’ *})

goal (5 subgoals):

1. A

2. B

3. A =⇒ B −→ C

4.
∧
x. D x

5. E =⇒ F

Remember that we chose to implement select_tac’ so that it always succeeds. This
can be potentially very confusing for the user, for example, in cases where the goal
is the form

lemma shows "E =⇒ F"

apply(tactic {* select_tac’ 1 *})

goal (1 subgoal):

1. E =⇒ F

In this case no rule applies. The problem for the user is that there is little chance to
see whether or not progress in the proof has been made. By convention therefore,
tactics visible to the user should either change something or fail.

To comply with this convention, we could simply delete the K all_tac from the end
of the theorem list. As a result select_tac’ would only succeed on goals where it
can make progress. But for the sake of argument, let us suppose that this deletion is
not an option. In such cases, you can use the combinator CHANGED to make sure the
subgoal has been changed by the tactic. Because now

lemma shows "E =⇒ F"

apply(tactic {* CHANGED (select_tac’ 1) *})

gives the error message:

*** empty result sequence -- proof command failed

*** At command "apply".

We can further extend select_tac’ so that it not just applies to the topmost connec-
tive, but also to the ones immediately “underneath”, i.e. analyse the goal completely.
For this you can use the tactic combinator REPEAT. As an example suppose the fol-
lowing tactic

val repeat_xmp = REPEAT (CHANGED (select_tac’ 1))

which applied to the proof

lemma shows "((¬A) ∧ (∀ x. B x)) ∧ (C −→ D)"

apply(tactic {* repeat_xmp *})

produces
goal (3 subgoals):

1. A =⇒ False

2. ∀ x. B x

3. C −→ D

58

Here it is crucial that select_tac’ is prefixed with CHANGED, because otherwise
REPEAT runs into an infinite loop (it applies the tactic as long as it succeeds). The
function REPEAT1 is similar, but runs the tactic at least once (failing if this is not
possible).

If you are after the “primed” version of repeat_xmp, then you need to implement it
as

val repeat_xmp’ = REPEAT o CHANGED o select_tac’

since there are no “primed” versions of REPEAT and CHANGED.

If you look closely at the goal state above, the tactics repeat_xmp and repeat_xmp’

are not yet quite what we are after: the problem is that goals 2 and 3 are not anal-
ysed. This is because the tactic is applied repeatedly only to the first subgoal. To anal-
yse also all resulting subgoals, you can use the tactic combinator REPEAT_ALL_NEW.
Suppose the tactic

val repeat_all_new_xmp = REPEAT_ALL_NEW (CHANGED o select_tac’)

you see that the following goal

lemma shows "((¬A) ∧ (∀ x. B x)) ∧ (C −→ D)"

apply(tactic {* repeat_all_new_xmp 1 *})

goal (3 subgoals):

1. A =⇒ False

2.
∧
x. B x

3. C =⇒ D

is completely analysed according to the theorems we chose to include in select_tac’.

Recall that tactics produce a lazy sequence of successor goal states. These states can
be explored using the command back. For example

lemma " [[P1 ∨ Q1; P2 ∨ Q2]] =⇒ R"

apply(tactic {* etac @{thm disjE} 1 *})

applies the rule to the first assumption yielding the goal state:
goal (2 subgoals):

1. [[P2 ∨ Q2; P1]] =⇒ R

2. [[P2 ∨ Q2; Q1]] =⇒ R

After typing

back

the rule now applies to the second assumption.
goal (2 subgoals):

1. [[P1 ∨ Q1; P2]] =⇒ R

2. [[P1 ∨ Q1; Q2]] =⇒ R

Sometimes this leads to confusing behaviour of tactics and also has the potential to
explode the search space for tactics. These problems can be avoided by prefixing the
tactic with the tactic combinator DETERM.

59

lemma " [[P1 ∨ Q1; P2 ∨ Q2]] =⇒ R"

apply(tactic {* DETERM (etac @{thm disjE} 1) *})

goal (2 subgoals):

1. [[P2 ∨ Q2; P1]] =⇒ R

2. [[P2 ∨ Q2; Q1]] =⇒ R

This combinator will prune the search space to just the first successful application.
Attempting to apply back in this goal states gives the error message:

*** back: no alternatives

*** At command "back".

Read More
Most tactic combinators described in this section are defined in Pure/tctical.ML.

4.4 Simplifier Tactics

A lot of convenience in the reasoning with Isabelle derives from its powerful simpli-
fier. The power of simplifier is a strength and a weakness at the same time, because
you can easily make the simplifier to run into a loop and its behaviour can be dif-
ficult to predict. There is also a multitude of options that you can configurate to
control the behaviour of the simplifier. We describe some of them in this and the
next section.

There are the following five main tactics behind the simplifier (in parentheses is their
user-level counterpart):

simp_tac (simp (no_asm))

asm_simp_tac (simp (no_asm_simp))

full_simp_tac (simp (no_asm_use))

asm_lr_simp_tac (simp (asm_lr))

asm_full_simp_tac (simp)

All of the tactics take a simpset and an interger as argument (the latter as usual to
specify the goal to be analysed). So the proof

lemma "Suc (1 + 2) < 3 + 2"

apply(simp)
done

corresponds on the ML-level to the tactic

lemma "Suc (1 + 2) < 3 + 2"

apply(tactic {* asm_full_simp_tac @{simpset} 1 *})

done

If the simplifier cannot make any progress, then it leaves the goal unchanged, i.e. does
not raise any error message. That means if you use it to unfold a definition for a con-
stant and this constant is not present in the goal state, you can still safely apply the
simplifier.

60

When using the simplifier, the crucial information you have to provide is the simpset.
If this information is not handled with care, then the simplifier can easily run into
a loop. Therefore a good rule of thumb is to use simpsets that are as minimal as
possible. It might be surprising that a simpset is more complex than just a simple
collection of theorems used as simplification rules. One reason for the complexity is
that the simplifier must be able to rewrite inside terms and should also be able to
rewrite according to rules that have precoditions.

The rewriting inside terms requires congruence rules, which are meta-equalities typ-
ical of the form

t1 ≡ s1 . . . tn ≡ sn

constr t1. . . tn ≡ constr s1. . . sn

with constr being a term-constructor, like If or Let. Every simpset contains only
one concruence rule for each term-constructor, which however can be overwritten.
The user can declare lemmas to be congruence rules using the attribute [cong]. In
HOL, the user usually states these lemmas as equations, which are then internally
transformed into meta-equations.

The rewriting with rules involving preconditions requires what is in Isabelle called a
subgoaler, a solver and a looper. These can be arbitrary tactics that can be installed in
a simpset and which are called during various stages during simplification. However,
simpsets also include simprocs, which can produce rewrite rules on demand (see
next section). Another component are split-rules, which can simplify for example the
“then” and “else” branches of if-statements under the corresponding precoditions.

Read More
For more information about the simplifier see Pure/meta_simplifier.ML and
Pure/simplifier.ML. The simplifier for HOL is set up in HOL/Tools/simpdata.ML.
Generic splitters are implemented in Provers/splitter.ML.

Read More
FIXME: Find the right place Discrimination nets are implemented in Pure/net.ML.

The most common combinators to modify simpsets are

addsimps delsimps

addcongs delcongs

addsimprocs delsimprocs

(FIXME: What about splitters? addsplits, delsplits)

To see how they work, consider the two functions in Figure 4.3, which print out
some parts of a simpset. If you use them to print out the components of the empty
simpset, in ML empty_ss and the most primitive simpset

print_ss @{context} empty_ss

> Simplification rules:

> Congruences rules:

> Simproc patterns:

61

fun print_ss ctxt ss =

let

val {simps, congs, procs, ...} = MetaSimplifier.dest_ss ss

fun name_thm (nm, thm) =

" " ^ nm ^ ": " ^ (str_of_thm ctxt thm)

fun name_ctrm (nm, ctrm) =

" " ^ nm ^ ": " ^ (str_of_cterms ctxt ctrm)

val s1 = ["Simplification rules:"]

val s2 = map name_thm simps

val s3 = ["Congruences rules:"]

val s4 = map name_thm congs

val s5 = ["Simproc patterns:"]

val s6 = map name_ctrm procs

in

(s1 @ s2 @ s3 @ s4 @ s5 @ s6)

|> separate "\n"

|> implode

|> warning

end

Figure 4.3: The function MetaSimplifier.dest_ss returns a record containing all
printable information stored in a simpset. We are here only interested in the simplif-
cation rules, congruence rules and simprocs.

you can see it contains nothing. This simpset is usually not useful, except as a
building block to build bigger simpsets. For example you can add to empty_ss the
simplification rule Diff_Int as follows:

val ss1 = empty_ss addsimps [@{thm Diff_Int} RS @{thm eq_reflection}]

Printing then out the components of the simpset gives:

print_ss @{context} ss1

> Simplification rules:

> ??.unknown: A - B ∩ C ≡ A - B ∪ (A - C)

> Congruences rules:

> Simproc patterns:

(FIXME: Why does it print out ??.unknown)

Adding also the congruence rule UN_cong

val ss2 = ss1 addcongs [@{thm UN_cong} RS @{thm eq_reflection}]

gives

62

print_ss @{context} ss2

> Simplification rules:

> ??.unknown: A - B ∩ C ≡ A - B ∪ (A - C)

> Congruences rules:

> UNION: [[A = B;
∧
x. x ∈ B =⇒ C x = D x]] =⇒

⋃
x∈A. C x ≡

⋃
x∈B. D x

> Simproc patterns:

Notice that we had to add these lemmas as meta-equations. The empty_ss expects
this form of the simplification and congruence rules. However, even when adding
these lemmas to empty_ss we do not end up with anything useful yet.

In the context of HOL, the first really useful simpset is HOL_basic_ss. While printing
out the components of this simpset

print_ss @{context} HOL_basic_ss

> Simplification rules:

> Congruences rules:

> Simproc patterns:

also produces “nothing”, the printout is misleading. In fact the HOL_basic_ss is
setup so that it can solve goals of the form True, t = t, t ≡ t and False =⇒ P ;
and also resolve with assumptions. For example:

lemma
"True" and "t = t" and "t ≡ t" and "False =⇒ Foo" and " [[A; B; C]] =⇒ A"

apply(tactic {* ALLGOALS (simp_tac HOL_basic_ss) *})

done

This behaviour is not because of simplification rules, but how the subgoaler, solver
and looper are set up. HOL_basic_ss is usually a good start to build your own
simpsets, because of the low danger of causing loops via interacting simplifiction
rules.

The simpset HOL_ss is an extention of HOL_basic_ss containing already many use-
ful simplification and congruence rules for the logical connectives in HOL.

print_ss @{context} HOL_ss

> Simplification rules:

> Pure.triv_forall_equality: (
∧
x. PROP V) ≡ PROP V

> HOL.the_eq_trivial: THE x. x = y ≡ y

> HOL.the_sym_eq_trivial: THE ya. y = ya ≡ y

> . . .
> Congruences rules:

> HOL.simp_implies: . . .
> =⇒ (PROP P =simp=> PROP Q) ≡ (PROP P’ =simp=> PROP Q’)

> op -->: [[P ≡ P’; P’ =⇒ Q ≡ Q’]] =⇒ P −→ Q ≡ P’ −→ Q’

> Simproc patterns:

> . . .

The simplifier is often used to unfold definitions in a proof. For this the simplifier
contains the rewrite_goals_tac. Suppose for example the definition

63

definition "MyTrue ≡ True"

lemma shows "MyTrue =⇒ True ∧ True"

apply(rule conjI)

apply(tactic {* rewrite_goals_tac [@{thm MyTrue_def}] *})

then the tactic produces the goal state
goal (2 subgoals):

1. True =⇒ True

2. True =⇒ True

As you can see, the tactic unfolds the definitions in all subgoals.

The simplifier is often used in order to bring terms into a normal form. Unfortunately,
often the situation arises that the corresponding simplification rules will cause the
simplifier to run into an infinite loop. Consider for example the simple theory about
permutations over natural numbers shown in Figure 4.4. The purpose of the lemmas
is to push permutations as far inside as possible, where they might disappear by
Lemma perm_rev. However, to fully normalise all instances, it would be desirable to
add also the lemma perm_compose to the simplifier for pushing permutations over
other permutations. Unfortunately, the right-hand side of this lemma is again an
instance of the left-hand side and so causes an infinite loop. The seems to be no easy
way to reformulate this rule and so one ends up with clunky proofs like:
lemma

fixes c d::"nat" and pi1 pi2::"prm"

shows "pi1·(c, pi2·((rev pi1) ·d)) = (pi1·c, (pi1·pi2) ·d)"
apply(simp)
apply(rule trans)

apply(rule perm_compose)

apply(simp)
done

It is however possible to create a single simplifier tactic that solves such proofs. The
trick is to introduce an auxiliary constant for permutations and split the simplifica-
tion into two phases (below actually three). Let assume the auxiliary constant is
definition
perm_aux :: "prm ⇒ ’a ⇒ ’a" ("_ ·aux _" [80,80] 80)

where
"pi ·aux c ≡ pi · c"

Now the two lemmas
lemma perm_aux_expand:

fixes c::"nat" and pi1 pi2::"prm"

shows "pi1·(pi2·c) = pi1 ·aux (pi2·c)"
unfolding perm_aux_def by (rule refl)

lemma perm_compose_aux:

fixes c::"nat" and pi1 pi2::"prm"

shows "pi1·(pi2·aux c) = (pi1·pi2) ·aux (pi1·c)"
unfolding perm_aux_def by (rule perm_compose)

are simple consequence of the definition and perm_compose. More importantly, the
lemma perm_compose_aux can be safely added to the simplifier, because now the

64

types prm = "(nat × nat) list"

consts perm :: "prm ⇒ ’a ⇒ ’a" ("_ · _" [80,80] 80)

primrec (perm_nat)

"[] ·c = c"

"(ab#pi) ·c = (if (pi ·c)=fst ab then snd ab

else (if (pi ·c)=snd ab then fst ab else (pi ·c)))"

primrec (perm_prod)

"pi ·(x, y) = (pi ·x, pi ·y)"

primrec (perm_list)

"pi ·[] = []"

"pi ·(x#xs) = (pi ·x)#(pi ·xs)"

lemma perm_append[simp]:

fixes c::"nat" and pi1 pi2::"prm"

shows "((pi1@pi2) ·c) = (pi1·(pi2·c))"
by (induct pi1) (auto)

lemma perm_eq[simp]:

fixes c::"nat" and pi::"prm"

shows "(pi ·c = pi ·d) = (c = d)"

by (induct pi) (auto)

lemma perm_rev[simp]:

fixes c::"nat" and pi::"prm"

shows "pi ·((rev pi) ·c) = c"

by (induct pi arbitrary: c) (auto)

lemma perm_compose:

fixes c::"nat" and pi1 pi2::"prm"

shows "pi1·(pi2·c) = (pi1·pi2) ·(pi1·c)"
by (induct pi2) (auto)

Figure 4.4: A simple theory about permutations over nat. The point is that the
lemma perm_compose cannot be directly added to the simplifier, as it would cause
the simplifier to loop. It can still be used as a simplification rule if the permutation
is sufficiently protected. (FIXME: Uses old primrec.)

