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Chapter 1

Introduction

“My thesis is that programming is not at the bottom of the intellectual
pyramid, but at the top. It’s creative design of the highest order. It
isn’t monkey or donkey work; rather, as Edsger Dijkstra famously
claimed, it’s amongst the hardest intellectual tasks ever attempted.”

Richard Bornat, In Defence of Programming. [1]

If your next project requires you to program on the ML-level of Isabelle, then this
tutorial is for you. It will guide you through the first steps of Isabelle programming,
and also explain “tricks of the trade”. We also hope the tutorial will encourage
students and researchers to play with Isabelle and implement new ideas. The source
code of Isabelle can look intimidating, but beginners can get by with knowledge
of only a handful of concepts, a small number of functions and a few basic coding
conventions.

The best way to get to know the ML-level of Isabelle is by experimenting with the
many code examples included in the tutorial. The code is as far as possible checked
against the Isabelle distribution.! If something does not work, then please let us
know. It is impossible for us to know every environment, operating system or editor
in which Isabelle is used. If you have comments, criticism or like to add to the
tutorial, please feel free—you are most welcome!! The tutorial is meant to be gentle
and comprehensive. To achieve this we need your help and feedback.

1.1 Intended Audience and Prior Knowledge

This tutorial targets readers who already know how to use Isabelle for writing the-
ories and proofs. We also assume that readers are familiar with the functional pro-
gramming language ML, the language in which most of Isabelle is implemented.
If you are unfamiliar with either of these two subjects, then you should first work
through the Isabelle/HOL tutorial [4] or Paulson’s book on ML [5]. Recently, Isabelle
has adopted a sizable amount of Scala code for a slick GUI based on jEdit. This part
of the code is beyond the interest of this tutorial, since it mostly does not concern
the regular Isabelle developer.

!sabelle repository snapshot e72018e0dd75 01-Nov-2011
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2 CHAPTER 1. INTRODUCTION

1.2 Existing Documentation

The following documentation about Isabelle programming already exists (and is part
of the distribution of Isabelle):

The Isabelle/Isar Implementation Manual describes Isabelle from a high-level per-
spective, documenting some of the underlying concepts and interfaces.

The Isabelle Reference Manual is an older document that used to be the main ref-
erence of Isabelle at a time when all proof scripts were written on the ML-level.
Many parts of this manual are outdated now, but some parts, particularly the
chapters on tactics, are still useful.

The Isar Reference Manual provides specification material (like grammars, exam-
ples and so on) about Isar and its implementation.

Then of course there are:

The Isabelle sources. They are the ultimate reference for how things really work.
Therefore you should not hesitate to look at the way things are actually imple-
mented. While much of the Isabelle code is uncommented, some parts have
very helpful comments—particularly the code about theorems and terms. De-
spite the lack of comments in most parts, it is often good to look at code that
does similar things as you want to do and learn from it. This tutorial contains
frequently pointers to the Isabelle sources. Still, the UNIX command grep -R
is often your best friend while programming with Isabelle.? To understand the
sources, it is often also necessary to track the change history of a file or files.
The Mercurial repository® for Isabelle provides convenient interfaces to query
the history of files and “change sets”.

1.3 Typographic Conventions

All ML-code in this tutorial is typeset in shaded boxes, like the following simple
ML-expression:

ML {*
3+4
*F}

These boxes correspond to how code can be processed inside the interactive envi-
ronment of Isabelle. It is therefore easy to experiment with the code that is shown in
this tutorial. However, for better readability we will drop the enclosing ML {* ...
*} and just write:

20r hypersearch if you work with jEdit.
3http://isabelle.in.tum.de/repos/isabelle/
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3+ 4

Whenever appropriate we also show the response the code generates when evalu-
ated. This response is prefixed with a ">", like:

3+ 4
> 7

The user-level commands of Isabelle (i.e., the non-ML code) are written in bold face
(e.g., lemma, apply, foobar and so on). We use $ ... to indicate that a command
needs to be run in a UNIX-shell, for example:

$ grep -R Thy_Output *

Pointers to further information and Isabelle files are typeset in italic and highlighted
as follows:

Read More
Further information or pointers to files.

Note that pointers to Isabelle files are hyperlinked to the tip of the Mercurial repos-
itory at http://isabelle.in.tum.de/repos/isabelle/, not the latest stable release of
Isabelle.

A few exercises are scattered around the text. Their solutions are given in Ap-
pendix B. Of course, you learn most, if you first try to solve the exercises on your
own, and then look at the solutions.

1.4 How To Understand Isabelle Code

One of the more difficult aspects of any kind of programming is to understand code
written by somebody else. This is aggravated in Isabelle by the fact that many parts
of the code contain none or only few comments. There is one strategy that might be
helpful to navigate your way: ML is an interactive programming environment, which
means you can evaluate code on the fly (for example inside an ML {*... ¥} section).
So you can copy (self-contained) chunks of existing code into a separate theory file
and then study it alongside with examples. You can also install “probes” inside
the copied code without having to recompile the whole Isabelle distribution. Such
probes might be messages or printouts of variables (see chapter 2). Although PolyML
also contains a debugger, it seems probing the code with explicit print statements
is the most effective method for understanding what some piece of code is doing.
However do not expect quick results with this! It is painful. Depending on the size
of the code you are looking at, you will spend the better part of a quiet afternoon
with it. And there seems to be no better way for understanding code in Isabelle.


http://isabelle.in.tum.de/repos/isabelle/
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1.5 Aaaaargh! My Code Does not Work Anymore

One unpleasant aspect of any code development inside a larger system is that one
has to aim at a “moving target”. Isabelle is no exception of this. Every update lets
potentially all hell break loose, because other developers have changed code you
are relying on. Cursing is somewhat helpful in such situations, but taking the view
that incompatible code changes are a fact of life might be more gratifying. Isabelle
is a research project. In most circumstances it is just impossible to make research
backward compatible (imagine Darwin attempting to make the Theory of Evolution
backward compatible).

However, there are a few steps you can take to mitigate unwanted interferences with
code changes from other developers. First, you can base your code on the latest sta-
ble release of Isabelle (it is aimed to have one such release at least once every year).
This might cut you off from the latest feature implemented in Isabelle, but at least
you do not have to track side-steps or dead-ends in the Isabelle development. Of
course this means also you have to synchronise your code at the next stable release.
If you do not synchronise, be warned that code seems to “rot” very quickly. Another
possibility is to get your code into the Isabelle distribution. For this you have to
convince other developers that your code or project is of general interest. If you
managed to do this, then the problem of the moving target goes away, because when
checking in new code, developers are strongly urged to test it against Isabelle’s code
base. If your project is part of that code base, then maintenance is done by others.
Unfortunately, this might not be a helpful advice for all types of projects. A lower
threshold for inclusion has the Archive of Formal Proofs, short AFP.* This archive
has been created mainly for formalisations that are interesting but not necessarily of
general interest. If you have ML-code as part of a formalisation, then this might be
the right place for you. There is no problem with updating your code after submis-
sion. At the moment developers are not as diligent with checking their code against
the AFP than with checking agains the distribution, but generally problems will be
caught and the developer, who caused them, is expected to fix them. So also in this
case code maintenance is done for you.

1.6 Serious Isabelle ML-Programming

As already pointed out in the previous section, Isabelle is a joint effort of many de-
velopers. Therefore, disruptions that break the work of others are generally frowned
upon. “Accidents” however do happen and everybody knows this. Still to keep them
to a minimum, you can submit your changes first to a rather sophisticated testboard,
which will perform checks of your changes against the Isabelle repository and against
the AFP. The advantage of the testboard is that the testing is performed by rather
powerful machines, saving you lengthy tests on, for example, your own laptop. You
can see the results of the testboard at

http://isabelle.in.tum.de/testboard/Isabelle/

“http://afp.sourceforge.net/


http://isabelle.in.tum.de/testboard/Isabelle/
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which is organised like a Mercurial repository. A green point next to a change indi-
cates that the change passes the corresponding tests (for this of course you have to
allow some time). You can summit any changes to the testboard using the command

$ hg push -f ssh://...@macbroy21.informatik.tu-muenchen.de\
//home/isabelle-repository/repos/testboard

where the dots need to be replaced by your login name. Note that for pushing
changes to the testboard you need to add the option -f, which however should never
be used with the main Isabelle repository. While the testboard is a great system for
supporting Isabelle developers, its disadvantage is that it needs login permissions
for the computers in Munich. So in order to use it, you might have to ask other
developers to obtain one.