65

right-hand side is not anymore an instance of the left-hand side. In a sense it freezes
all redexes of permutation compositions after one step. In this way, we can split
simplification of permutations into three phases without the user not noticing any-
thing about the auxiliary contant. We first freeze any instance of permutation com-
positions in the term using lemma "perm_aux_expand" (Line 9); then simplifiy all
other permutations including pusing permutations over other permutations by rule
perm_compose_aux (Line 10); and finally “unfreeze” all instances of permutation
compositions by unfolding the definition of the auxiliary constant.

val perm_simp_tac =1

let2

val thms1 = [@{thm perm_aux_expand}]3

val thms2 = [@{thm perm_append}, @{thm perm_eq}, @{thm perm_rev},4

@{thm perm_compose_aux}] @ @{thms perm_prod.simps} @5

@{thms perm_list.simps} @ @{thms perm_nat.simps}6

val thms3 = [@{thm perm_aux_def}]7

in8

simp_tac (HOL_basic_ss addsimps thms1)9

THEN’ simp_tac (HOL_basic_ss addsimps thms2)10

THEN’ simp_tac (HOL_basic_ss addsimps thms3)11

end12

For all three phases we have to build simpsets addig specific lemmas. As is sufficient
for our purposes here, we can add these lemma to HOL_basic_ss in order to obtain
the desired results. Now we can solve the following lemma

lemma
fixes c d::"nat" and pi1 pi2::"prm"

shows "pi1·(c, pi2·((rev pi1) ·d)) = (pi1·c, (pi1·pi2) ·d)"
apply(tactic {* perm_simp_tac 1 *})

done

in one step. This tactic can deal with most instances of normalising permutations; in
order to solve all cases we have to deal with corner-cases such as the lemma being an
exact instance of the permutation composition lemma. This can often be done easier
by implementing a simproc or a conversion. Both will be explained in the next two
chapters.

(FIXME: Is it interesting to say something about op =simp=>?)

(FIXME: What are the second components of the congruence rules—something to
do with weak congruence constants?)

(FIXME: Anything interesting to say about Simplifier.clear_ss?)

(FIXME: ObjectLogic.full_atomize_tac, ObjectLogic.rulify_tac)

4.5 Simprocs

In Isabelle you can also implement custom simplification procedures, called simprocs.
Simprocs can be triggered by the simplifier on a specified term-pattern and rewrite
a term according to a theorem. They are useful in cases where a rewriting rule must

66

be produced on “demand” or when rewriting by simplification is too unpredictable
and potentially loops.

To see how simprocs work, let us first write a simproc that just prints out the pattern
which triggers it and otherwise does nothing. For this you can use the function:

fun fail_sp_aux simpset redex =1

let2

val ctxt = Simplifier.the_context simpset3

val _ = warning ("The redex: " ^ (str_of_cterm ctxt redex))4

in5

NONE6

end7

This function takes a simpset and a redex (a cterm) as arguments. In Lines 3 and 4,
we first extract the context from the given simpset and then print out a message
containing the redex. The function returns NONE (standing for an optional thm)
since at the moment we are not interested in actually rewriting anything. We want
that the simproc is triggered by the pattern Suc n. This can be done by adding the
simproc to the current simpset as follows

simproc setup fail_sp ("Suc n") = {* K fail_sp_aux *}

where the second argument specifies the pattern and the right-hand side contains
the code of the simproc (we have to use K since we ignoring an argument about
morphisms1). After this, the simplifier is aware of the simproc and you can test
whether it fires on the lemma:

lemma shows "Suc 0 = 1"

apply(simp)

This will print out the message twice: once for the left-hand side and once for the
right-hand side. The reason is that during simplification the simplifier will at some
point reduce the term 1 to Suc 0, and then the simproc “fires” also on that term.

We can add or delete the simproc from the current simpset by the usual declare-
statement. For example the simproc will be deleted with the declaration

declare [[simproc del: fail_sp]]

If you want to see what happens with just this simproc, without any interference
from other rewrite rules, you can call fail_sp as follows:

lemma shows "Suc 0 = 1"

apply(tactic {* simp_tac (HOL_basic_ss addsimprocs [@{simproc fail_sp}]) 1*})

Now the message shows up only once since the term 1 is left unchanged.

Setting up a simproc using the command setup simproc will always add automat-
ically the simproc to the current simpset. If you do not want this, then you have
to use a slightly different method for setting up the simproc. First the function
fail_sp_aux needs to be modified to

1FIXME: what does the morphism do?

67

fun fail_sp_aux’ simpset redex =

let

val ctxt = Simplifier.the_context simpset

val _ = warning ("The redex: " ^ (Syntax.string_of_term ctxt redex))

in

NONE

end

Here the redex is given as a term, instead of a cterm (therefore we printing it out us-
ing the function string_of_term). We can turn this function into a proper simproc
using the function Simplifier.simproc_i :

val fail_sp’ =

let

val thy = @{theory}

val pat = [@{term "Suc n"}]

in

Simplifier.simproc_i thy "fail_sp’" pat (K fail_sp_aux’)

end

Here the pattern is given as term (instead of cterm). The function also takes a list of
patterns that can trigger the simproc. Now the simproc is set up and can be explicitly
added using addsimprocs to a simpset whenerver needed.

Simprocs are applied from inside to outside and from left to right. You can see this
in the proof

lemma shows "Suc (Suc 0) = (Suc 1)"

apply(tactic {* simp_tac (HOL_basic_ss addsimprocs [fail_sp’]) 1*})

The simproc fail_sp’ prints out the sequence

> Suc 0

> Suc (Suc 0)

> Suc 1

To see how a simproc applies a theorem, let us implement a simproc that rewrites
terms according to the equation:

lemma plus_one:

shows "Suc n ≡ n + 1" by simp

Simprocs expect that the given equation is a meta-equation, however the equation
can contain preconditions (the simproc then will only fire if the preconditions can be
solved). To see that one has relatively precise control over the rewriting with sim-
procs, let us further assume we want that the simproc only rewrites terms “greater”
than Suc 0. For this we can write

fun plus_one_sp_aux ss redex =

case redex of

@{term "Suc 0"} => NONE

| _ => SOME @{thm plus_one}

68

and set up the simproc as follows.

val plus_one_sp =

let

val thy = @{theory}

val pat = [@{term "Suc n"}]

in

Simplifier.simproc_i thy "sproc +1" pat (K plus_one_sp_aux)

end

Now the simproc is set up so that it is triggered by terms of the form Suc n, but
inside the simproc we only produce a theorem if the term is not Suc 0. The result
you can see in the following proof

lemma shows "P (Suc (Suc (Suc 0))) (Suc 0)"

apply(tactic {* simp_tac (HOL_basic_ss addsimprocs [plus_one_sp]) 1*})

where the simproc produces the goal state

goal (1 subgoal):

1. P (Suc 0 + 1 + 1) (Suc 0)

As usual with rewriting you have to worry about looping: you already have a loop
with plus_one_sp, if you apply it with the default simpset (because the default
simpset contains a rule which just does the opposite of plus_one_sp, namely rewrit-
ing "+ 1" to a successor). So you have to be careful in choosing the right simpset to
which you add a simproc.

Next let us implement a simproc that replaces terms of the form Suc n with the
number n increase by one. First we implement a function that takes a term and
produces the corresponding integer value.

fun dest_suc_trm ((Const (@{const_name "Suc"}, _)) $ t) = 1 + dest_suc_trm t

| dest_suc_trm t = snd (HOLogic.dest_number t)

It uses the library function dest_number that transforms (Isabelle) terms, like 0, 1,
2 and so on, into integer values. This function raises the exception TERM, if the term
is not a number. The next function expects a pair consisting of a term t (containing
Sucs) and the corresponding integer value n.

fun get_thm ctxt (t, n) =1

let2

val num = HOLogic.mk_number @{typ "nat"} n3

val goal = Logic.mk_equals (t, num)4

in5

Goal.prove ctxt [] [] goal (K (arith_tac ctxt 1))6

end7

69

From the integer value it generates the corresponding number term, called num (Line
3), and then generates the meta-equation t ≡ num (Line 4), which it proves by the
arithmetic tactic in Line 6.

For our purpose at the moment, proving the meta-equation using arith_tac is
fine, but there is also an alternative employing the simplifier with a very restricted
simpset. For the kind of lemmas we want to prove, the simpset num_ss in the code
will suffice.

fun get_thm_alt ctxt (t, n) =

let

val num = HOLogic.mk_number @{typ "nat"} n

val goal = Logic.mk_equals (t, num)

val num_ss = HOL_ss addsimps [@{thm One_nat_def}, @{thm Let_def}] @

@{thms nat_number} @ @{thms neg_simps} @ @{thms plus_nat.simps}

in

Goal.prove ctxt [] [] goal (K (simp_tac num_ss 1))

end

The advantage of get_thm_alt is that it leaves very little room for something to go
wrong; in contrast it is much more difficult to predict what happens with arith_tac,
especially in more complicated circumstances. The disatvantage of get_thm_alt is
to find a simpset that is sufficiently powerful to solve every instance of the lemmas
we like to prove. This requires careful tuning, but is often necessary in “production
code”.2

Anyway, either version can be used in the function that produces the actual theorem
for the simproc.

fun nat_number_sp_aux ss t =

let

val ctxt = Simplifier.the_context ss

in

SOME (get_thm ctxt (t, dest_suc_trm t))

handle TERM _ => NONE

end

This function uses the fact that dest_suc_trm might throw an exception TERM. In
this case there is nothing that can be rewritten and therefore no theorem is produced
(i.e. the function returns NONE). To try out the simproc on an example, you can set
it up as follows:

val nat_number_sp =

let

val thy = @{theory}

val pat = [@{term "Suc n"}]

in

Simplifier.simproc_i thy "nat_number" pat (K nat_number_sp_aux)

end

2It would be of great help if there is another way than tracing the simplifier to obtain the lemmas
that are successfully applied during simplification. Alas, there is none.

70

Now in the lemma

lemma "P (Suc (Suc 2)) (Suc 99) (0::nat) (Suc 4 + Suc 0) (Suc (0 + 0))"

apply(tactic {* simp_tac (HOL_ss addsimprocs [nat_number_sp]) 1*})

you obtain the more legible goal state

goal (1 subgoal):

1. P 4 100 0 (5 + 1) (Suc (0 + 0))

where the simproc rewrites all Sucs except in the last argument. There it cannot
rewrite anything, because it does not know how to transform the term Suc (0 + 0)

into a number. To solve this problem have a look at the next exercise.

Exercise 4.5.1. Write a simproc that replaces terms of the form t1 + t2 by their result.
You can assume the terms are “proper” numbers, that is of the form 0, 1, 2 and so on.

(FIXME: We did not do anything with morphisms. Anything interesting one can say
about them?)

4.6 Conversions

Conversions are a thin layer on top of Isabelle’s inference kernel, and can be viewed
as a controllable, bare-bone version of Isabelle’s simplifier. One difference between
conversions and the simplifier is that the former act on cterms while the latter acts
on thms. However, we will also show in this section how conversions can be applied
to theorems via tactics. The type for conversions is

type conv = Thm.cterm -> Thm.thm

whereby the produced theorem is always a meta-equality. A simple conversion is the
function Conv.all_conv, which maps a cterm to an instance of the (meta)reflexivity
theorem. For example:

Conv.all_conv @{cterm "Foo ∨ Bar"}

> Foo ∨ Bar ≡ Foo ∨ Bar

Another simple conversion is Conv.no_conv which always raises the exception CTERM.