1.7 Some Naming Conventions in the Isabelle Sources

There are a few naming conventions in the Isabelle code that might aid reading and
writing code. (Remember that code is written once, but read many times.) The most
important conventions are:

e t, u, trm for (raw) terms; ML-type: term

e ct, cu for certified terms; ML-type: cterm

e ty, T, U for (raw) types; ML-type: typ

e S for sorts; ML-type: sort

e th, thm for theorems; ML-type: thm

e foo_tac for tactics; ML-type: tactic

e thy for theories; ML-type: theory

e ctxt for proof contexts; ML-type: Proof.context
e I1thy for local theories; ML-type: 1ocal_theory

e context for generic contexts; ML-type Context.generic
e mx for mixfix syntax annotations; ML-type mixfix
e prt for pretty printing; ML-type Pretty.T

e phi for morphisms; ML-type morphism
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Chapter 2

First Steps

“The most effective debugging tool is still careful thought,
coupled with judiciously placed print statements.”

Brian Kernighan, in Unix for Beginners, 1979

Isabelle programming is done in ML. Just like lemmas and proofs, ML-code for
Isabelle must be part of a theory. If you want to follow the code given in this chapter,
we assume you are working inside the theory starting with

theory First_Steps
imports Main
begin

We also generally assume you are working with the logic HOL. The examples that
will be given might need to be adapted if you work in a different logic.

2.1 Including ML-Code

The easiest and quickest way to include code in a theory is by using the ML-command.
For example:

ML {*
3 + 4

*}

> 7

If you work with ProofGeneral then like normal Isabelle scripts ML-commands can
be evaluated by using the advance and undo buttons of your Isabelle environment.
If you work with the Jedit GUI, then you just have to hover the cursor over the code
and you see the evaluated result in the “Output” window.

As mentioned in the Introduction, we will drop the ML {* ... x} scaffolding when-
ever we show code. The lines prefixed with ">" are not part of the code, rather

9



10 CHAPTER 2. FIRST STEPS

they indicate what the response is when the code is evaluated. There are also the
commands ML_val and ML _prf for including ML-code. The first evaluates the given
code, but any effect on the theory, in which the code is embedded, is suppressed.
The second needs to be used if ML-code is defined inside a proof. For example

lemma test:

shows "True"

ML_prf {* writeln "Triviall" *}
oops

However, both commands will only play minor roles in this tutorial (we will always
arrange that the ML-code is defined outside proofs).

Once a portion of code is relatively stable, you usually want to export it to a separate
ML-file. Such files can then be included somewhere inside a theory by using the
command use. For example

theory First_Steps

imports Main

uses ("file_to_be_included.ML") ...
begin

use "file_to_be_included.ML"

The uses-command in the header of the theory is needed in order to indicate the
dependency of the theory on the ML-file. Alternatively, the file can be included by
just writing in the header

theory First_Steps

imports Main

uses "file_to_be_included.ML" ...
begin

Note that no parentheses are given in this case. Note also that the included ML-
file should not contain any use itself. Otherwise Isabelle is unable to record all file
dependencies, which is a nuisance if you have to track down errors.

2.2 Printing and Debugging

During development you might find it necessary to inspect data in your code. This
can be done in a “quick-and-dirty” fashion using the function writeln. For example

writeln "any string"
> "any string"
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will print out "any string" inside the response buffer. This function expects a string
as argument. If you develop under PolyML, then there is a convenient, though again
“quick-and-dirty”, method for converting values into strings, namely the antiquota-
tion @{make_string}:

writeln (@{make_string} 1)
> I’1!I

However, @{makes_tring} only works if the type of what is converted is monomor-
phic and not a function.

You can print out error messages with the function error; for example:

if 0 = 1 then true else (error "foo')
> Exception- ERROR "foo'" raised
> At command "ML".

This function raises the exception ERROR, which will then be displayed by the infras-
tructure. Note that this exception is meant for “user-level” error messages seen by
the “end-user”. For messages where you want to indicate a genuine program error,
then use the exception Fail.

Most often you want to inspect data of Isabelle’s basic data structures, namely term,
typ, cterm, ctyp and thm. Isabelle contains elaborate pretty-printing functions,
which we will explain in more detail in Section 3.9. For now we just use the functions
writeln from the structure Pretty and pretty_term from the structure Syntax.
For more convenience, we bind them to the toplevel.

val pretty_term = Syntax.pretty_term
val pwriteln = Pretty.writeln

They can now be used as follows

pwriteln (pretty_term Q@{context} @{term "1::nat"})
> I’1H

If there is more than one term to be printed, you can use the function commas and
block to separate them.

fun pretty_terms ctxt trms =
Pretty.block (Pretty.commas (map (pretty_term ctxt) trms))

You can also print out terms together with their typing information. For this you
need to set the configuration value show_types to true.
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val show_types_ctxt = Config.put show_types true @{context}
Now by using this context pretty_term prints out

pwriteln (pretty_term show_types_ctxt @{term "(1::nat, x)"})
> (1::nat, x::’a)

where 1 and x are displayed with their inferred type. Even more type information
can be printed by setting the reference show_all_types to true. In this case we
obtain

let

val show_all_types_ctxt = Config.put show_all_types true @{context}
in

pwriteln (pretty_term show_all_types_ctxt @{term "(1::nat, x)"})
end
> (Pair::nat = ’a = nat X ’a) (1::nat) (x::’a)

where now even Pair is written with its type (Pair is the term-constructor for prod-
ucts). Other configuration values that influence printing of terms include show_brackets,
show_sorts and eta_contract.

A cterm can be printed with the following function.

fun pretty_cterm ctxt ctrm =
pretty_term ctxt (term_of ctrm)

Here the function term_of extracts the term from a cterm. More than one cterms
can be printed again with commas.

fun pretty_cterms ctxt ctrms =
Pretty.block (Pretty.commas (map (pretty_cterm ctxt) ctrms))

The easiest way to get the string of a theorem is to transform it into a term using the
function prop_of.

fun pretty_thm ctxt thm =
pretty_term ctxt (prop_of thm)

Theorems include schematic variables, such as 7P, 7qQ and so on. They are needed in
Isabelle in order to able to instantiate theorems when they are applied. For example
the theorem conjI shown below can be used for any (typable) instantiation of 7P
and Q.
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pwriteln (pretty_thm @{context} @{thm conjI})
> [7P; 72Q] = ?P A 7Q

However, in order to improve the readability when printing theorems, we can switch
off the question marks as follows:

fun pretty_thm_no_vars ctxt thm =

let

val ctxt’ = Config.put show_question_marks false ctxt
in

pretty_term ctxt’ (prop_of thm)
end

With this function, theorem conjI is now printed as follows:

pwriteln (pretty_thm_no_vars @{context} @{thm conjI})
> [P; Q] = P A Q

Again the functions commas and block help with printing more than one theorem.

fun pretty_thms ctxt thms =
Pretty.block (Pretty.commas (map (pretty_thm ctxt) thms))

fun pretty_thms_no_vars ctxt thms =
Pretty.block (Pretty.commas (map (pretty_thm_no_vars ctxt) thms))

Printing functions for typ are

fun pretty_typ ctxt ty = Syntax.pretty_typ ctxt ty
fun pretty_typs ctxt tys =
Pretty.block (Pretty.commas (map (pretty_typ ctxt) tys))

respectively ctyp

fun pretty_ctyp ctxt cty = pretty_typ ctxt (typ_of cty)
fun pretty_ctyps ctxt ctys =
Pretty.block (Pretty.commas (map (pretty_ctyp ctxt) ctys))

Read More

The simple conversion functions from Isabelle’s main datatypes to strings are implemented
in Pure/Syntax/syntax.ML. The configuration values that change the printing informa-
tion are declared in Pure/Syntax/printer.ML

Note that for printing out several “parcels” of information that belong together, like
a warning message consisting of a term and its type, you should try to print these
parcels together in a single string. Therefore do not print out information as


http://isabelle.in.tum.de/repos/isabelle/raw-file/tip/src/Pure/Syntax/syntax.ML
http://isabelle.in.tum.de/repos/isabelle/raw-file/tip/src/Pure/Syntax/printer.ML

14 CHAPTER 2. FIRST STEPS

pwriteln (Pretty.str "First half,");
pwriteln (Pretty.str "and second half.")
> First half,

> and second half.

but as a single string with appropriate formatting. For example

pwriteln (Pretty.str ("First half," ~ "\n" ~ "and second half."))
> First half,
> and second half.