Conv.no_conv @{cterm True}

> *** Exception- CTERM ("no conversion", []) raised

A more interesting conversion is the function Thm.beta_conversion : it produces a
meta-equation between a term and its beta-normal form. For example

71

let

val add = @{cterm "λx y. x + (y::nat)"}

val two = @{cterm "2::nat"}

val ten = @{cterm "10::nat"}

in

Thm.beta_conversion true (Thm.capply (Thm.capply add two) ten)

end

> ((λx y. x + y) 2) 10 ≡ 2 + 10

Note that the actual response in this example is 2 + 10 ≡ 2 + 10, since the pretty-
printer for cterms already beta-normalises terms. But how we constructed the term
(using the function Thm.capply, which is the application $ for cterms) ensures that
the left-hand side must contain beta-redexes. Indeed if we obtain the “raw” repre-
sentation of the produced theorem, we can see the difference:

let

val add = @{cterm "λx y. x + (y::nat)"}

val two = @{cterm "2::nat"}

val ten = @{cterm "10::nat"}

val thm = Thm.beta_conversion true (Thm.capply (Thm.capply add two) ten)

in

#prop (rep_thm thm)

end

> Const ("==", . . .) $

> (Abs ("x", . . . ,Abs ("y", . . . , . . .)) $. . . $. . .) $

> (Const ("HOL.plus_class.plus", . . .) $. . . $. . .)

The argument true in Thm.beta_conversion indicates that the right-hand side will
be fully beta-normalised. If instead false is given, then only a single beta-reduction
is performed on the outer-most level. For example

let

val add = @{cterm "λx y. x + (y::nat)"}

val two = @{cterm "2::nat"}

in

Thm.beta_conversion false (Thm.capply add two)

end

> ((λx y. x + y) 2) ≡ λy. 2 + y

Again, we actually see as output only the fully normalised term λy. 2 + y.

The main point of conversions is that they can be used for rewriting cterms. To do
this you can use the function Conv.rewr_conv, which expects a meta-equation as an
argument. Suppose we want to rewrite a cterm according to the meta-equation:

lemma true_conj1: "True ∧ P ≡ P" by simp

You can see how this function works in the example rewriting True ∧ (Foo −→
Bar) to Foo −→ Bar.

72

let

val ctrm = @{cterm "True ∧ (Foo −→ Bar)"}

in

Conv.rewr_conv @{thm true_conj1} ctrm

end

> True ∧ (Foo −→ Bar) ≡ Foo −→ Bar

Note, however, that the function Conv.rewr_conv only rewrites the outer-most level
of the cterm. If the given cterm does not match exactly the left-hand side of the
theorem, then Conv.rewr_conv raises the exception CTERM.

This very primitive way of rewriting can be made more powerful by combining sev-
eral conversions into one. For this you can use conversion combinators. The simplest
conversion combinator is then_conv, which applies one conversion after another.
For example

let

val conv1 = Thm.beta_conversion false

val conv2 = Conv.rewr_conv @{thm true_conj1}

val ctrm = Thm.capply @{cterm "λx. x ∧ False"} @{cterm "True"}

in

(conv1 then_conv conv2) ctrm

end

> (λx. x ∧ False) True ≡ False

where we first beta-reduce the term and then rewrite according to true_conj1. (Re-
call the problem with the pretty-printer normalising all terms.)

The conversion combinator else_conv tries out the first one, and if it does not apply,
tries the second. For example

let

val conv = Conv.rewr_conv @{thm true_conj1} else_conv Conv.all_conv

val ctrm1 = @{cterm "True ∧ Q"}

val ctrm2 = @{cterm "P ∨ (True ∧ Q)"}

in

(conv ctrm1, conv ctrm2)

end

> (True ∧ Q ≡ Q, P ∨ True ∧ Q ≡ P ∨ True ∧ Q)

Here the conversion of true_conj1 only applies in the first case, but fails in the
second. The whole conversion does not fail, however, because the combinator
Conv.else_conv will then try out Conv.all_conv, which always succeeds.

The conversion combinator Conv.try_conv constructs a conversion which is tried
out on a term, but in case of failure just does nothing. For example

Conv.try_conv (Conv.rewr_conv @{thm true_conj1}) @{cterm "True ∨ P"}

> True ∨ P ≡ True ∨ P

73

Apart from the function beta_conversion, which is able to fully beta-normalise
a term, the conversions so far are restricted in that they only apply to the outer-
most level of a cterm. In what follows we will lift this restriction. The combinator
Conv.arg_conv will apply the conversion to the first argument of an application,
that is the term must be of the form t1 $ t2 and the conversion is applied to t2.
For example

let

val conv = Conv.rewr_conv @{thm true_conj1}

val ctrm = @{cterm "P ∨ (True ∧ Q)"}

in

Conv.arg_conv conv ctrm

end

> P ∨ (True ∧ Q) ≡ P ∨ Q

The reason for this behaviour is that (op ∨) expects two arguments. Therefore the
term must be of the form (Const . . . $ t1) $ t2. The conversion is then applied to
t2 which in the example above stands for True ∧ Q. The function Conv.fun_conv

applies the conversion to the first argument of an application.

The function Conv.abs_conv applies a conversion under an abstractions. For exam-
ple:

let

val conv = K (Conv.rewr_conv @{thm true_conj1})

val ctrm = @{cterm "λP. True ∧ P ∧ Foo"}

in

Conv.abs_conv conv @{context} ctrm

end

> λP. True ∧ P ∧ Foo ≡ λP. P ∧ Foo

Note that this conversion needs a context as an argument. The conversion that
goes under an application is Conv.combination_conv. It expects two conversions as
arguments, each of which is applied to the corresponding “branch” of the application.

We can now apply all these functions in a conversion that recursively descends a
term and applies a “true_conj1”-conversion in all possible positions.

fun all_true1_conv ctxt ctrm =1

case (Thm.term_of ctrm) of2

@{term "op ∧"} $ @{term True} $ _ =>3

(Conv.arg_conv (all_true1_conv ctxt) then_conv4

Conv.rewr_conv @{thm true_conj1}) ctrm5

| _ $ _ => Conv.combination_conv6

(all_true1_conv ctxt) (all_true1_conv ctxt) ctrm7

| Abs _ => Conv.abs_conv (fn (_, ctxt) => all_true1_conv ctxt) ctxt ctrm8

| _ => Conv.all_conv ctrm9

This function “fires” if the terms is of the form True ∧ . . . ; it descends under ap-
plications (Line 6 and 7) and abstractions (Line 8); otherwise it leaves the term

74

unchanged (Line 9). In Line 2 we need to transform the cterm into a term in order
to be able to pattern-match the term. To see this conversion in action, consider the
following example:

let

val ctxt = @{context}

val ctrm = @{cterm "distinct [1, x] −→ True ∧ 1 6= x"}

in

all_true1_conv ctxt ctrm

end

> distinct [1, x] −→ True ∧ 1 6= x ≡ distinct [1, x] −→ 1 6= x

To see how much control you have about rewriting by using conversions, let us make
the task a bit more complicated by rewriting according to the rule true_conj1, but
only in the first arguments of Ifs. Then the conversion should be as follows.

fun if_true1_conv ctxt ctrm =

case Thm.term_of ctrm of

Const (@{const_name If}, _) $ _ =>

Conv.arg_conv (all_true1_conv ctxt) ctrm

| _ $ _ => Conv.combination_conv

(if_true1_conv ctxt) (if_true1_conv ctxt) ctrm

| Abs _ => Conv.abs_conv (fn (_, ctxt) => if_true1_conv ctxt) ctxt ctrm

| _ => Conv.all_conv ctrm

Here is an example for this conversion:

let

val ctxt = @{context}

val ctrm =

@{cterm "if P (True ∧ 1 6= 2) then True ∧ True else True ∧ False"}

in

if_true1_conv ctxt ctrm

end

> if P (True ∧ 1 6= 2) then True ∧ True else True ∧ False

> ≡ if P (1 6= 2) then True ∧ True else True ∧ False

So far we only applied conversions to cterms. Conversions can, however, also work
on theorems using the function Conv.fconv_rule. As an example, consider the
conversion all_true1_conv and the lemma:

lemma foo_test: "P ∨ (True ∧ ¬P)" by simp

Using the conversion you can transform this theorem into a new theorem as follows

Conv.fconv_rule (all_true1_conv @{context}) @{thm foo_test}

> ?P ∨ ¬ ?P

75

Finally, conversions can also be turned into tactics and then applied to goal states.
This can be done with the help of the function CONVERSION, and also some predefined
conversion combinators that traverse a goal state. The combinators for the goal state
are: Conv.params_conv for converting under parameters (i.e. where goals are of
the form

∧
x. P =⇒ Q); the function Conv.prems_conv for applying a conversion

to all premises of a goal, and Conv.concl_conv for applying a conversion to the
conclusion of a goal.

Assume we want to apply all_true1_conv only in the conclusion of the goal, and
if_true1_conv should only apply to the premises. Here is a tactic doing exactly
that:

val true1_tac = CSUBGOAL (fn (goal, i) =>

let

val ctxt = ProofContext.init (Thm.theory_of_cterm goal)

in

CONVERSION

(Conv.params_conv ~1 (fn ctxt =>

(Conv.prems_conv ~1 (if_true1_conv ctxt) then_conv

Conv.concl_conv ~1 (all_true1_conv ctxt))) ctxt) i

end)

We call the conversions with the argument ~1. This is to analyse all parameters,
premises and conclusions. If we call them with a non-negative number, say n, then
these conversions will only be called on n premises (similar for parameters and
conclusions). To test the tactic, consider the proof

lemma
"if True ∧ P then P else True ∧ False =⇒
(if True ∧ Q then True ∧ Q else P) −→ True ∧ (True ∧ Q)"

apply(tactic {* true1_tac 1 *})

where the tactic yields the goal state

goal (1 subgoal):

1. if P then P else True ∧ False =⇒ (if Q then Q else P) −→ Q

As you can see, the premises are rewritten according to if_true1_conv, while the
conclusion according to all_true1_conv.

To sum up this section, conversions are not as powerful as the simplifier and sim-
procs; the advantage of conversions, however, is that you never have to worry about
non-termination.

Exercise 4.6.1. Write a tactic that does the same as the simproc in exercise 4.5.1, but
is based in conversions. That means replace terms of the form t1 + t2 by their result.
You can make the same assumptions as in 4.5.1.

Exercise 4.6.2. Compare your solutions of Exercises 4.5.1 and 4.6.1, and try to deter-
mine which way of rewriting such terms is faster. For this you might have to construct
quite large terms. Also see Recipe A.3 for information about timing.

76

Read More
See Pure/conv.ML for more information about conversion combinators. Further conver-
sions are defined in Pure/thm.ML, Pure/drule.ML and Pure/meta_simplifier.ML.

4.7 Structured Proofs (TBD)

TBD

lemma True

proof

{
fix A B C

assume r: "A & B =⇒ C"

assume A B

then have "A & B" ..
then have C by (rule r)

}

{
fix A B C

assume r: "A & B =⇒ C"

assume A B

note conjI [OF this]

note r [OF this]

}
oops

fun prop ctxt s =

Thm.cterm_of (ProofContext.theory_of ctxt) (Syntax.read_prop ctxt s)

val ctxt0 = @{context};

val ctxt = ctxt0;

val (_, ctxt) = Variable.add_fixes ["A", "B", "C"] ctxt;

val ([r], ctxt) = Assumption.add_assumes [prop ctxt "A & B =⇒ C"] ctxt;

val (this, ctxt) = Assumption.add_assumes [prop ctxt "A", prop ctxt "B"]

ctxt;

val this = [@{thm conjI} OF this];

val this = r OF this;

val this = Assumption.export false ctxt ctxt0 this

val this = Variable.export ctxt ctxt0 [this]

77

Chapter 5

How to Write a Definitional
Package (TBD)

“My thesis is that programming is not at the bottom of the intellectual
pyramid, but at the top. It’s creative design of the highest order. It
isn’t monkey or donkey work; rather, as Edsger Dijkstra famously

claimed, it’s amongst the hardest intellectual tasks ever attempted.”

Richard Bornat, In Defence of Programming [1]

HOL is based on just a few primitive constants, like equality and implication, whose
properties are described by axioms. All other concepts, such as inductive predicates,
datatypes, or recursive functions have to be defined in terms of those constants,
and the desired properties, for example induction theorems, or recursion equations
have to be derived from the definitions by a formal proof. Since it would be very
tedious for a user to define complex inductive predicates or datatypes “by hand” just
using the primitive operators of higher order logic, definitional packages have been
implemented automating such work. Thanks to those packages, the user can give a
high-level specification, for example a list of introduction rules or constructors, and
the package then does all the low-level definitions and proofs behind the scenes. In
this chapter we explain how such a package can be implemented.

As a running example, we have chosen a rather simple package for defining inductive
predicates. To keep things really simple, we will not use the general Knaster-Tarski
fixpoint theorem on complete lattices, which forms the basis of Isabelle’s standard
inductive definition package. Instead, we will use a simpler impredicative (i.e. in-
volving quantification on predicate variables) encoding of inductive predicates. Due
to its simplicity, this package will necessarily have a reduced functionality. It does
neither support introduction rules involving arbitrary monotone operators, nor does
it prove case analysis (or inversion) rules. Moreover, it only proves a weaker form of
the induction principle for inductive predicates.

78

5.1 Preliminaries

The user will just give a specification of an inductive predicate and expects from the
package to produce a convenient reasoning infrastructure. This infrastructure needs
to be derived from the definition that correspond to the specified predicate. This will
roughly mean that the package has three main parts, namely:

• parsing the specification and typing the parsed input,

• making the definitions and deriving the reasoning infrastructure, and

• storing the results in the theory.

Before we start with explaining all parts, let us first give three examples showing
how to define inductive predicates by hand and then also how to prove by hand
important properties about them. From these examples, we will figure out a general
method for defining inductive predicates. The aim in this section is not to write
proofs that are as beautiful as possible, but as close as possible to the ML-code we
will develop in later sections.