To ease this kind of string manipulations, there are a number of library functions
in Isabelle. For example, the function cat_lines concatenates a list of strings and
inserts newlines in between each element.

pwriteln (Pretty.str (cat_lines ["foo", "bar"]))
> foo
> bar

Section 3.9 will explain the infrastructure that Isabelle provides for more elaborate
pretty printing.

Read More
Most of the basic string functions of Isabelle are defined in Pure/library.ML.

2.3 Combinators

For beginners perhaps the most puzzling parts in the existing code of Isabelle are
the combinators. At first they seem to greatly obstruct the comprehension of code,
but after getting familiar with them and handled with care, they actually ease the
understanding and also the programming.

The simplest combinator is I, which is just the identity function defined as

fun I x = x

Another simple combinator is K, defined as

fun K x = fn _ => x

K “wraps” a function around x that ignores its argument. As a result, K defines a

constant function always returning x.
The next combinator is reverse application, />, defined as:


http://isabelle.in.tum.de/repos/isabelle/raw-file/tip/src/Pure/library.ML
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fun x [> f = f x

While just syntactic sugar for the usual function application, the purpose of this
combinator is to implement functions in a “waterfall fashion”. Consider for example
the function

fun inc_by_five x =
x |[> (fn x => x + 1)
[> (fn x => (x, %))
|> fst
[> (fn x => x + 4)

which increments its argument x by 5. It does this by first incrementing the ar-
gument by 1 (Line 2); then storing the result in a pair (Line 3); taking the first
component of the pair (Line 4) and finally incrementing the first component by 4
(Line 5). This kind of cascading manipulations of values is quite common when
dealing with theories. The reverse application allows you to read what happens in
a top-down manner. This kind of coding should be familiar, if you have been ex-
posed to Haskell’s do-notation. Writing the function inc_by_five using the reverse
application is much clearer than writing

fun inc_by_five x = fst ((fn x => (x, x)) (x + 1)) + 4

or

fun inc_by_five x
((fn x => x + 4) o fst o (fn x => (x, x)) o (fn x => x + 1)) x

and typographically more economical than

fun inc_by_five x =
let val y1 =x + 1

val y2 = (y1, y1)

val y3 = fst y2

val y4 = y3 + 4
in y4 end

Another reason why the let-bindings in the code above are better to be avoided: it is
more than easy to get the intermediate values wrong, not to mention the nightmares
the maintenance of this code causes!

In Isabelle a “real world” example for a function written in the waterfall fashion
might be the following code:
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fun apply_fresh_args f ctxt =
f |> fastype_of
|> binder_types
[> map (pair "z")
[> Variable.variant_frees ctxt [f]
|> map Free
[> curry list_comb f

This function takes a term and a context as argument. If the term is of function type,
then apply_fresh_args returns the term with distinct variables applied to it. For
example below three variables are applied to the term P::nat = int = unit =
bool:

let
val trm = @{term "P::nat = int = unit = bool"}
val ctxt = @{context}
in
apply_fresh_args trm ctxt
|> pretty_term ctxt
|> pwriteln
end
> P z za zb

You can read off this behaviour from how apply_fresh_args is coded: in Line 2, the
function fastype_of calculates the type of the term; binder_types in the next line
produces the list of argument types (in the case above the list [nat, int, unit]);
Line 4 pairs up each type with the string z; the function variant_frees generates
for each z a unique name avoiding the given f; the list of name-type pairs is turned
into a list of variable terms in Line 6, which in the last line is applied by the function
list_comb to the original term. In this last step we have to use the function curry,
because 1ist_comb expects the function and the variables list as a pair.

Functions like apply_fresh_args are often needed when constructing terms involv-
ing fresh variables. For this the infrastructure helps tremendously to avoid any name
clashes. Consider for example:

let
val trm = @{term "za::’a = ’b = ’c"}
val ctxt = @{context}
in
apply_fresh_args trm ctxt
|> pretty_term ctxt
|> pwriteln
end
> za z zb

where the za is correctly avoided.

The combinator #> is the reverse function composition. It can be used to define the
following function
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val inc_by_six =
(fn x => x + 1) #>
(fn x => x + 2) #>
(fn x => x + 3)

which is the function composed of first the increment-by-one function and then
increment-by-two, followed by increment-by-three. Again, the reverse function com-
position allows you to read the code top-down. This combinator is often used for
setup functions inside the setup- or local setup-command. These functions have to
be of type theory -> theory, respectively local_theory -> local_theory. More
than one such setup function can be composed with #>. Consider for example the fol-
lowing code, where we store the theorems conjI, conjunctl and conjunct2 under
alternative names.

local setup {*
let
fun my_note name thm = Local_Theory.note ((name, []), [thm]) #> snd
in
my_note @{binding "foo_conjI"} @{thm conjI} #>
my_note @{binding "bar_conjunct1"} @{thm conjunctl} #>
my_note @{binding "bar_conjunct2"} @{thm conjunct2}
end *}

The function my_note in line 3 is just a wrapper for the function note in the structure
Local_Theory; its purpose is to store a theorem under a name. In lines 5 to 6 we
call this function to give alternative names for the three theorems. The point of #>
is that you can sequence such function calls.

The remaining combinators we describe in this section add convenience for the “wa-
terfall method” of writing functions. The combinator tap allows you to get hold
of an intermediate result (to do some side-calculations or print out an intermediate
result, for instance). The function

fun inc_by_three x =
x [> (fn x => x + 1)
[> tap (fn x => pwriteln (Pretty.str (@{make_string} x)))
[> (fn x => x + 2)

increments the argument first by 1 and then by 2. In the middle (Line 3), however, it
uses tap for printing the “plus-one” intermediate result. The function tap can only
be used for side-calculations, because any value that is computed cannot be merged
back into the “main waterfall”. To do this, you can use the next combinator.

The combinator ¢ (a backtick) is similar to tap, but applies a function to the value
and returns the result together with the value (as a pair). It is defined as

fun ‘f = fn x => (f x, x)

An example for this combinator is the function
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fun inc_as_pair x =
x [> ‘(fn x => x + 1)
[> (fn (x, y) => (x, y + 1))

which takes x as argument, and then increments x, but also keeps x. The intermedi-
ate result is therefore the pair (x + 1, x). After that, the function increments the
right-hand component of the pair. So finally the result will be (x + 1, x + 1).

The combinators />> and | /> are defined for functions manipulating pairs. The first
applies the function to the first component of the pair, defined as

fun (x, y) [>> f = (f x, y)

and the second combinator to the second component, defined as

fun (x, y) [[> f = (x, fy)

These two functions can, for example, be used to avoid explicit 1ets for intermediate
values in functions that return pairs. As an example, suppose you want to separate
a list of integers into two lists according to a threshold. If the threshold is 5, the list
[1,6,2,5,3,4] should be separated as ([1,2,3,4], [6,5]). Such a function can
be implemented as

fun separate i [] = ([, [])
| separate i (x::xs) =

let

val (los, grs) = separate i xs
in

if i <= x then (los, x::grs) else (x::los, grs)
end

where the return value of the recursive call is bound explicitly to the pair (los,
grs). However, this function can be implemented more concisely as

fun separate i [] = ([], []1)
| separate i (x::xs) =
if i <= x
then separate i xs [[> cons x
else separate i xs [>> cons x

avoiding the explicit 1et. While in this example the gain in conciseness is only small,
in more complicated situations the benefit of avoiding lets can be substantial.

With the combinator [-> you can re-combine the elements from a pair. This combi-
nator is defined as
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fun (x, y) |[-> f=Ffxy

and can be used to write the following roundabout version of the double function:

fun double x =
x [> (fn x => (x, x))
[-> (fn x => fn y => x + y)

The combinator | />> plays a central réle whenever your task is to update a theory
and the update also produces a side-result (for example a theorem). Functions for
such tasks return a pair whose second component is the theory and the fist compo-
nent is the side-result. Using [/>>, you can do conveniently the update and also
accumulate the side-results. Consider the following simple function.

fun acc_incs x =
x [> (fn x => ("", x))
[[>> (fn x => (x, x + 1))
[[>> (fn x => (x, x + 1))
[[>> (fn x => (x, x + 1))

The purpose of Line 2 is to just pair up the argument with a dummy value (since
| |>> operates on pairs). Each of the next three lines just increment the value by
one, but also nest the intermediate results to the left. For example

acc_incs 1

> (", 1, 2), 3), 4

You can continue this chain with:

acc_incs 1 [[>> (fn x => (x, x + 2))

> (e, 1, 2), 3), 4, 6)

An example where this combinator is useful is as follows

let
val ((namesl, names2), _) =
@{context}
|> Variable.variant_fixes (replicate 4 "x")
[ |>> Variable.variant_fixes (replicate 5 "x")
in
(names1, names2)
end

> ([IIX H’ ll.}(a ” ”Xb H’ "XC HJ , ["Xd H’ er ll’ ”Xf ”’ ”Xg”, "Xh HJ)
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Its purpose is to create nine variants of the string "x" so that no variant will clash
with another. Suppose for some reason we want to bind four variants to the lists
namel and the rest to name2. In order to obtain non-clashing variants we have to
thread the context through the function calls (the context records which variants
have been previously created). For the first call we can use />, but in the second and
any further call to variant_fixes we have to use | [>> in order to account for the
result(s) obtained by previous calls.

A more realistic example for this combinator is the following code

val (((one_def, two_def), three_def), ctxt’) =
@{context}
[> Local_Defs.add_def ((@{binding "one"}, NoSyn), @{term "1::nat"})
[ |>> Local_Defs.add_def ((@{binding "Two"}, NoSyn), @{term "2::nat"})
| |>> Local_Defs.add_def ((@{binding "Three"}, NoSyn), @{term "3::nat"})

where we make three definitions, namely one = 1, two = 2 and three = 3. The
point of this code is that we augment the initial context with the definitions. The
result we are interested in is the augmented context, that is ctxt’, but also the side-
results containing information about the definitions—the function add_def returns
both as pairs. We can use this information for example to print out the definiens and
the theorem corresponding to the definitions. For example for the first definition:

let
val (one_trm, one_thm) = one_def
in
pwriteln (pretty_term ctxt’ one_trm);
pwriteln (pretty_thm ctxt’ one_thm)
end
> one
> one = 1

Recall that /> is the reverse function application. Recall also that the related reverse
function composition is #>. In fact all the combinators [->, [>> , [/> and [ [>>
described above have related combinators for function composition, namely #->,
#>>, ##> and ##>>. Using #->, for example, the function double can also be written
as:

val double =
(fn x => (x, x))
#-> (fn x => fn y => x + y)

When using combinators for writing functions in waterfall fashion, it is sometimes
necessary to do some “plumbing” in order to fit functions together. We have already
seen such plumbing in the function apply_fresh_args, where curry is needed for
making the function 1ist_comb, which works over pairs, to fit with the combina-
tor />. Such plumbing is also needed in situations where a function operates over
lists, but one calculates only with a single element. An example is the function
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check_terms, whose purpose is to simultaneously type-check a list of terms. Con-
sider the code:

let
val ctxt = @{context}
in
map (Syntax.parse_term ctxt) ["m + n", "m * n", "m - (n::nat)"]
|> Syntax.check_terms ctxt
|> pretty_terms ctxt
|> pwriteln
end
>m+n, m*n, m-n

In this example we obtain three terms (using the function parse_term) whose vari-
ables m and n are of type nat. If you have only a single term, then check_terms
needs plumbing. This can be done with the function singleton.! For example

let
val ctxt = @{context}

in
Syntax.parse_term ctxt "m - (n::nat)"
|> singleton (Syntax.check_terms ctxt)
|> pretty_term ctxt
|> pwriteln

end

>m-n

where in Line 5, the function operating over lists fits with the single term generated
in Line 4.

Read More

The most frequently used combinators are defined in the files Pure/library.ML and
Pure/General/basics.ML. Also [Impl. Man., Sec. B.1] contains further information about
combinators.

Exercise 2.3.1: Find out what the combinator K I does.

2.4 ML-Antiquotations

Recall from Section 2.1 that code in Isabelle is always embedded in a theory. The
main advantage of this is that the code can contain references to entities defined on
the logical level of Isabelle. By this we mean references to definitions, theorems,
terms and so on. These reference are realised in Isabelle with ML-antiquotations,

IThere is already a function check_term in the file Pure/Syntax/syntax.ML that is implemented
in terms of singleton and check_terms.


http://isabelle.in.tum.de/repos/isabelle/raw-file/tip/src/Pure/library.ML
http://isabelle.in.tum.de/repos/isabelle/raw-file/tip/src/Pure/General/basics.ML
http://isabelle.in.tum.de/repos/isabelle/raw-file/tip/src/Pure/Syntax/syntax.ML
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often just called antiquotations.? Syntactically antiquotations are indicated by the
@-sign followed by text wrapped in {... }. For example, one can print out the name
of the current theory with the code

Context.theory_name @{theory}
> "First_Steps"

where @{theory} is an antiquotation that is substituted with the current theory
(remember that we assumed we are inside the theory First_Steps). The name of
this theory can be extracted using the function theory_name.

Note, however, that antiquotations are statically linked, that is their value is deter-
mined at “compile-time”, not at “run-time”. For example the function

fun not_current_thyname () = Context.theory_name @{theory}

does not return the name of the current theory, if it is run in a different theory.
Instead, the code above defines the constant function that always returns the string
"First_Steps", no matter where the function is called. Operationally speaking,
the antiquotation @{theory?} is not replaced with code that will look up the current
theory in some data structure and return it. Instead, it is literally replaced with the
value representing the theory.

Another important antiquotation is @{context}. (What the difference between a
theory and a context is will be described in Chapter 4.) A context is for example
needed in order to use the function print_abbrevs that list of all currently defined
abbreviations.

Proof_Context.print_abbrevs @{context}

> Code_Evaluation.valtermify = Ax. (x, Au. Code_Evaluation.termify x)
> INTER = INFI

> Inter = Inf
>

You can also use antiquotations to refer to proved theorems: @{thm ...} for a single
theorem

o{thm allIl}
> (Ax. 7P x) — Vx. 7P x

and @{thms ...} for more than one

2Note that there are two kinds of antiquotations in Isabelle, which have very different purposes
and infrastructures. The first kind, described in this section, are ML-antiquotation. They are used to
refer to entities (like terms, types etc) from Isabelle’s logic layer inside ML-code. The other kind of
antiquotations are document antiquotations. They are used only in the text parts of Isabelle and their
purpose is to print logical entities inside BIgX-documents. Document antiquotations are part of the
user level and therefore we are not interested in them in this Tutorial, except in Appendix A.1 where
we show how to implement your own document antiquotations.
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@{thms conj_ac}

> (?P N 7Q) = (7Q N 7?P)

> (?P N ?Q N 7PR) = (?Q N PP A 7R)
> ((?P AN ?Q) N ?R) = (?P N ?Q N 7R)

The thm-antiquotations can also be used for manipulating theorems. For example,
if you need the version of the theorem refl that has a meta-equality instead of an
equality, you can write

O@{thm refl[THEN eq_reflection]}
> ?x = 7x

The point of these antiquotations is that referring to theorems in this way makes your
code independent from what theorems the user might have stored under this name
(this becomes especially important when you deal with theorem lists; see Section
2.5).