We first consider the transitive closure of a relation R. It is an inductive predicate
characterised by the two introduction rules:

trcl R x x

R x y trcl R y z

trcl R x z

In Isabelle, the user will state for trcl the specification:

simple inductive
trcl :: "(’a ⇒ ’a ⇒ bool) ⇒ ’a ⇒ ’a ⇒ bool"

where
base: "trcl R x x"

| step: "trcl R x y =⇒ R y z =⇒ trcl R x z"

As said above the package has to make an appropriate definition and provide lemmas
to reason about the predicate trcl. Since an inductively defined predicate is the least
predicate closed under a collection of introduction rules, the predicate trcl R x y

can be defined so that it holds if and only if P x y holds for every predicate P closed
under the rules above. This gives rise to the definition

definition "trcl ≡
λR x y. ∀ P. (∀ x. P x x)

−→ (∀ x y z. R x y −→ P y z −→ P x z) −→ P x y"

where we quantify over the predicate P. We have to use the object implication −→
and object quantification ∀ for stating this definition (there is no other way for
definitions in HOL). However, the introduction rules and induction principles should
use the meta-connectives since they simplify the reasoning for the user.

With this definition, the proof of the induction principle for trcl is almost immedi-
ate. It suffices to convert all the meta-level connectives in the lemma to object-level
connectives using the proof method atomize (Line 4), expand the definition of trcl

79

(Line 5 and 6), eliminate the universal quantifier contained in it (Line 7), and then
solve the goal by assumption (Line 8).

lemma trcl_induct:1

assumes "trcl R x y"2

shows "(
∧
x. P x x) =⇒ (

∧
x y z. R x y =⇒ P y z =⇒ P x z) =⇒ P x y"3

apply(atomize (full))4

apply(cut_tac prems)5

apply(unfold trcl_def)6

apply(drule spec[where x=P])7

apply(assumption)8

done9

The proofs for the introduction rules are slightly more complicated. For the first one,
we need to prove the following lemma:

lemma trcl_base:1

shows "trcl R x x"2

apply(unfold trcl_def)3

apply(rule allI impI)+4

apply(drule spec)5

apply(assumption)6

done7

We again unfold first the definition and apply introduction rules for ∀ and −→ as
often as possible (Lines 3 and 4). We then end up in the goal state:

goal (1 subgoal):

1.
∧
P. [[∀ x. P x x; ∀ x y z. R x y −→ P y z −→ P x z]] =⇒ P x x

The two assumptions correspond to the introduction rules. Thus, all we have to do
is to eliminate the universal quantifier in front of the first assumption (Line 5), and
then solve the goal by assumption (Line 6).

Next we have to show that the second introduction rule also follows from the defini-
tion. Since this rule has premises, the proof is a bit more involved. After unfolding
the definitions and applying the introduction rules for ∀ and −→
lemma trcl_step:

shows "R x y =⇒ trcl R y z =⇒ trcl R x z"

apply (unfold trcl_def)

apply (rule allI impI)+

we obtain the goal state

goal (1 subgoal):

1.
∧
P. [[R x y;

∀ P. (∀ x. P x x) −→ (∀ x y z. R x y −→ P y z −→ P x z) −→ P y z;

∀ x. P x x; ∀ x y z. R x y −→ P y z −→ P x z]]
=⇒ P x z

To see better where we are, let us explicitly name the assumptions by starting a
subproof.

80

proof -

case (goal1 P)

have p1: "R x y" by fact

have p2: "∀ P. (∀ x. P x x)

−→ (∀ x y z. R x y −→ P y z −→ P x z) −→ P y z" by fact

have r1: "∀ x. P x x" by fact

have r2: "∀ x y z. R x y −→ P y z −→ P x z" by fact

show "P x z"

The assumptions p1 and p2 correspond to the premises of the second introduction
rule; the assumptions r1 and r2 correspond to the introduction rules. We apply
r2 to the goal P x z. In order for the assumption to be applicable as a rule, we
have to eliminate the universal quantifier and turn the object-level implications into
meta-level ones. This can be accomplished using the rule_format attribute. So we
continue the proof with:

apply (rule r2[rule_format])

This gives us two new subgoals

goal (2 subgoals):

1. R x ?y

2. P ?y z

which can be solved using assumptions p1 and p2. The latter involves a quantifier
and implications that have to be eliminated before it can be applied. To avoid poten-
tial problems with higher-order unification, we explicitly instantiate the quantifier to
P and also match explicitly the implications with r1 and r2. This gives the proof:

apply(rule p1)

apply(rule p2[THEN spec[where x=P], THEN mp, THEN mp, OF r1, OF r2])

done
qed

Now we are done. It might be surprising that we are not using the automatic tactics
available in Isabelle for proving this lemmas. After all blast would easily dispense
of it.

lemma trcl_step_blast:

shows "R x y =⇒ trcl R y z =⇒ trcl R x z"

apply(unfold trcl_def)

apply(blast)
done

Experience has shown that it is generally a bad idea to rely heavily on blast, auto
and the like in automated proofs. The reason is that you do not have precise control
over them (the user can, for example, declare new intro- or simplification rules that
can throw automatic tactics off course) and also it is very hard to debug proofs
involving automatic tactics whenever something goes wrong. Therefore if possible,
automatic tactics should be avoided or sufficiently constrained.

The method of defining inductive predicates by impredicative quantification also
generalises to mutually inductive predicates. The next example defines the predi-
cates even and odd characterised by the following rules:

81

even 0

odd n

even (Suc n)

even n

odd (Suc n)

The user will state for this inductive definition the specification:

simple inductive
even and odd

where
even0: "even 0"

| evenS: "odd n =⇒ even (Suc n)"

| oddS: "even n =⇒ odd (Suc n)"

Since the predicates even and odd are mutually inductive, each corresponding defi-
nition must quantify over both predicates (we name them below P and Q).

definition "even ≡
λn. ∀ P Q. P 0 −→ (∀ m. Q m −→ P (Suc m))

−→ (∀ m. P m −→ Q (Suc m)) −→ P n"

definition "odd ≡
λn. ∀ P Q. P 0 −→ (∀ m. Q m −→ P (Suc m))

−→ (∀ m. P m −→ Q (Suc m)) −→ Q n"

For proving the induction principles, we use exactly the same technique as in the
transitive closure example, namely:

lemma even_induct:

assumes "even n"

shows "P 0 =⇒
(
∧
m. Q m =⇒ P (Suc m)) =⇒ (

∧
m. P m =⇒ Q (Suc m)) =⇒ P n"

apply(atomize (full))

apply(cut_tac prems)

apply(unfold even_def)

apply(drule spec[where x=P])

apply(drule spec[where x=Q])

apply(assumption)
done

The only difference with the proof trcl_induct is that we have to instantiate here
two universal quantifiers. We omit the other induction principle that has Q n as
conclusion. The proofs of the introduction rules are also very similar to the ones in
the trcl -example. We only show the proof of the second introduction rule.

lemma evenS:1

shows "odd m =⇒ even (Suc m)"2

apply (unfold odd_def even_def)3

apply (rule allI impI)+4

proof -5

case (goal1 P Q)6

have p1: "∀ P Q. P 0 −→ (∀ m. Q m −→ P (Suc m))7

−→ (∀ m. P m −→ Q (Suc m)) −→ Q m" by fact8

have r1: "P 0" by fact9

have r2: "∀ m. Q m −→ P (Suc m)" by fact10

have r3: "∀ m. P m −→ Q (Suc m)" by fact11

show "P (Suc m)"12

82

apply(rule r2[rule_format])13

apply(rule p1[THEN spec[where x=P], THEN spec[where x=Q],14

THEN mp, THEN mp, THEN mp, OF r1, OF r2, OF r3])15

done16

qed17

In Line 13, we apply the assumption r2 (since we prove the second introduction
rule). In Lines 14 and 15 we apply assumption p1 (if the second introduction rule
had more premises we have to do that for all of them). In order for this assumption to
be applicable, the quantifiers need to be instantiated and then also the implications
need to be resolved with the other rules.

As a final example, we define the accessible part of a relation R characterised by the
introduction rule ∧

y. R y x =⇒ accpart R y

accpart R x

whose premise involves a universal quantifier and an implication. The definition of
accpart is:

definition "accpart ≡ λR x. ∀ P. (∀ x. (∀ y. R y x −→ P y) −→ P x) −→ P x"

The proof of the induction principle is again straightforward.

lemma accpart_induct:

assumes "accpart R x"

shows "(
∧
x. (

∧
y. R y x =⇒ P y) =⇒ P x) =⇒ P x"

apply(atomize (full))

apply(cut_tac prems)

apply(unfold accpart_def)

apply(drule spec[where x=P])

apply(assumption)
done

Proving the introduction rule is a little more complicated, because the quantifier and
the implication in the premise. The proof is as follows.

lemma accpartI:1

shows "(
∧
y. R y x =⇒ accpart R y) =⇒ accpart R x"2

apply (unfold accpart_def)3

apply (rule allI impI)+4

proof -5

case (goal1 P)6

have p1: "
∧
y. R y x =⇒7

(∀ P. (∀ x. (∀ y. R y x −→ P y) −→ P x) −→ P y)" by fact8

have r1: "∀ x. (∀ y. R y x −→ P y) −→ P x" by fact9

show "P x"10

apply(rule r1[rule_format])11

proof -12

case (goal1 y)13

have r1_prem: "R y x" by fact14

show "P y"15

apply(rule p1[OF r1_prem, THEN spec[where x=P], THEN mp, OF r1])16

done17

83

qed18

qed19

In Line 11, applying the assumption r1 generates a goal state with the new local
assumption R y x, named r1_prem in the proof above (Line 14). This local assump-
tion is used to solve the goal P y with the help of assumption p1.

The point of these examples is to get a feeling what the automatic proofs should
do in order to solve all inductive definitions we throw at them. This is usually the
first step in writing a package. We next explain the parsing and typing part of the
package.

5.2 Parsing and Typing the Specification

To be able to write down the specification in Isabelle, we have to introduce a new
command (see Section 3.5). As the keyword for the new command we chose sim-
ple inductive. In the package we want to support some “advanced” features: First,
we want that the package can cope with specifications inside locales. For example it
should be possible to declare

locale rel =

fixes R :: "’a ⇒ ’a ⇒ bool"

and then define the transitive closure and the accessible part as follows:

simple inductive (in rel)

trcl’

where
base: "trcl’ x x"

| step: "trcl’ x y =⇒ R y z =⇒ trcl’ x z"

simple inductive (in rel)

accpart’

where
accpartI: "(

∧
y. R y x =⇒ accpart’ y) =⇒ accpart’ x"

Second, we want that the user can specify fixed parameters. Remember in the previ-
ous section we stated that the user can give the specification for the transitive closure
of a relation R as

simple inductive
trcl :: "(’a ⇒ ’a ⇒ bool) ⇒ ’a ⇒ ’a ⇒ bool"

where
base: "trcl R x x"

| step: "trcl R x y =⇒ R y z =⇒ trcl R x z"

Note that there is no locale given in this specification—the parameter R therefore
needs to be included explicitly in trcl, but stays fixed throughout the specification.
The problem with this way of stating the specification for the transitive closure is
that it derives the following induction principle.

84

trcl R x y∧
R x. P R x x∧
R x y z. [[P R x y; R y z]] =⇒ P R x z

P R x y

But this does not correspond to the induction principle we derived by hand, which
was

trcl R x y∧
x. P x x∧
x y z. [[R x y; P y z]] =⇒ P x z

P x y

The difference is that in the one derived by hand the relation R is not a parameter
of the proposition P to be proved and it is also not universally qunatified in the
second and third premise. The point is that the parameter R stays fixed thoughout
the definition and we do not want to regard it as an “ordinary” argument of the
transitive closure, but one that can be freely instantiated. In order to recognise such
parameters, we have to extend the specification to include a mechanism to state
fixed parameters. The user should be able to write

simple inductive
trcl’’ for R :: "’a ⇒ ’a ⇒ bool"

where
base: "trcl’’ R x x"

| step: "trcl’’ R x y =⇒ R y z =⇒ trcl’’ R x z"

simple inductive
accpart’’ for R :: "’a ⇒ ’a ⇒ bool"

where
accpartI: "(

∧
y. R y x =⇒ accpart’’ R y) =⇒ accpart’’ R x"

This leads directly to the railroad diagram shown in Figure 5.1 for the syntax of
simple inductive. This diagram more or less translates directly into the parser:

val spec_parser =

OuterParse.opt_target --

OuterParse.fixes --

OuterParse.for_fixes --

Scan.optional

(OuterParse.$$$ "where" |--

OuterParse.!!!

(OuterParse.enum1 "|"

(SpecParse.opt_thm_name ":" -- OuterParse.prop))) []

which we described in Section 3.4. If we feed into the parser the string (which
corresponds to our definition of Ind_Prelims.even and Ind_Prelims.odd):

85

simple inductive
�� ��

� target

�

fixes �
� for

�� �fixes

�

�
�

��
� where

�� � �
� thmdecl

�

prop�
� |

���

�

�

Figure 5.1: A railroad diagram describing the syntax of simple inductive. The target
indicates an optional locale; the fixes are an and-separated list of names for the
inductive predicates (they can also contain typing- and syntax anotations); similarly
the fixes after for to indicate fixed parameters; prop stands for a introduction rule
with an optional theorem declaration (thmdecl).

let

val input = filtered_input

("even and odd " ^

"where " ^

" even0[intro]: \"even 0\" " ^

"| evenS[intro]: \"odd n =⇒ even (Suc n)\" " ^

"| oddS[intro]: \"even n =⇒ odd (Suc n)\"")

in

parse spec_parser input

end

> ((((NONE, [(even, NONE, NoSyn), (odd, NONE, NoSyn)]), []),

> [((even0, . . .), "\^E\^Ftoken\^Eeven 0\^E\^F\^E"),

> ((evenS, . . .), "\^E\^Ftoken\^Eodd n =⇒ even (Suc n)\^E\^F\^E"),

> ((oddS, . . .), "\^E\^Ftoken\^Eeven n =⇒ odd (Suc n)\^E\^F\^E")]), [])

then we get back a locale (in this case NONE), the predicates (with type and syntax
annotations), the parameters (similar as the predicates) and the specifications of the
introduction rules.

This is all the information we need for calling the package and setting up the key-
word. The latter is done in Lines 6 and 7 in the code below.

val specification =1

spec_parser >>2

(fn (((loc, preds), params), specs) =>3

Toplevel.local_theory loc (add_inductive preds params specs))4

86

5

val _ = OuterSyntax.command "simple_inductive" "define inductive predicates"6

OuterKeyword.thy_decl specification7

We call OuterSyntax.command with the kind-indicator OuterKeyword.thy_decl since
the package does not need to open up any goal state (see Section 3.5). Note that
the predicates and parameters are at the moment only some “naked” variables: they
have no type yet (even if we annotate them with types) and they are also no defined
constants yet (which the predicates will eventually be). In Lines 1 to 4 we gather the
information from the parser to be processed further. The locale is passed as argument
to the function Toplevel.local_theory.1 The other arguments, i.e. the predicates,
parameters and intro rule specifications, are passed to the function add_inductive

(Line 4).

We now come to the second subtask of the package, namely transforming the parser
output into some internal datastructures that can be processed further. Remember
that at the moment the introduction rules are just strings, and even if the pred-
icates and parameters can contain some typing annotations, they are not yet in
any way reflected in the introduction rules. So the task of add_inductive is to
transform the strings into properly typed terms. For this it can use the function
read_specification. This function takes some constants with possible typing an-
notations and some rule specifications and attempts to find a type according to the
given type constraints and the type constraints by the surrounding (local theory).
However this function is a bit too general for our purposes: we want that each in-
troduction rule has only name (for example even0 or evenS), if a name is given at
all. The function read_specification however allows more than one rule. Since
it is quite convenient to rely on this function (instead of building your own) we just
quick ly write a wrapper function that translates between our specific format and
the general format expected by read_specification. The code of this wrapper is
as follows:

fun read_specification’ vars specs lthy =1

let2

val specs’ = map (fn (a, s) => [(a, [s])]) specs3

val ((varst, specst), _) =4

Specification.read_specification vars specs’ lthy5

val specst’ = map (apsnd the_single) specst6

in7

(varst, specst’)8

end9

It takes a list of constants, a list of rule specifications and a local theory as input.
Does the transformation of the rule specifications in Line 3; calls the function and
transforms the now typed rule specifications back into our format and returns the
type parameter and typed rule specifications.

1FIXME Is this already described?

87

fun add_inductive preds params specs lthy =1

let2

val (vars, specs’) = read_specification’ (preds @ params) specs lthy;3

val (preds’, params’) = chop (length preds) vars;4

val params’’ = map fst params’5

in6

add_inductive_i preds’ params’’ specs’ lthy7

end;8

In order to add a new inductive predicate to a theory with the help of our package,
the user must invoke it. For every package, there are essentially two different ways
of invoking it, which we will refer to as external and internal. By external invocation
we mean that the package is called from within a theory document. In this case, the
specification of the inductive predicate, including type annotations and introduction
rules, are given as strings by the user. Before the package can actually make the
definition, the type and introduction rules have to be parsed. In contrast, internal
invocation means that the package is called by some other package. For example, the
function definition package calls the inductive definition package to define the graph
of the function. However, it is not a good idea for the function definition package to
pass the introduction rules for the function graph to the inductive definition package
as strings. In this case, it is better to directly pass the rules to the package as a list
of terms, which is more robust than handling strings that are lacking the additional
structure of terms. These two ways of invoking the package are reflected in its ML
programming interface, which consists of two functions:

signature SIMPLE_INDUCTIVE_PACKAGE =

sig

val add_inductive_i:

((Binding.binding * typ) * mixfix) list -> predicates
(Binding.binding * typ) list -> parameters
(Attrib.binding * term) list -> rules
local_theory -> local_theory

val add_inductive:

(Binding.binding * string option * mixfix) list -> predicates
(Binding.binding * string option * mixfix) list -> parameters
(Attrib.binding * string) list -> rules
local_theory -> local_theory

end;

(FIXME: explain Binding.binding; Attrib.binding somewhere else)

The function for external invocation of the package is called add_inductive, whereas
the one for internal invocation is called add_inductive_i. Both of these functions
take as arguments the names and types of the inductive predicates, the names and
types of their parameters, the actual introduction rules and a local theory. They
return a local theory containing the definition and the induction principle as well
introduction rules.

88

Note that add_inductive_i expects the types of the predicates and parameters
to be specified using the datatype typ of Isabelle’s logical framework, whereas
add_inductive expects them to be given as optional strings. If no string is given
for a particular predicate or parameter, this means that the type should be inferred
by the package.

Additional mixfix syntax may be associated with the predicates and parameters as
well. Note that add_inductive_i does not allow mixfix syntax to be associated
with parameters, since it can only be used for parsing.2 The names of the predicates,
parameters and rules are represented by the type Binding.binding. Strings can be
turned into elements of the type Binding.binding using the function

Binding.name : string ->

Binding.binding

Each introduction rule is given as a tuple containing its name, a list of attributes and a
logical formula. Note that the type Attrib.binding used in the list of introduction
rules is just a shorthand for the type Binding.binding * Attrib.src list. The
function add_inductive_i expects the formula to be specified using the datatype
term, whereas add_inductive expects it to be given as a string. An attribute speci-
fies additional actions and transformations that should be applied to a theorem, such
as storing it in the rule databases used by automatic tactics like the simplifier. The
code of the package, which will be described in the following section, will mostly
treat attributes as a black box and just forward them to other functions for stor-
ing theorems in local theories. The implementation of the function add_inductive

for external invocation of the package is quite simple. Essentially, it just parses the
introduction rules and then passes them on to add_inductive_i :

fun add_inductive preds params specs lthy =

let

val (vars, specs’) = read_specification’ (preds @ params) specs lthy;

val (preds’, params’) = chop (length preds) vars;

val params’’ = map fst params’

in

add_inductive_i preds’ params’’ specs’ lthy

end;

For parsing and type checking the introduction rules, we use the function

Specification.read_specification:

(Binding.binding * string option * mixfix) list -> variables
(Attrib.binding * string list) list list -> rules
local_theory ->

(((Binding.binding * typ) * mixfix) list *

(Attrib.binding * term list) list) *

local_theory

During parsing, both predicates and parameters are treated as variables, so the lists
preds_syn and params_syn are just appended before being passed to read_specification.

2FIXME: why ist it there then?

89

Note that the format for rules supported by read_specification is more general
than what is required for our package. It allows several rules to be associated
with one name, and the list of rules can be partitioned into several sublists. In
order for the list intro_srcs of introduction rules to be acceptable as an input for
read_specification, we first have to turn it into a list of singleton lists. This trans-
formation has to be reversed later on by applying the function

the_single: ’a list -> ’a

to the list specs containing the parsed introduction rules. The function read_specification

also returns the list vars of predicates and parameters that contains the inferred
types as well. This list has to be chopped into the two lists preds_syn’ and params_syn’
for predicates and parameters, respectively. All variables occurring in a rule but not
in the list of variables passed to read_specification will be bound by a meta-level
universal quantifier.

Finally, read_specification also returns another local theory, but we can safely
discard it. As an example, let us look at how we can use this function to parse the
introduction rules of the trcl predicate:

Specification.read_specification

[(Binding.name "trcl", NONE, NoSyn),

(Binding.name "r", SOME "’a ⇒ ’a ⇒ bool", NoSyn)]

[[((Binding.name "base", []), ["trcl r x x"])],

[((Binding.name "step", []), ["trcl r x y =⇒ r y z =⇒ trcl r x z"])]]

@{context}

> ((. . . ,
> [(. . . ,
> [Const ("all", . . .) $ Abs ("x", TFree ("’a", . . .),
> Const ("Trueprop", . . .) $

> (Free ("trcl", . . .) $ Free ("r", . . .) $ Bound 0 $ Bound 0))]),

> (. . . ,
> [Const ("all", . . .) $ Abs ("x", TFree ("’a", . . .),
> Const ("all", . . .) $ Abs ("y", TFree ("’a", . . .),
> Const ("all", . . .) $ Abs ("z", TFree ("’a", . . .),
> Const ("==>", . . .) $

> (Const ("Trueprop", . . .) $

> (Free ("trcl", . . .) $ Free ("r", . . .) $ Bound 2 $ Bound 1)) $

> (Const ("==>", . . .) $. . . $. . .))))])]),
> . . .)
> : (((Binding.binding * typ) * mixfix) list *

> (Attrib.binding * term list) list) * local_theory

In the list of variables passed to read_specification, we have used the mixfix
annotation NoSyn to indicate that we do not want to associate any mixfix syntax
with the variable. Moreover, we have only specified the type of r, whereas the
type of trcl is computed using type inference. The local variables x, y and z of
the introduction rules are turned into bound variables with the de Bruijn indices,
whereas trcl and r remain free variables.

90

opt_thm_name:

string -> token list -> Attrib.binding * token list

Parsers for theory syntax Although the function add_inductive parses terms and
types, it still cannot be used to invoke the package directly from within a theory
document. In order to do this, we have to write another parser. Before we describe
the process of writing parsers for theory syntax in more detail, we first show some
examples of how we would like to use the inductive definition package.

The definition of the transitive closure should look as follows:

A proposition can be parsed using the function prop. Essentially, a proposition is
just a string or an identifier, but using the specific parser function prop leads to
more instructive error messages, since the parser will complain that a proposition
was expected when something else than a string or identifier is found. An optional
locale target specification of the form (in . . .) can be parsed using opt_target.
The lists of names of the predicates and parameters, together with optional types
and syntax, are parsed using the functions fixes and for_fixes, respectively. In
addition, the following function from SpecParse for parsing an optional theorem
name and attribute, followed by a delimiter, will be useful:

We now have all the necessary tools to write the parser for our simple inductive
command:

Once all arguments of the command have been parsed, we apply the function add_inductive,
which yields a local theory transformer of type local_theory -> local_theory.
Commands in Isabelle/Isar are realized by transition transformers of type

Toplevel.transition -> Toplevel.transition

We can turn a local theory transformer into a transition transformer by using the
function

Toplevel.local_theory : string option ->

(local_theory -> local_theory) ->

Toplevel.transition -> Toplevel.transition

which, apart from the local theory transformer, takes an optional name of a locale to
be used as a basis for the local theory.

(FIXME : needs to be adjusted to new parser type)

The whole parser for our command has type

OuterLex.token list ->

(Toplevel.transition -> Toplevel.transition) * OuterLex.token list

which is abbreviated by OuterSyntax.parser_fn. The new command can be added to
the system via the function

OuterSyntax.command :

string -> string -> OuterKeyword.T -> OuterSyntax.parser_fn -> unit

91

which imperatively updates the parser table behind the scenes.
In addition to the parser, this function takes two strings representing the name of the
command and a short description, as well as an element of type OuterKeyword.T de-
scribing which kind of command we intend to add. Since we want to add a command
for declaring new concepts, we choose the kind OuterKeyword.thy_decl. Other
kinds include OuterKeyword.thy_goal, which is similar to thy_decl, but requires
the user to prove a goal before making the declaration, or OuterKeyword.diag,
which corresponds to a purely diagnostic command that does not change the con-
text. For example, the thy_goal kind is used by the function command [3], which
requires the user to prove that a given set of equations is non-overlapping and covers
all cases. The kind of the command should be chosen with care, since selecting the
wrong one can cause strange behaviour of the user interface, such as failure of the
undo mechanism.

Note that the trcl predicate has two different kinds of parameters: the first param-
eter R stays fixed throughout the definition, whereas the second and third parameter
changes in the “recursive call”. This will become important later on when we deal
with fixed parameters and locales.

The purpose of the package we show next is that the user just specifies the induc-
tive predicate by stating some introduction rules and then the packages makes the
equivalent definition and derives from it the needed properties.

From a high-level perspective the package consists of 6 subtasks:

5.3 The General Construction Principle

The point of these examples is to get a feeling what the automatic proofs should do
in order to solve all inductive definitions we throw at them. For this it is instructive
to look at the general construction principle of inductive definitions, which we shall
do in the next section.