It is also possible to prove lemmas with the antiquotation @{lemma ... by ...}
whose first argument is a statement (possibly many of them separated by and) and
the second is a proof. For example

val foo_thm = @{lemma "True" and "False =—> P" by simp_all}
The result can be printed out as follows.

foo_thm [> pretty_thms_no_vars @{context}
|> pwriteln
> True, False — P

You can also refer to the current simpset via an antiquotation. To illustrate this we
implement the function that extracts the theorem names stored in a simpset.

fun get_thm_names_from_ss simpset =
let
val {simps,...} = Raw_Simplifier.dest_ss simpset
in
map #1 simps
end

The function dest_ss returns a record containing all information stored in the
simpset, but here we are only interested in the names of the simp-rules. Now you can
feed in the current simpset into this function. The current simpset can be referred to
using the antiquotation @{simpset}.
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get_thm_names_from_ss @{simpset}
> ["Nat.of_nat_eq_id", "Int.of_int_eq_id", "Nat.One_nat_def", ...]

Again, this way of referencing simpsets makes you independent from additions of
lemmas to the simpset by the user, which can potentially cause loops in your code.

It is also possible to define your own antiquotations. But you should exercise care
when introducing new ones, as they can also make your code also difficult to read. In
the next chapter we describe how to construct terms with the (build in) antiquotation
@{term ...}. A restriction of this antiquotation is that it does not allow you to use
schematic variables in terms. If you want to have an antiquotation that does not
have this restriction, you can implement your own using the function inline from
the structure ML_Antiquote. The code for the antiquotation term_pat is as follows.

val term_pat_setup =
let
val parser = Args.context -- Scan.lift Args.name_source

fun term_pat (ctxt, str) =
str [> Proof_Context.read_term_pattern ctxt
|> ML_Syntax.print_term
[> ML_Syntax.atomic
in
ML_Antiquote.inline @{binding "term_pat"} (parser >> term_pat)
end

To use it you also have to install it using setup like so
setup {* term_pat_setup *}

The parser in Line 2 provides us with a context and a string; this string is trans-
formed into a term using the function read_term_pattern (Line 5); the next two
lines transform the term into a string so that the ML-system can understand it. (All
these functions will be explained in more detail in later sections.) An example for
this antiquotation is:

@{term_pat "Suc (?x::nat)"}
> Const ("Suc", "nat = nat") $ Var (("x", 0), "nat")

which shows the internal representation of the term Suc ?x. Similarly we can write
an antiquotation for type patterns. Its code is

val type_pat_setup =
let
val parser = Args.context —-- Scan.lift Args.name_source

fun typ_pat (ctxt, str) =
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str [> Syntax.parse_typ ctxt
[> ML_Syntax.print_typ
[> ML_Syntax.atomic
in
ML_Antiquote.inline @{binding "typ_pat"} (parser >> typ_pat)
end

which can be installed with
setup {* type_pat_setup *}

However, a word of warning is in order: Introducing new antiquotations should be
done only after careful deliberations. They can make your code harder to read, than
making it easier.

Read More
The file Pure/ML/ml_antiquote.ML contains the the definitions for most antiquotations.
Most of the basic operations on ML-syntax are implemented in Pure/ML/ml1_syntax.ML.

2.5 Storing Data in Isabelle

Isabelle provides mechanisms for storing (and retrieving) arbitrary data. Before we
delve into the details, let us digress a bit. Conventional wisdom has it that the type-
system of ML ensures that an ’a 1ist, say, can only hold elements of the same type,
namely ’a (or whatever is substitued for it). Despite this common wisdom, however,
it is possible to implement a universal type in ML, although by some arguably acci-
dental features of ML. This universal type can be used to store data of different type
into a single list. In fact, it allows one to inject and to project data of arbitrary type.
This is in contrast to datatypes, which only allow injection and projection of data
for some fixed collection of types. In light of the conventional wisdom cited above it
is important to keep in mind that the universal type does not destroy type-safety of
ML: storing and accessing the data can only be done in a type-safe manner...though
run-time checks are needed for that.

Read More
In Isabelle the universal type is implemented as the type Universal.universal in the file
Pure/ML-Systems/universal.ML.

We will show the usage of the universal type by storing an integer and a boolean
into a single list. Let us first define injection and projection functions for booleans
and integers into and from the type Universal.universal.

local
val fn_int = Universal.tag () : int Universal.tag
val fn_bool = Universal.tag () : bool Universal.tag

in


http://isabelle.in.tum.de/repos/isabelle/raw-file/tip/src/Pure/ML/ml_antiquote.ML
http://isabelle.in.tum.de/repos/isabelle/raw-file/tip/src/Pure/ML/ml_syntax.ML
http://isabelle.in.tum.de/repos/isabelle/raw-file/tip/src/Pure/ML-Systems/universal.ML
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val inject_int = Universal.taglnject fn_int;
val inject_bool = Universal.taglnject fn_bool;
val project_int = Universal.tagProject fn_int;

val project_bool
end

Universal.tagProject fn_bool

Using the injection functions, we can inject the integer 13 and the boolean value
true into Universal.universal, and then store them in a Universal.universal
list as follows:

val foo_list =
let
val thirteen = inject_int 13
val truth_val = inject_bool true
in
[thirteen, truth_vall]
end

The data can be retrieved with the projection functions defined above.

project_int (nth foo_list 0);
project_bool (nth foo_list 1)
> 13

> true

Notice that we access the integer as an integer and the boolean as a boolean. If we
attempt to access the integer as a boolean, then we get a runtime error.

project_bool (nth foo_list 0)
> *** Exception- Match raised

This runtime error is the reason why ML is still type-sound despite containing a
universal type.

Now, Isabelle heavily uses this mechanism for storing all sorts of data: theorem lists,
simpsets, facts etc. Roughly speaking, there are two places where data can be stored
in Isabelle: in theories and in proof contexts. Data such as simpsets are “global”
and therefore need to be stored in a theory (simpsets need to be maintained across
proofs and even across theories). On the other hand, data such as facts change inside
a proof and are only relevant to the proof at hand. Therefore such data needs to be
maintained inside a proof context, which represents “local” data. You can think of a
theory as the “longterm memory” of Isabelle (nothing will be deleted from it), and
a proof-context as a “shortterm memory” (it dynamically changes according to what
is needed at the time).

For theories and proof contexts there are, respectively, the functors Theory_Data
and Proof_Data that help with the data storage. Below we show how to implement
a table in which you can store theorems and look them up according to a string
key. The intention in this example is to be able to look up introduction rules for
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logical connectives. Such a table might be useful in an automatic proof procedure
and therefore it makes sense to store this data inside a theory. Consequently we use
the functor Theory_Data. The code for the table is:

structure Data = Theory_Data
(type T = thm Symtab.table
val empty = Symtab.empty
val extend = I
val merge = Symtab.merge (K true))

In order to store data in a theory, we have to specify the type of the data (Line
2). In this case we specify the type thm Symtab.table, which stands for a table
in which strings can be looked up producing an associated thm. We also have to
specify four functions to use this functor: namely how to initialise the data storage
(Line 3), how to extend it (Line 4) and how two tables should be merged (Line 5).
These functions correspond roughly to the operations performed on theories and
we just give some sensible defaults.> The result structure Data contains functions
for accessing the table (Data.get) and for updating it (Data.map). There is also
the functions Data.put, which however is not relevant here. Below we define two
auxiliary functions, which help us with accessing the table.

val lookup = Symtab.lookup o Data.get
fun update k v = Data.map (Symtab.update (k, v))

Since we want to store introduction rules associated with their logical connective,
we can fill the table as follows.

setup {*
update '"conj" @{thm conjI} #>
update "imp" @{thm impI} #>
update "all" @{thm allI}

*}

The use of the command setup makes sure the table in the current theory is updated
(this is explained further in section 4.1). The lookup can now be performed as
follows.

lookup @{theory} "conj"
> SOME "[?P; 7Q] = ?P A 7Q"

An important point to note is that these tables (and data in general) need to be
treated in a purely functional fashion. Although we can update the table as follows

SFIXME: Say more about the assumptions of these operations.
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setup {* update "conj" @{thm TrueI} *}
and accordingly, Iookup now produces the introduction rule for True

lookup @{theory} "conj"
> SOME "True"

there are no references involved. This is one of the most fundamental coding con-
ventions for programming in Isabelle. References interfere with the multithreaded
execution model of Isabelle and also defeat its undo-mechanism. To see the latter,
consider the following data container where we maintain a reference to a list of
integers.

structure WrongRefData = Theory_Data
(type T = (int list) Unsynchronized.ref
val empty = Unsynchronized.ref []
val extend = I
val merge = fst)

We initialise the reference with the empty list. Consequently a first lookup produces
ref [].