Before we start with the implementation, it is useful to describe the general form
of inductive definitions that our package should accept. Suppose R1, . . . , Rn be mu-
tually inductive predicates and ~p be some fixed parameters. Then the introduction
rules for R1, . . . , Rn may have the form

∧
~xi. ~Ai =⇒

(∧
~yij . ~Bij =⇒ Rkij

~p ~sij

)
j=1,...,mi

=⇒ Rli ~p ~ti for i = 1, . . . , r

where ~Ai and ~Bij are formulae not containing R1, . . . , Rn. Note that by disallowing
the inductive predicates to occur in ~Bij we make sure that all occurrences of the
predicates in the premises of the introduction rules are strictly positive. This condi-
tion guarantees the existence of predicates that are closed under the introduction
rules shown above. Then the definitions of the inductive predicates R1, . . . , Rn is:

92

Ri ≡ λ~p ~zi. ∀P1 . . . Pn. K1 −→ · · · −→ Kr −→ Pi ~zi for i = 1, . . . , n

where

Ki ≡ ∀~xi. ~Ai −→
(
∀~yij . ~Bij −→ Pkij

~sij

)
j=1,...,mi

−→ Pli
~ti for i = 1, . . . , r

The induction principles for the inductive predicates R1, . . . , Rn are

Ri ~p ~zi =⇒ I1 =⇒ · · · =⇒ Ir =⇒ Pi ~zi for i = 1, . . . , n

where

Ii ≡
∧
~xi. ~Ai =⇒

(∧
~yij . ~Bij =⇒ Pkij

~sij

)
j=1,...,mi

=⇒ Pli
~ti for i = 1, . . . , r

Since Ki and Ii are equivalent modulo conversion between meta-level and object-
level connectives, it is clear that the proof of the induction theorem is straight-
forward. We will therefore focus on the proof of the introduction rules. When
proving the introduction rule shown above, we start by unfolding the definition of
R1, . . . , Rn, which yields

∧
~xi. ~Ai =⇒

(∧
~yij . ~Bij =⇒ ∀P1 . . . Pn. ~K −→ Pkij

~sij

)
j=1,...,mi

=⇒ ∀P1 . . . Pn. ~K −→ Pli
~ti

where ~K abbreviates K1, . . . ,Kr. Applying the introduction rules for ∀ and −→
yields a goal state in which we have to prove Pli

~ti from the additional assumptions
~K. When using Kli (converted to the meta-logic format) to prove Pli

~ti, we get
subgoals ~Ai that are trivially solvable by assumption, as well as subgoals of the form∧

~yij . ~Bij =⇒ Pkij
~sij for j = 1, . . . ,mi

that can be solved using the assumptions∧
~yij . ~Bij =⇒ ∀P1 . . . Pn. ~K −→ Pkij

~sij and ~K

What remains is to implement these proofs generically.

5.4 Code

5.4.1 Definitions

If we give it a term and a constant name, it will define the constant as the term.

93

fun make_defs ((binding, syn), trm) lthy =

let

val arg = ((binding, syn), (Attrib.empty_binding, trm))

val ((_, (_ , thm)), lthy) = LocalTheory.define Thm.internalK arg lthy

in

(thm, lthy)

end

Returns the definition and the local theory in which this definition has been made.
What is Thm.internalK?

let

val lthy = TheoryTarget.init NONE @{theory}

in

make_defs ((Binding.name "MyTrue", NoSyn), @{term "True"}) lthy

end

Why is the output of MyTrue blue?

Constructs the term for the definition: the main arguments are a predicate and the
types of the arguments, it also expects orules which are the intro rules in the object
logic; preds which are all predicates. returns the term.

fun defs_aux lthy orules preds (pred, arg_types) =1

let2

fun mk_all x P = HOLogic.all_const (fastype_of x) $ lambda x P3

4

val fresh_args =5

arg_types6

|> map (pair "z")7

|> Variable.variant_frees lthy orules8

|> map Free9

in10

list_comb (pred, fresh_args)11

|> fold_rev (curry HOLogic.mk_imp) orules12

|> fold_rev mk_all preds13

|> fold_rev lambda fresh_args14

end15

The lines 5-9 produce fresh arguments with which the predicate can be applied. For
this it pairs every type with a string "z" (Line 7); then generates variants for all
these strings (names) so that they are unique w.r.t. to the intro rules; in Line 9 it
generates the corresponding variable terms for these unique names.

The unique free variables are applied to the predicate (Line 11); then the intro rules
are attached as preconditions (Line 12); in Line 13 we quantify over all predicates;
and in line 14 we just abstract over all the (fresh) arguments of the predicate.

94

let

val orules = [@{term "even 0"},

@{term "∀ n::nat. odd n −→ even (Suc n)"},

@{term "∀ n::nat. even n −→ odd (Suc n)"}]

val preds = [@{term "even::nat⇒bool"}, @{term "odd::nat⇒bool"}]

in

warning

(Syntax.string_of_term @{context}

(defs_aux @{context} orules preds (@{term "even::nat⇒bool"}, [@{typ

"nat"}])))

end

The arguments of the main function for the definitions are the intro rules; the pred-
icates and their names, their syntax annotations and the argument types of each
predicate. It returns a theorem list (the definitions) and a local theory where the
definitions are made

fun definitions rules preds prednames syns arg_typss lthy =1

let2

val thy = ProofContext.theory_of lthy3

val orules = map (ObjectLogic.atomize_term thy) rules4

val defs = map (defs_aux lthy orules preds) (preds ~~ arg_typss)5

in6

fold_map make_defs (prednames ~~ syns ~~ defs) lthy7

end8

In line 4 we generate the intro rules in the object logic; for this we have to obtain the
theory behind the local theory (Line 3); with this we can call defs_aux to generate
the terms for the left-hand sides. The actual definitions are made in Line 7.

5.4.2 Induction Principles

fun inst_spec ct =

Drule.instantiate’ [SOME (ctyp_of_term ct)] [NONE, SOME ct] @{thm spec}

Instantiates the ?x in ∀ x. ?P x =⇒ ?P ?x with a cterm.

Instantiates universal qantifications in the premises

lemma "∀ x1 x2 x3. P (x1::nat) (x2::nat) (x3::nat) =⇒ True"

apply (tactic {* EVERY’ (map (dtac o inst_spec)

[@{cterm "y1::nat"},@{cterm "y2::nat"},@{cterm "y3::nat"}]) 1*})

goal (1 subgoal):

1. P y1 y2 y3 =⇒ True

lemma
assumes "even n"

shows "P 0 =⇒

95

(
∧
m. Q m =⇒ P (Suc m)) =⇒ (

∧
m. P m =⇒ Q (Suc m)) =⇒ P n"

apply(atomize (full))

apply(cut_tac prems)

apply(unfold even_def)

apply(drule spec[where x=P])

apply(drule spec[where x=Q])

apply(assumption)
done

The tactic for proving the induction rules:

fun induction_tac defs prems insts =

EVERY1 [K (print_tac "start"),

ObjectLogic.full_atomize_tac,

cut_facts_tac prems,

K (rewrite_goals_tac defs),

EVERY’ (map (dtac o inst_spec) insts),

assume_tac]

lemma
assumes "even n"

shows "P 0 =⇒
(
∧
m. Q m =⇒ P (Suc m)) =⇒ (

∧
m. P m =⇒ Q (Suc m)) =⇒ P n"

apply(tactic {*

let

val defs = [@{thm even_def}, @{thm odd_def}]

val insts = [@{cterm "P::nat⇒bool"}, @{cterm "Q::nat⇒bool"}]

in

induction_tac defs @{thms prems} insts

end *})

done

While the generic proof is relatively simple, it is a bit harder to set up the goals for
the induction principles.

fun inductions rules defs preds tyss lthy1 =1

let2

val Ps = replicate (length preds) "P"3

val (newprednames, lthy2) = Variable.variant_fixes Ps lthy14

5

val thy = ProofContext.theory_of lthy26

7

val tyss’ = map (fn tys => tys ---> HOLogic.boolT) tyss8

val newpreds = map Free (newprednames ~~ tyss’)9

val cnewpreds = map (cterm_of thy) newpreds10

val rules’ = map (subst_free (preds ~~ newpreds)) rules11

12

13

fun prove_induction ((pred, newpred), tys) =14

let15

96

val zs = replicate (length tys) "z"16

val (newargnames, lthy3) = Variable.variant_fixes zs lthy2;17

val newargs = map Free (newargnames ~~ tys)18

19

val prem = HOLogic.mk_Trueprop (list_comb (pred, newargs))20

val goal = Logic.list_implies21

(rules’, HOLogic.mk_Trueprop (list_comb (newpred, newargs)))22

in23

Goal.prove lthy3 [] [prem] goal24

(fn {prems, ...} => induction_tac defs prems cnewpreds)25

|> singleton (ProofContext.export lthy3 lthy1)26

end27

in28

map prove_induction (preds ~~ newpreds ~~ tyss)29

end30

let

val rules = [@{prop "even (0::nat)"},

@{prop "
∧
n::nat. odd n =⇒ even (Suc n)"},

@{prop "
∧
n::nat. even n =⇒ odd (Suc n)"}]

val defs = [@{thm even_def}, @{thm odd_def}]

val preds = [@{term "even::nat⇒bool"}, @{term "odd::nat⇒bool"}]

val tyss = [[@{typ "nat"}],[@{typ "nat"}]]

in

inductions rules defs preds tyss @{context}

end

5.4.3 Introduction Rules

val all_elims = fold (fn ct => fn th => th RS inst_spec ct)

val imp_elims = fold (fn th => fn th’ => [th’, th] MRS @{thm mp})

fun subproof2 prem params2 prems2 =

SUBPROOF (fn {prems, ...} =>

let

val prem’ = prems MRS prem;

val prem’’ =

case prop_of prem’ of

_ $ (Const (@{const_name All}, _) $ _) =>

prem’ |> all_elims params2

|> imp_elims prems2

| _ => prem’;

in

rtac prem’’ 1

end)

fun subproof1 rules preds i =

97

SUBPROOF (fn {params, prems, context = ctxt’, ...} =>

let

val (prems1, prems2) = chop (length prems - length rules) prems;

val (params1, params2) = chop (length params - length preds) params;

in

rtac (ObjectLogic.rulify (all_elims params1 (nth prems2 i))) 1

THEN

EVERY1 (map (fn prem => subproof2 prem params2 prems2 ctxt’) prems1)

end)

fun introductions_tac defs rules preds i ctxt =

EVERY1 [ObjectLogic.rulify_tac,

K (rewrite_goals_tac defs),

REPEAT o (resolve_tac [@{thm allI},@{thm impI}]),

subproof1 rules preds i ctxt]

lemma evenS:

shows "odd m =⇒ even (Suc m)"

apply(tactic {*

let

val rules = [@{prop "even (0::nat)"},

@{prop "
∧
n::nat. odd n =⇒ even (Suc n)"},

@{prop "
∧
n::nat. even n =⇒ odd (Suc n)"}]

val defs = [@{thm even_def}, @{thm odd_def}]

val preds = [@{term "even::nat⇒bool"}, @{term "odd::nat⇒bool"}]

in

introductions_tac defs rules preds 1 @{context}

end *})

done

fun introductions rules preds defs lthy =

let

fun prove_intro (i, goal) =

Goal.prove lthy [] [] goal

(fn {context, ...} => introductions_tac defs rules preds i context)

in

map_index prove_intro rules

end

fun add_inductive_i pred_specs rule_specs lthy =1

let2

val syns = map snd pred_specs3

val pred_specs’ = map fst pred_specs4

98

val prednames = map fst pred_specs’5

val preds = map (fn (p, ty) => Free (Binding.name_of p, ty)) pred_specs’6

7

val tyss = map (binder_types o fastype_of) preds8

val (attrs, rules) = split_list rule_specs9

10

val (defs, lthy’) = definitions rules preds prednames syns tyss lthy11

val ind_rules = inductions rules defs preds tyss lthy’12

val intro_rules = introductions rules preds defs lthy’13

14

val mut_name = space_implode "_" (map Binding.name_of prednames)15

val case_names = map (Binding.name_of o fst) attrs16

in17

lthy’18

|> LocalTheory.notes Thm.theoremK (map (fn (((a, atts), _), th) =>19

((Binding.qualify false mut_name a, atts), [([th], [])]))

(rule_specs ~~ intro_rules))

20

21

|-> (fn intross => LocalTheory.note Thm.theoremK22

((Binding.qualify false mut_name (Binding.name "intros"), []), maps

snd intross))

23

24

|>> snd25

||>> (LocalTheory.notes Thm.theoremK (map (fn (((R, _), _), th) =>26

((Binding.qualify false (Binding.name_of R) (Binding.name

"induct"),

27

28

[Attrib.internal (K (RuleCases.case_names case_names)),29

Attrib.internal (K (RuleCases.consumes 1)),30

Attrib.internal (K (Induct.induct_pred ""))]), [([th], [])]))31

(pred_specs ~~ ind_rules)) #>> maps snd)32

|> snd33

end34

fun read_specification’ vars specs lthy =

let

val specs’ = map (fn (a, s) => [(a, [s])]) specs

val ((varst, specst), _) =

Specification.read_specification vars specs’ lthy

val specst’ = map (apsnd the_single) specst

in

(varst, specst’)

end

fun add_inductive pred_specs rule_specs lthy =

let

val (pred_specs’, rule_specs’) =

read_specification’ pred_specs rule_specs lthy

in

add_inductive_i pred_specs’ rule_specs’ lthy

end

99

val spec_parser =

OuterParse.opt_target --

OuterParse.fixes --

Scan.optional

(OuterParse.$$$ "where" |--

OuterParse.!!!

(OuterParse.enum1 "|"

(SpecParse.opt_thm_name ":" -- OuterParse.prop))) []

val specification =

spec_parser >>

(fn ((loc, pred_specs), rule_specs) =>

Toplevel.local_theory loc (add_inductive pred_specs rule_specs))

val _ = OuterSyntax.command "simple_inductive" "define inductive predicates"

OuterKeyword.thy_decl specification

Things to include at the end:

• say something about add-inductive-i to return the rules

• say that the induction principle is weaker (weaker than what the standard
inductive package generates)

simple inductive
Even and Odd

where
Even0: "Even 0"

| EvenS: "Odd n =⇒ Even (Suc n)"

| OddS: "Even n =⇒ Odd (Suc n)"

100

Appendix A

Recipes

Possible further topics:

• translations/print translations; ProofContext.print_syntax

• user space type systems (in the form that already exists)

• unification and typing algorithms

• useful datastructures: discrimination nets, association lists

A.1 Useful Document Antiquotations

Problem: How to keep your ML-code inside a document synchronised with the ac-
tual code?

Solution: This can be achieved using document antiquotations.

Document antiquotations can be used for ensuring consistent type-setting of various
entities in a document. They can also be used for sophisticated LATEX-hacking. If
you type Ctrl-c Ctrl-a h A inside ProofGeneral, you obtain a list of all currently
available document antiquotations and their options. You obtain the same list on the
ML-level by typing

ThyOutput.print_antiquotations ()

Below we give the code for two additional antiquotations that can be used to typeset
ML-code and also to check whether the given code actually compiles. This provides
a sanity check for the code and also allows one to keep documents in sync with other
code, for example Isabelle.

We first describe the antiquotation ML_checked with the syntax:

@{ML_checked "a_piece_of_code"}

101

The code is checked by sending the ML-expression "val _ = a_piece_of_code"

to the ML-compiler (i.e. the function ML_Context.eval_in in Line 4 below). The
complete code of the antiquotation is as follows:

fun ml_val code_txt = "val _ = " ^ code_txt1

2

fun output_ml {context = ctxt, ...} code_txt =3

(ML_Context.eval_in (SOME ctxt) false Position.none (ml_val code_txt);4

ThyOutput.output (map Pretty.str (space_explode "\n" code_txt)))5

6

val _ = ThyOutput.antiquotation "ML_checked" (Scan.lift Args.name) output_ml7

The parser (Scan.lift Args.name) in line 9 parses a string, in this case the code.
As mentioned before, the code is sent to the ML-compiler in the line 4 using the
function ml_val, which constructs the appropriate ML-expression. If the code is
“approved” by the compiler, then the output function ThyOutput.output in the
next line pretty prints the code. This function expects that the code is a list of
(pretty)strings where each string correspond to a line in the output. Therefore
the use of (space_explode "\n" txt) which produces this list according to line-
breaks. There are a number of options for antiquotations that are observed by
ThyOutput.output when printing the code (including [display] and [quotes]).
Line 7 sets up the new antiquotation.

Read More
For more information about options of antiquotations see [Isar Ref. Man., Sec. 5.2]).

Since we used the argument Position.none, the compiler cannot give specific in-
formation about the line number, in case an error is detected. We can improve the
code above slightly by writing

fun output_ml {context = ctxt, ...} (code_txt, pos) =1

(ML_Context.eval_in (SOME ctxt) false pos (ml_val code_txt);2

ThyOutput.output (map Pretty.str (space_explode "\n" code_txt)))3

4

val _ = ThyOutput.antiquotation "ML_checked"5

(Scan.lift (OuterParse.position Args.name)) output_ml6

where in Lines 1 and 2 the positional information is properly treated. The parser
OuterParse.position encodes the positional information in the result.

We can now write in a document @{ML_checked "2 + 3"} in order to obtain 2 + 3

and be sure that this code compiles until somebody changes the definition of (op +) .

The second antiquotation we describe extends the first by a pattern that specifies
what the result of the ML-code should be and check the consistency of the actual
result with the given pattern. For this we are going to implement the antiquotation

@{ML_resp "a_piece_of_code" "a_pattern"}

102

To add some convenience and also to deal with large outputs, the user can give a
partial specification inside the pattern by giving abbreviations of the form " . . . ". For
example (. . . , . . .) to specify a pair.

Whereas in the antiquotation @{ML_checked "piece_of_code"} above, we have
sent the expression "val _ = piece_of_code" to the compiler, in the second the
wildcard _ we will be replaced by the given pattern. To do this we need to replace
the " . . . " by "_" before sending the code to the compiler. The following function
will do this:

fun ml_pat (code_txt, pat) =

let val pat’ =

implode (map (fn " . . . " => "_" | s => s) (Symbol.explode pat))

in

"val " ^ pat’ ^ " = " ^ code_txt

end

Next we like to add a response indicator to the result using:

fun add_resp_indicator pat =

map (fn s => "> " ^ s) (space_explode "\n" pat)

The rest of the code of the antiquotation is

fun output_ml_resp {context = ctxt, ...} ((code_txt, pat), pos) =

(ML_Context.eval_in (SOME ctxt) false pos (ml_pat (code_txt, pat));

let

val output = (space_explode "\n" code_txt) @ (add_resp_indicator pat)

in

ThyOutput.output (map Pretty.str output)

end)

val _ = ThyOutput.antiquotation "ML_resp"

(Scan.lift (OuterParse.position (Args.name -- Args.name)))

output_ml_resp

This extended antiquotation allows us to write

@{ML_resp [display] "true andalso false" "false"}

to obtain

true andalso false

> false

or

@{ML_resp [display] "let val i = 3 in (i * i, "foo") end" "(9, . . .)"}

103

to obtain

let val i = 3 in (i * i, "foo") end

> (9, . . .)

In both cases, the check by the compiler ensures that code and result match. A
limitation of this antiquotation, however, is that the pattern can only be given for
values that can be constructed. This excludes values that are abstract datatypes, like
theorems or cterms.

A.2 Restricting the Runtime of a Function

Problem: Your tool should run only a specified amount of time.

Solution: This can be achieved using the function timeLimit.

Assume you defined the Ackermann function on the ML-level.

fun ackermann (0, n) = n + 1

| ackermann (m, 0) = ackermann (m - 1, 1)

| ackermann (m, n) = ackermann (m - 1, ackermann (m, n - 1))

Now the call

ackermann (4, 12)

> . . .

takes a bit of time before it finishes. To avoid this, the call can be encapsulated in a
time limit of five seconds. For this you have to write

TimeLimit.timeLimit (Time.fromSeconds 5) ackermann (4, 12)

handle TimeLimit.TimeOut => ~1

> ~1

where TimeOut is the exception raised when the time limit is reached.

Note that timeLimit is only meaningful when you use PolyML, because PolyML has
the infrastructure for multithreading programming on which timeLimit relies.

Read More
The function timeLimit is defined in the structure TimeLimit which can be found in the
file Pure/ML-Systems/multithreading_polyml.ML.

104

A.3 Measuring Time

Problem: You want to measure the running time of a tactic or function.

Solution: Time can be measured using the function start_timing and end_timing.

Suppose you defined the Ackermann function inside Isabelle.

fun
ackermann:: "(nat × nat) ⇒ nat"

where
"ackermann (0, n) = n + 1"

| "ackermann (m, 0) = ackermann (m - 1, 1)"

| "ackermann (m, n) = ackermann (m - 1, ackermann (m, n - 1))"

You can measure how long the simplifier takes to verify a datapoint of this function.
The timing can be done using the following wrapper function:

fun timing_wrapper tac st =

let

val t_start = start_timing ();

val res = tac st;

val t_end = end_timing t_start;

in

(warning (#message t_end); res)

end

Note that this function, in addition to a tactic for which it measures the time, also
takes a state st as argument and applies this state to the tactic. The reason is that
tactics are lazy functions and you need to force them to run, otherwise the timing
will be meaningless. The time between start and finish of the tactic will be calculated
as the end time minus the start time. An example for the wrapper is the proof

lemma "ackermann (3, 4) = 125"

apply(tactic {*

timing_wrapper (simp_tac (@{simpset} addsimps @{thms "nat_number"}) 1) *})

done

where it returns something on the scale of 3 seconds. We choose to return this infor-
mation as a string, but the timing information is also accessible in number format.

Read More
Basic functions regarding timing are defined in Pure/ML-Systems/polyml_common.ML

(for the PolyML compiler). Some more advanced functions are defined in
Pure/General/output.ML.

A.4 Configuration Options

Problem: You would like to enhance your tool with options that can be changed by
the user without having to resort to the ML-level.

Solution: This can be achieved using configuration values.

105

Assume you want to control three values, say bval containing a boolean, ival con-
taining an integer and sval containing a string. These values can be declared on the
ML-level by

val (bval, setup_bval) = Attrib.config_bool "bval" false

val (ival, setup_ival) = Attrib.config_int "ival" 0

val (sval, setup_sval) = Attrib.config_string "sval" "some string"

where each value needs to be given a default. To enable these values, they need to
be set up with

setup {* setup_bval *}

setup {* setup_ival *}

or on the ML-level

setup_sval @{theory}

The user can now manipulate the values from within Isabelle with the command

declare [[bval = true, ival = 3]]

On the ML-level these values can be retrieved using the function Config.get :

Config.get @{context} bval

> true

Config.get @{context} ival

> 3

The function Config.put manipulates the values. For example

Config.put sval "foo" @{context}; Config.get @{context} sval

> foo

The same can be achieved using the command setup.

setup {* Config.put_thy sval "bar" *}

Now the retrival of this value yields:

Config.get @{context} sval

> "bar"

We can apply a function to a value using Config.map. For example incrementing
ival can be done by:

106

let

val ctxt = Config.map ival (fn i => i + 1) @{context}

in

Config.get ctxt ival

end

> 4

Read More
For more information see Pure/Isar/attrib.ML and Pure/config.ML.

There are many good reasons to control parameters in this way. One is that it avoid
global references, which cause many headaches with the multithreaded execution of
Isabelle.

A.5 Storing Data

Problem: Your tool needs to manage data.

Solution: This can be achieved using a generic data slot.

Every generic data slot may keep data of any kind which is stored in the context.

local

structure Data = GenericDataFun

(type T = int Symtab.table

val empty = Symtab.empty

val extend = I

fun merge _ = Symtab.merge (K true)

)

in

val lookup = Symtab.lookup o Data.get

fun update k v = Data.map (Symtab.update (k, v))

end

setup {* Context.theory_map (update "foo" 1) *}

lookup (Context.Proof @{context}) "foo"

> SOME 1

alternatives: TheoryDataFun, ProofDataFun Code: Pure/context.ML

107

A.6 Executing an External Application

Problem: You want to use an external application.

Solution: The function system_out might be the right thing for you.

This function executes an external command as if printed in a shell. It returns the
output of the program and its return value.

For example, consider running an ordinary shell commands:

system_out "echo Hello world!"

> ("Hello world!\n", 0)

Note that it works also fine with timeouts (see Recipe A.2 on Page 104), i.e. external
applications are killed properly. For example, the following expression takes only
approximately one second:

TimeLimit.timeLimit (Time.fromSeconds 1) system_out "sleep 30"

handle TimeLimit.TimeOut => ("timeout", ~1)

> ("timeout", ~1)

The function system_out can also be used for more reasonable applications, e.g.
coupling external solvers with Isabelle. In that case, one has to make sure that
Isabelle can find the particular executable. One way to ensure this is by adding a
Bash-like variable binding into one of Isabelle’s settings file (prefer the user settings
file usually to be found at $HOME/.isabelle/etc/settings).

For example, assume you want to use the application foo which is here supposed
to be located at /usr/local/bin/. The following line has to be added to one of
Isabelle’s settings file:

FOO=/usr/local/bin/foo

In Isabelle, this application may now be executed by

system_out "$FOO"

> . . .

A.7 Writing an Oracle

Problem: You want to use a fast, new decision procedure not based one Isabelle’s
tactics, and you do not care whether it is sound.

Solution: Isabelle provides the oracle mechanisms to bypass the inference kernel.
Note that theorems proven by an oracle carry a special mark to inform the user of
their potential incorrectness.

108

Read More
A short introduction to oracles can be found in [isar-ref: no suitable label for section 3.11].
A simple example, which we will slightly extend here, is given in FOL/ex/Iff_Oracle.thy.
The raw interface for adding oracles is add_oracle in Pure/thm.ML.

For our explanation here, we restrict ourselves to decide propositional formulae
which consist only of equivalences between propositional variables, i.e. we want
to decide whether (P = (Q = P)) = Q is a tautology.

Assume, that we have a decision procedure for such formulae, implemented in ML.
Since we do not care how it works, we will use it here as an “external solver”:

use "external_solver.ML"

We do, however, know that the solver provides a function IffSolver.decide. It
takes a string representation of a formula and returns either true if the formula is a
tautology or false otherwise. The input syntax is specified as follows:

formula ::= atom | (formula <=> formula)

and all token are separated by at least one space.

(FIXME: is there a better way for describing the syntax?)

We will proceed in the following way. We start by translating a HOL formula into the
string representation expected by the solver. The solver’s result is then used to build
an oracle, which we will subsequently use as a core for an Isar method to be able to
apply the oracle in proving theorems.

Let us start with the translation function from Isabelle propositions into the solver’s
string representation. To increase efficiency while building the string, we use func-
tions from the Buffer module.

fun translate t =

let

fun trans t =

(case t of

@{term "op = :: bool ⇒ bool ⇒ bool"} $ t $ u =>

Buffer.add " (" #>

trans t #>

Buffer.add "<=>" #>

trans u #>

Buffer.add ") "

| Free (n, @{typ bool}) =>

Buffer.add " " #>

Buffer.add n #>

Buffer.add " "

| _ => error "inacceptable term")

in Buffer.content (trans t Buffer.empty) end

Here is the string representation of the term p = (q = p) :

translate @{term "p = (q = p)"}

> " (p <=> (q <=> p)) "

Let us check, what the solver returns when given a tautology:

109

IffSolver.decide (translate @{term "p = (q = p) = q"})

> true

And here is what it returns for a formula which is not valid:

IffSolver.decide (translate @{term "p = (q = p)"})

> false

Now, we combine these functions into an oracle. In general, an oracle may be given
any input, but it has to return a certified proposition (a special term which is type-
checked), out of which Isabelle’s inference kernel “magically” makes a theorem.

Here, we take the proposition to be show as input. Note that we have to first extract
the term which is then passed to the translation and decision procedure. If the solver
finds this term to be valid, we return the given proposition unchanged to be turned
then into a theorem:

oracle iff_oracle = {* fn ct =>

if IffSolver.decide (translate (HOLogic.dest_Trueprop (Thm.term_of ct)))

then ct

else error "Proof failed."*}

Here is what we get when applying the oracle:

iff_oracle @{cprop "p = (p::bool)"}

> p = p

(FIXME: is there a better way to present the theorem?)