WrongRefData.get @{theory}
> ref []

For updating the reference we use the following function

fun ref_update n = WrongRefData.map
(fn r => let val _ = r := n::(!r) in r end)

which takes an integer and adds it to the content of the reference. As before, we
update the reference with the command setup.

setup {* ref_update 1 *}
A lookup in the current theory gives then the expected list ref [1].

WrongRefData.get @{theory}
> ref [1]

So far everything is as expected. But, the trouble starts if we attempt to backtrack to
the “point” before the setup-command. There, we would expect that the list is empty
again. But since it is stored in a reference, Isabelle has no control over it. So it is not
empty, but still ref [1]. Adding to the trouble, if we execute the setup-command
again, we do not obtain ref [1], but
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WrongRefData.get @{theoryl}
> ref [1, 1]

Now imagine how often you go backwards and forwards in your proof scripts.* By
using references in Isabelle code, you are bound to cause all hell to break loose.
Therefore observe the coding convention: Do not use references for storing data!

Read More

The functors for data storage are defined in Pure/context.ML. Isabelle contains
implementations of several container data structures, including association lists in
Pure/General/alist.ML, directed graphs in Pure/General/graph.ML, and tables and
symtables in Pure/General/table.ML.

Storing data in a proof context is done in a similar fashion. As mentioned before, the
corresponding functor is Proof_Data. With the following code we can store a list of
terms in a proof context.

structure Data = Proof_Data
(type T = term list
fun init _ = [])

The init-function we have to specify must produce a list for when a context is ini-
tialised (possibly taking the theory into account from which the context is derived).
We choose here to just return the empty list. Next we define two auxiliary functions
for updating the list with a given term and printing the list.

fun update trm = Data.map (fn trms => trm::trms)

fun print ctxt =
case (Data.get ctxt) of
[] => pwriteln (Pretty.str "Empty!")
| trms => pwriteln (pretty_terms ctxt trms)

Next we start with the context generated by the antiquotation @{context} and up-
date it in various ways.

let
val ctxtO0 = @{context}
val ctxtl = ctxtO |> update @{term "False"}

|> update @{term "True A True"}
val ctxt2 = ctxtO |> update @{term "1::nat"}
val ctxt3 = ctxt2 |> update @{term "2::nat"}
in
print ctxtO;
print ctxtl;

“The same problem can be triggered in the Jedit GUI by making the parser to go over and over
again over the setup command.


http://isabelle.in.tum.de/repos/isabelle/raw-file/tip/src/Pure/context.ML
http://isabelle.in.tum.de/repos/isabelle/raw-file/tip/src/Pure/General/alist.ML
http://isabelle.in.tum.de/repos/isabelle/raw-file/tip/src/Pure/General/graph.ML
http://isabelle.in.tum.de/repos/isabelle/raw-file/tip/src/Pure/General/table.ML
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print ctxt2;
print ctxt3
end
> Empty!
> True A True, False
> 1
> 2,1

Many functions in Isabelle manage and update data in a similar fashion. Conse-
quently, such calculations with contexts occur frequently in Isabelle code, although
the “context flow” is usually only linear. Note also that the calculation above has
no effect on the underlying theory. Once we throw away the contexts, we have no
access to their associated data. This is different for theories, where the command
setup registers the data with the current and future theories, and therefore one can
access the data potentially indefinitely.

Move elsewhere

For convenience there is an abstract layer, namely the type Context.generic, for
treating theories and proof contexts more uniformly. This type is defined as follows

datatype generic =
Theory of theory
| Proof of proof

5

There are two special instances of the data storage mechanism described above. The
first instance implements named theorem lists using the functor Named_Thms. This
is because storing theorems in a list is such a common task. To obtain a named
theorem list, you just declare

structure FooRules = Named_Thms
(val name = @{binding "foo"}
val description = "Theorems for foo')

and set up the FooRules with the command
setup {* FooRules.setup *}

This code declares a data container where the theorems are stored, an attribute foo
(with the add and del options for adding and deleting theorems) and an internal
ML-interface for retrieving and modifying the theorems. Furthermore, the theorems
are made available on the user-level under the name foo. For example you can
declare three lemmas to be a member of the theorem list foo by:

lemma rulel[foo]: "A" sorry
lemma rule2[foo]: "B" sorry

SFIXME: say more about generic contexts.
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lemma rule3[foo]: "C" sorry

and undeclare the first one by:

declare rulel[foo dell]

You can query the remaining ones with:

thm foo
> 7C
> 7B

On the ML-level, we can add theorems to the list with FooRules.add_thm:

setup {* Context.theory_map (FooRules.add_thm @{thm TrueI}) *}

The rules in the list can be retrieved using the function FooRules.get:

FooRules.get @{context}
> ["True”, !I?CII,II?BIIJ

Note that this function takes a proof context as argument. This might be confusing,
since the theorem list is stored as theory data. It becomes clear by knowing that the
proof context contains the information about the current theory and so the function
can access the theorem list in the theory via the context.

Read More
For more information about named theorem lists see Pure/Tools/named_thms.ML.

The second special instance of the data storage mechanism are configuration val-
ues. They are used to enable users to configure tools without having to resort to
the ML-level (and also to avoid references). Assume you want the user to control
three values, say bval containing a boolean, ival containing an integer and sval
containing a string. These values can be declared by

val bval = Attrib.setup_config_bool @{binding "bval"} (K false)
val ival = Attrib.setup_config_int @{binding "ival"} (K 0)
val sval = Attrib.setup_config_string @{binding "sval"} (K "some string")

where each value needs to be given a default. The user can now manipulate the
values from the user-level of Isabelle with the command

declare [[bval = true, ival = 3]]

On the ML-level these values can be retrieved using the function get from a proof
context


http://isabelle.in.tum.de/repos/isabelle/raw-file/tip/src/Pure/Tools/named_thms.ML
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Config.get @{context} bval
> true

or directly from a theory using the function get_global

Config.get_global @{theory} bval
> true

It is also possible to manipulate the configuration values from the ML-level with the
functions put and put_global. For example

let
val ctxt = @{context}
val ctxt’ = Config.put sval "foo'" ctxt
val ctxt’’ = Config.put sval "bar" ctxt’
in
(Config.get ctxt sval,
Config.get ctxt’ sval,
Config.get ctxt’’ sval)
end
> ("some string", "foo", "bar")

A concrete example for a configuration value is simp_trace, which switches on trace
information in the simplifier. This can be used for example in the following proof

lemma
shows "(False V True) A True"
proof (rule conjI)
show "False V True" using [[simp_trace = true]] by simp
next
show "True" by simp
ged

in order to inspect how the simplifier solves the first subgoal.

Read More
For more information about configuration values see the files Pure/Isar/attrib.ML and
Pure/config.ML.

2.6 Summary

This chapter describes the combinators that are used in Isabelle, as well as a simple
printing infrastructure for term, cterm and thm. The section on ML-antiquotations
shows how to refer statically to entities from the logic level of Isabelle. Isabelle also
contains mechanisms for storing arbitrary data in theory and proof contexts.


http://isabelle.in.tum.de/repos/isabelle/raw-file/tip/src/Pure/Isar/attrib.ML
http://isabelle.in.tum.de/repos/isabelle/raw-file/tip/src/Pure/config.ML

2.6. SUMMARY

Coding Conventions / Rules of Thumb

e Print messages that belong together in a single string.

e Do not use references in Isabelle code.

33



34

CHAPTER 2. FIRST STEPS



N o O A~ W N -

Chapter 3

Isabelle Essentials

One man’s obfuscation is another man’s abstraction.

Frank Ch. Eigler on the Linux Kernel Mailing List,
24 Nov. 2009

Isabelle is build around a few central ideas. One central idea is the LCF-approach to
theorem proving [3] where there is a small trusted core and everything else is built
on top of this trusted core. The fundamental data structures involved in this core are
certified terms and certified types, as well as theorems.

3.1 Terms and Types

In Isabelle, there are certified terms and uncertified terms (respectively types). Un-
certified terms are often just called terms. One way to construct them is by using the
antiquotation @{term ... }. For example

@{term "(a::nat) + b = c"}
> Const ("HOL.eq", ...) $
>  (Const ("Groups.plus_class.plus", ...) $ ... $ ...) ¢ ...

constructs the term a + b = c. The resulting term is printed using the internal
representation corresponding to the datatype term, which is defined as follows:

datatype term =

Const of string * typ
Free of string * typ

Var of indexname * typ
Bound of int

Abs of string * typ * term
$ of term * term

—_—— — — —

This datatype implements Church-style lambda-terms, where types are explicitly
recorded in variables, constants and abstractions. As can be seen in Line 5, terms use

35



36 CHAPTER 3. ISABELLE ESSENTIALS

the usual de Bruijn index mechanism for representing bound variables. For example
in

C{term "Ax y. x y"}
> Abs ("x", "’a = ’b", Abs ("y", "’a", Bound 1 $ Bound 0))

the indices refer to the number of Abstractions (Abs) that we need to skip until we hit
the Abs that binds the corresponding variable. Constructing a term with dangling de
Bruijn indices is possible, but will be flagged as ill-formed when you try to typecheck
or certify it (see Section 3.5). Note that the names of bound variables are kept at
abstractions for printing purposes, and so should be treated only as “comments”.
Application in Isabelle is realised with the term-constructor $.

Be careful if you pretty-print terms. Consider pretty-printing the abstraction term
shown above:

@{term "Ax y. x y"}
|> pretty_term @{context}
|> pwriteln

> Ax. x

This is one common source for puzzlement in Isabelle, which has tacitly eta-contracted
the output. You obtain a similar result with beta-redexes

@{term "(Xx y. x) 1 2"}
[> pretty_term @{context}
|> pwriteln

> 1

There is a configuration value to switch off the tacit eta-contraction (see 2.2), but
none for beta-contraction. So in certain cases you might have to inspect the internal
representation of a term, instead of pretty printing it. Because of the alluded puzzle-
ment that might arise from this feature of Isabelle, it is certainly an acrane fact that
you should keep in mind about pretty-printing terms.

Isabelle makes a distinction between free variables (term-constructor Free and writ-
ten on the user level in blue colour) and schematic variables (term-constructor Var
and written with a leading question mark). Consider the following two examples

let
val vl = Var (("x", 3), @{typ bool})
val v2 = Var (("x1", 3), @{typ bool})
val v3 = Free ("x", @{typ bool})

in
pretty_terms @{context} [vl, v2, v3]
|> pwriteln

end

> ?x3, 7?x1.3, x
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When constructing terms, you are usually concerned with free variables (as men-
tioned earlier, you cannot construct schematic variables using the antiquotation @{term
... }). If you deal with theorems, you have to, however, observe the distinction. The
reason is that only schematic variables can be instantiated with terms when a theo-
rem is applied. A similar distinction between free and schematic variables holds for
types (see below).

Read More

Terms and types are described in detail in [Impl. Man., Sec. 2.2]. Their definition and many
useful operations are implemented in Pure/term.ML. For constructing terms involving HOL
constants, many helper functions are defined in HOL/Tools/hologic.ML.

Constructing terms via antiquotations has the advantage that only typable terms can
be constructed. For example

O{term "x x"}
> Type unification failed: Occurs check!

raises a typing error, while it perfectly ok to construct the term with the raw ML-
constructors:

let
val omega = Free ("x", @{typ "nat = nat"}) $ Free ("x", @{typ nat})
in
pwriteln (pretty_term @{context} omega)
end
> X X

Sometimes the internal representation of terms can be surprisingly different from
what you see at the user-level, because the layers of parsing/type-checking/pretty
printing can be quite elaborate.

Exercise 3.1.1: Look at the internal term representation of the following terms, and find out
why they are represented like this:

ecase x of 0 = 0 | Sucy =y

e \(x, y). Py x

o {[x] | x < -2}
Hint: The third term is already quite big, and the pretty printer may omit parts of it by default.

If you want to see all of it, you can use the following ML-function to set the printing depth to a
higher value:

print_depth 50

The antiquotation @{prop ...} constructs terms by inserting the usually invisible
Trueprop-coercions whenever necessary. Consider for example the pairs


http://isabelle.in.tum.de/repos/isabelle/raw-file/tip/src/Pure/term.ML
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(e{term "P x"}, @{prop "P x"})
> (Free ("P", ...) $ Free ("x", ...),
> Const ("HOL.Trueprop", ...) $ (Free ("P", ...) $ Free ("x", ...)))

where a coercion is inserted in the second component and

(oe{term "P x =— Q x"}, @{prop "P x —> @ x"})
> (Const ("==>", ...) ¢ ... $ ...,
> Comst ("==>", ...) % ... $ ...)

where it is not (since it is already constructed by a meta-implication). The pur-
pose of the Trueprop-coercion is to embed formulae of an object logic, for example
HOL, into the meta-logic of Isabelle. The coercion is needed whenever a term is
constructed that will be proved as a theorem.

As already seen above, types can be constructed using the antiquotation e{typ ...}
For example:

@{typ "bool = nat"}
> bool = nat

The corresponding datatype is

datatype typ =

Type of string * typ list
| TFree of string * sort
| TVar of indexname * sort

Like with terms, there is the distinction between free type variables (term-constructor
TFree) and schematic type variables (term-constructor TVar and printed with a lead-
ing question mark). A type constant, like int or bool, are types with an empty list
of argument types. However, it needs a bit of effort to show an example, because
Isabelle always pretty prints types (unlike terms). Using just the antiquotation @{typ
"bool"} we only see

@{typ "bool"}
> bool

which is the pretty printed version of bool. However, in PolyML (version >5.3) it
is easy to install your own pretty printer. With the function below we mimic the
behaviour of the usual pretty printer for datatypes (it uses pretty-printing functions
which will be explained in more detail in Section 3.9).
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local
fun pp_pair (x, y) = Pretty.list "(" ")" [x, yl
fun pp_list xs = Pretty.list "[" "]" xs
fun pp_str s Pretty.str s
fun pp_gstr s = Pretty.quote (pp_str s)
fun pp_int i = pp_str (string_of_int i)
fun pp_sort S = pp_list (map pp_gstr S)
fun pp_constr a args = Pretty.block [pp_str a, Pretty.brk 1, args]
in
fun raw_pp_typ (TVar ((a, i), S)) =
pp_constr "TVar" (pp_pair (pp_pair (pp_qstr a, pp_int i), pp_sort S))
| raw_pp_typ (TFree (a, S)) =
pp_constr "TFree" (pp_pair (pp_gstr a, pp_sort S))
| raw_pp_typ (Type (a, tys)) =
pp_constr "Type" (pp_pair (pp_gstr a, pp_list (map raw_pp_typ tys)))

end
We can install this pretty printer with the function addPrettyPrinter as follows.