To be able to use our oracle for Isar proofs, we wrap it into a tactic:

val iff_oracle_tac =

CSUBGOAL (fn (goal, i) =>

(case try iff_oracle goal of

NONE => no_tac

| SOME thm => rtac thm i))

and create a new method solely based on this tactic:

method setup iff_oracle = {*

Method.no_args (Method.SIMPLE_METHOD’ iff_oracle_tac)

*} "Oracle-based decision procedure for chains of equivalences"

(FIXME: what does Method.SIMPLE_METHOD’ do? ... what do you mean?)

Finally, we can test our oracle to prove some theorems:

lemma "p = (p::bool)"

by iff_oracle

lemma "p = (q = p) = q"

by iff_oracle

(FIXME: say something about what the proof of the oracle is ... what do you mean?)

A.8 SAT Solver

110

A.9 User Space Type-Systems

111

Appendix B

Solutions to Most Exercises

Solution for Exercise 2.6.1.

fun rev_sum t =

let

fun dest_sum (Const (@{const_name plus}, _) $ u $ u’) = u’ :: dest_sum u

| dest_sum u = [u]

in

foldl1 (HOLogic.mk_binop @{const_name plus}) (dest_sum t)

end

Solution for Exercise 2.6.2.

fun make_sum t1 t2 =

HOLogic.mk_nat (HOLogic.dest_nat t1 + HOLogic.dest_nat t2)

Solution for Exercise 3.1.1.

val any = Scan.one (Symbol.not_eof)

val scan_cmt =

let

val begin_cmt = Scan.this_string "(*"

val end_cmt = Scan.this_string "*)"

in

begin_cmt |-- Scan.repeat (Scan.unless end_cmt any) --| end_cmt

>> (enclose "(**" "**)" o implode)

end

val parser = Scan.repeat (scan_cmt || any)

val scan_all =

Scan.finite Symbol.stopper parser >> implode #> fst

By using #> fst in the last line, the function scan_all retruns a string, instead of
the pair a parser would normally return. For example:

112

let

val input1 = (explode "foo bar")

val input2 = (explode "foo (*test*) bar (*test*)")

in

(scan_all input1, scan_all input2)

end

> ("foo bar", "foo (**test**) bar (**test**)")

Solution for Exercise 4.5.1.

fun dest_sum term =

case term of

(@{term "(op +):: nat ⇒ nat ⇒ nat"} $ t1 $ t2) =>

(snd (HOLogic.dest_number t1), snd (HOLogic.dest_number t2))

| _ => raise TERM ("dest_sum", [term])

fun get_sum_thm ctxt t (n1, n2) =

let

val sum = HOLogic.mk_number @{typ "nat"} (n1 + n2)

val goal = Logic.mk_equals (t, sum)

in

Goal.prove ctxt [] [] goal (K (arith_tac ctxt 1))

end

fun add_sp_aux ss t =

let

val ctxt = Simplifier.the_context ss

val t’ = term_of t

in

SOME (get_sum_thm ctxt t’ (dest_sum t’))

handle TERM _ => NONE

end

The setup for the simproc is

simproc setup add_sp ("t1 + t2") = {* K add_sp_aux *}

and a test case is the lemma

lemma "P (Suc (99 + 1)) ((0 + 0)::nat) (Suc (3 + 3 + 3)) (4 + 1)"

apply(tactic {* simp_tac (HOL_basic_ss addsimprocs [@{simproc add_sp}]) 1 *})

where the simproc produces the goal state
goal (1 subgoal):

1. P (Suc 100) 0 (Suc 9) ((4 ::’a) + (1 ::’a))

Solution for Exercise 4.6.1.

The following code assumes the function dest_sum from the previous exercise.

113

fun add_simple_conv ctxt ctrm =

let

val trm = Thm.term_of ctrm

in

get_sum_thm ctxt trm (dest_sum trm)

end

fun add_conv ctxt ctrm =

(case Thm.term_of ctrm of

@{term "(op +)::nat ⇒ nat ⇒ nat"} $ _ $ _ =>

(Conv.binop_conv (add_conv ctxt)

then_conv (Conv.try_conv (add_simple_conv ctxt))) ctrm

| _ $ _ => Conv.combination_conv

(add_conv ctxt) (add_conv ctxt) ctrm

| Abs _ => Conv.abs_conv (fn (_, ctxt) => add_conv ctxt) ctxt ctrm

| _ => Conv.all_conv ctrm)

val add_tac = CSUBGOAL (fn (goal, i) =>

let

val ctxt = ProofContext.init (Thm.theory_of_cterm goal)

in

CONVERSION

(Conv.params_conv ~1 (fn ctxt =>

(Conv.prems_conv ~1 (add_conv ctxt) then_conv

Conv.concl_conv ~1 (add_conv ctxt))) ctxt) i

end)

A test case is as follows

lemma "P (Suc (99 + 1)) ((0 + 0)::nat) (Suc (3 + 3 + 3)) (4 + 1)"

apply(tactic {* add_tac 1 *})?

where the conversion produces the goal state
goal (1 subgoal):

1. P (Suc 100) 0 (Suc 9) ((4 ::’a) + (1 ::’a))

Solution for Exercise 4.6.1.

We use the timing function timing_wrapper from Recipe A.3. To measure any dif-
ference between the simproc and conversion, we will create mechanically terms in-
volving additions and then set up a goal to be simplified. We have to be careful to
set up the goal so that other parts of the simplifier do not interfere. For this we set
up an unprovable goal which, after simplification, we are going to “prove” with the
help of the lemma:

lemma cheat: "A" sorry

For constructing test cases, we first define a function that returns a complete binary
tree whose leaves are numbers and the nodes are additions.

114

fun term_tree n =

let

val count = ref 0;

fun term_tree_aux n =

case n of

0 => (count := !count + 1; HOLogic.mk_number @{typ nat} (!count))

| _ => Const (@{const_name "plus"}, @{typ "nat⇒nat⇒nat"})

$ (term_tree_aux (n - 1)) $ (term_tree_aux (n - 1))

in

term_tree_aux n

end

This function generates for example

warning (Syntax.string_of_term @{context} (term_tree 2))

> (1 + 2) + (3 + 4)

The next function constructs a goal of the form P . . . with a term produced by
term_tree filled in.

fun goal n = HOLogic.mk_Trueprop (@{term "P::nat⇒ bool"} $ (term_tree n))

Note that the goal needs to be wrapped in a Trueprop. Next we define two tactics,
c_tac and s_tac, for the conversion and simproc, respectively. The idea is to first
apply the conversion (respectively simproc) and then prove the remaining goal using
the lemma cheat.

local

fun mk_tac tac = timing_wrapper (EVERY1 [tac, rtac @{thm cheat}])

in

val c_tac = mk_tac add_tac

val s_tac = mk_tac (simp_tac (HOL_basic_ss addsimprocs [@{simproc add_sp}]))

end

This is all we need to let the conversion run against the simproc.

val _ = Goal.prove @{context} [] [] (goal 8) (K c_tac)

val _ = Goal.prove @{context} [] [] (goal 8) (K s_tac)

If you do the exercise, you can see that both ways of simplifying additions perform
relatively the same with perhaps some advantages for the simproc. That means the
simplifier, even if much more complicated than conversions, is quite efficient for
tasks it is designed for. It usually does not make sense to implement general-purpose
rewriting using conversions. Conversions only have clear advantages in special situa-
tions: for example if you need to have control over innermost or outermost rewriting,
or when rewriting rules are lead to non-termination.

115

Appendix C

Comments for Authors

• This tutorial can be compiled on the command-line with:

$ isabelle make

You very likely need a recent snapshot of Isabelle in order to compile the tuto-
rial. Some parts of the tutorial also rely on compilation with PolyML.

• You can include references to other Isabelle manuals using the reference names
from those manuals. To do this the following four LATEX commands are defined:

Chapters Sections
Implementation Manual \ichcite{ . . . } \isccite{ . . . }
Isar Reference Manual \rchcite{ . . . } \rsccite{ . . . }

So \ichcite{ch:logic} yields a reference for the chapter about logic in the
implementation manual, namely [Impl. Man., Ch. 2].

• There are various document antiquotations defined for the tutorial. They allow
to check the written text against the current Isabelle code and also allow to
show responses of the ML-compiler. Therefore authors are strongly encouraged
to use antiquotations wherever appropriate.

The following antiquotations are defined:

• @{ML "expr" for vars in structs} should be used for displaying any
ML-expression, because the antiquotation checks whether the expression
is valid ML-code. The for - and in -arguments are optional. The former
is used for evaluating open expressions by giving a list of free variables.
The latter is used to indicate in which structure or structures the ML-
expression should be evaluated. Examples are:

@{ML "1 + 3"} 1 + 3

@{ML "a + b" for a b} produce a + b

@{ML Ident in OuterLex} Ident

116

• @{ML_response "expr" "pat"} should be used to display ML-expressions
and their response. The first expression is checked like in the antiquota-
tion @{ML "expr"} ; the second is a pattern that specifies the result the
first expression produces. This pattern can contain " . . . " for parts that
you like to omit. The response of the first expression will be checked
against this pattern. Examples are:

@{ML_response "1+2" "3"}

@{ML_response "(1+2,3)" "(3, . . .)"}

which produce respectively

1+2

> 3

(1+2,3)

> (3, . . .)

Note that this antiquotation can only be used when the result can be
constructed: it does not work when the code produces an exception or
returns an abstract datatype (like thm or cterm).

• @{ML_response_fake "expr" "pat"} works just like the antiquotation
@{ML_response "expr" "pat"} above, except that the result-specification
is not checked. Use this antiquotation when the result cannot be con-
structed or the code generates an exception. Examples are:

@{ML_response_fake "cterm_of @{theory} @{term \"a + b = c\"}"}

"a + b = c"}

@{ML_response_fake "($$ \"x\") (explode \"world\")"

"Exception FAIL raised"}

which produce respectively

cterm_of @{theory} @{term "a + b = c"}

> a + b = c

($$ "x") (explode "world")

> Exception FAIL raised

This output mimics to some extend what the user sees when running the
code.

• @{ML_response_fake_both "expr" "pat"} can be used to show erro-
neous code. Neither the code nor the response will be checked. An exam-
ple is:

@{ML_response_fake_both "@{cterm \"1 + True\"}"

"Type unification failed . . . "}

• @{ML_file "name"} should be used when referring to a file. It checks
whether the file exists. An example is

@{ML_file "Pure/General/basics.ML"}

The listed antiquotations honour options including [display] and [quotes].
For example

117

@{ML [quotes] "\"foo\" ^ \"bar\""} produces "foobar"

whereas

@{ML "\"foo\" ^ \"bar\""} produces only foobar

• Functions and value bindings cannot be defined inside antiquotations; they
need to be included inside ML {* . . . *} environments. In this way they are
also checked by the compiler. Some LATEX-hack in the tutorial, however, ensures
that the environment markers are not printed.

• Line numbers can be printed using ML %linenos {* . . . *} for ML-code or
lemma %linenos ... for proofs. The tag is %linenosgray when the num-
bered text should be gray.

118

Bibliography

[1] R. Bornat. In Defence of Programming. Available online via http://www.cs.mdx.
ac.uk/staffpages/r bornat/lectures/revisedinauguraltext.pdf, April 2005. Cor-
rected and revised version of inaugural lecture, delivered on 22nd January 2004
at the School of Computing Science, Middlesex University.

[2] M. Gordon, R. Milner, and C. P. Wadsworth. Edinburgh LCF, volume 78 of Lecture
Notes in Computer Science. Springer, 1979.

[3] A. Krauss. Partial Recursive Functions in Higher-Order Logic. In U. Furbach and
N. Shankar, editors, Automated Reasoning, Third International Joint Conference,
IJCAR 2006, Seattle, WA, USA, August 17-20, 2006, Proceedings, volume 4130 of
Lecture Notes in Computer Science, pages 589–603. Springer-Verlag, 2006.

[4] T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL: A Proof Assistant for
Higher-Order Logic. Springer, 2002. LNCS Tutorial 2283.

[5] L. C. Paulson. ML for the Working Programmer. Cambridge University Press, 2nd
edition, 1996.

119

http://www.cs.mdx.ac.uk/staffpages/r_bornat/lectures/ revisedinauguraltext.pdf
http://www.cs.mdx.ac.uk/staffpages/r_bornat/lectures/ revisedinauguraltext.pdf

	Introduction
	Intended Audience and Prior Knowledge
	Existing Documentation
	Typographic Conventions
	Acknowledgements

	First Steps
	Including ML-Code
	Debugging and Printing
	Combinators
	Antiquotations
	Terms and Types
	Constructing Terms and Types Manually
	Type-Checking
	Theorems
	Theorem Attributes
	Theories, Contexts and Local Theories (TBD)
	Storing Theorems (TBD)
	Pretty-Printing (TBD)
	Misc (TBD)

	Parsing
	Building Generic Parsers
	Parsing Theory Syntax
	Parsing Inner Syntax
	Parsing Specifications
	New Commands and Keyword Files

	Tactical Reasoning
	Basics of Reasoning with Tactics
	Simple Tactics
	Tactic Combinators
	Simplifier Tactics
	Simprocs
	Conversions
	Structured Proofs (TBD)

	How to Write a Definitional Package (TBD)
	Preliminaries
	Parsing and Typing the Specification
	The General Construction Principle
	Code
	Definitions
	Induction Principles
	Introduction Rules

	Recipes
	Useful Document Antiquotations
	Restricting the Runtime of a Function
	Measuring Time
	Configuration Options
	Storing Data
	Executing an External Application
	Writing an Oracle
	SAT Solver
	User Space Type-Systems

	Solutions to Most Exercises
	Comments for Authors