PolyML.addPrettyPrinter
(fn _ => fn _ => ml_pretty o Pretty.to_ML o raw_pp_typ)

Now the type bool is printed out in full detail.

@{typ "bool n}
> Type ("HOL.bool", [])

When printing out a list-type

o{typ "’a list"}
> Type ("List.list", [TFree ("’a", ["HOL.type"])])

we can see the full name of the type is actually List.list, indicating that it is
defined in the theory List. However, one has to be careful with names of types,
because even if fun is defined in the theory HOL, it is still represented by their simple
name.

@{typ "bool = nat"}
> Type ("fun", [Type ("HOL.bool", []), Type ("Nat.nat", [])])

We can restore the usual behaviour of Isabelle’s pretty printer with the code

PolyML.addPrettyPrinter
(fn _ => fn _ => ml_pretty o Pretty.to_ML o Proof_Display.pp_typ Pure.thy)

After that the types for booleans, lists and so on are printed out again the standard
Isabelle way.
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@{typ "bool"};
e{typ "’a list"}
> "bool"

> "’a List.list"

Read More
Types are described in detail in [Impl. Man., Sec. 2.1]. Their definition and many useful
operations are implemented in Pure/type.ML.

3.2 Constructing Terms and Types Manually

While antiquotations are very convenient for constructing terms, they can only con-
struct fixed terms (remember they are “linked” at compile-time). However, you often
need to construct terms manually. For example, a function that returns the implica-
tion A (x::nat). P x — @ x taking P and @ as arguments can only be written
as:

fun make_imp P @ =

let

val x = Free ("x", @{typ nat})
in

Logic.all x (Logic.mk_implies (P $ x, Q $ x))
end

The reason is that you cannot pass the arguments P and @ into an antiquotation.!
For example the following does not work.

fun make_wrong_imp P Q = @{prop "A(x::nat). P x — Q x"}

To see this, apply @{term S} and @{term T} to both functions. With make_imp you
obtain the intended term involving the given arguments

make_imp @{term S} @{term T}

> Const ... $

>  Abs ("x", Type ("Nat.nat",[]),

> Const ... $ (Free ("S",...) $ ...) $ (Free ("T",...) $ ...))

whereas with make_wrong_imp you obtain a term involving the P and @ from the
antiquotation.

make_wrong_imp @{term S} @{term T}

> Const ... $

> Abs ("x", ...,

> Const ... $§ (Const ... $ (Free ("P",...) $ ...)) §
> (Const ... $ (Free ("Q",...) $ ...)))

At least not at the moment.


http://isabelle.in.tum.de/repos/isabelle/raw-file/tip/src/Pure/type.ML
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There are a number of handy functions that are frequently used for constructing
terms. One is the function 1ist_comb, which takes as argument a term and a list of
terms, and produces as output the term list applied to the term. For example

let
val trm = @{term "P::bool = bool = bool"}
val args = [@{term "True"}, @{term "False'"}]
in
list_comb (trm, args)
end
> Free ("P", "bool = bool = bool")
> $ Const ("True", "bool") $ Const ("False", "bool")

Another handy function is 1ambda, which abstracts a variable in a term. For example

let
val x_nat = @{term "x::nat"}
val trm = @{term "(P::nat = bool) x"}
in
lambda x_nat trm
end
> Abs ("x", "Nat.nat", Free ("P", "bool = bool") $ Bound 0)

In this example, 1ambda produces a de Bruijn index (i.e. Bound 0), and an abstrac-
tion, where it also records the type of the abstracted variable and for printing pur-
poses also its name. Note that because of the typing annotation on P, the variable x
in P x is of the same type as the abstracted variable. If it is of different type, as in

let
val x_int = @{term "x::int"}
val trm = @{term "(P::nat = bool) x"}
in
lambda x_int trm
end
> Abs ("x", "int", Free ("P", "mat = bool") $ Free ("x", '"nat"))

then the variable Free ("x", "nat") is not abstracted. This is a fundamental prin-
ciple of Church-style typing, where variables with the same name still differ, if they
have different type.

There is also the function subst_free with which terms can be replaced by other
terms. For example below, we will replace in f 0 x the subterm f 0 by y, and x by
True.

let
val subl = (@{term "(f::nat = nat = nat) 0"}, @{term "y::nat = nat"})
val sub2 (0{term "x::nat"}, @{term "True'"})
val trm = @{term "((f::nat = nat = nat) 0) x"}
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in
subst_free [subl, sub2] trm
end
> Free ("y", "nat = nat") $ Const ("True", "bool")

As can be seen, subst_free does not take typability into account. However it takes
alpha-equivalence into account:

let
val sub = (@{term "(Ay::nat. y)"}, @{term "x::nat"})

val trm = @{term "(Ax::nat. x)"}
in

subst_free [sub] trm
end
> Free ("x", "nat")

Similarly the function subst_bounds, replaces lose bound variables with terms. To
see how this function works, let us implement a function that strips off the outermost
forall quantifiers in a term.

fun strip_alls t =

let
fun aux (x, T, t) = strip_alls t [>> cons (Free (x, T))
in
case t of
Const (@{const_name All}, _) $ Abs body => aux body
[ _ = (1, t)
end

The function returns a pair consisting of the stripped off variables and the body of
the universal quantification. For example

strip_alls @{term "Vx y. x = (y::bool)"}
> ([Free ("x", "bool"), Free ("y", "bool")],
> Const ("op =", ...) $ Bound 1 $ Bound 0)

Note that we produced in the body two dangling de Bruijn indices. Later on we will
also use the inverse function that builds the quantification from a body and a list of
(free) variables.

fun build_alls ([], t) =t
| build_alls (Free (x, T) :: vs, t) =
Const (@{const_name "A11"}, (T --> @{typ bool}) --> @{typ booll})
$ Abs (x, T, build_alls (vs, t))

As said above, after calling strip_alls, you obtain a term with loose bound vari-
ables. With the function subst_bounds, you can replace these loose Bounds with the
stripped off variables.
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let
val (vrs, trm) = strip_alls @{term "Vx y. x = (y::bool)"}
in
subst_bounds (rev vrs, trm)
|> pretty_term @{context}
|> pwriteln
end
>x =y

Note that in Line 4 we had to reverse the list of variables that strip_alls returned.
The reason is that the head of the list the function subst_bounds takes is the re-
placement for Bound 0, the next element for Bound 1 and so on.

Notice also that this function might introduce name clashes, since we substitute just
a variable with the name recorded in an abstraction. This name is by no means
unique. If clashes need to be avoided, then we should use the function dest_abs,
which returns the body where the loose de Bruijn index is replaced by a unique free
variable. For example

let

val body = Bound 0 $ Free ("x", @{typ nat})
in

Term.dest_abs ("x", @{typ "mat = bool"}, body)
end

> ("xa", Free ("xa", "Nat.nat = bool") $ Free ("x", "Nat.nat"))

Sometimes it is necessary to manipulate de Bruijn indices in terms directly. There
are many functions to do this. We describe only two. The first, incr_boundvars,
increases by an integer the indices of the loose bound variables in a term. In the
code below

e{term "Vx y z u. z = u"}
[> strip_alls
| |> incr_boundvars 2
[> build_alls
|> pretty_term @{context}
|> pwriteln

>Vxyzu. x=y

we first strip off the forall-quantified variables (thus creating two loose bound vari-
ables in the body); then we increase the indices of the loose bound variables by 2
and finally re-quantify the variables. As a result of incr_boundvars, we obtain now
a term that has the equation between the first two quantified variables.

The second function, Ioose_bvarl, tests whether a term contains a loose bound of
a certain index. For example
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let
val body = snd (strip_alls @{term "Vx y. x = (y::bool)"})
in
[loose_bvarl (body, 0),
loose_bvarl (body, 1),
loose_bvarl (body, 2)]
end
> [true, true, false]

There are also many convenient functions that construct specific HOL-terms in the
structure HOLogic. For example mk_eq constructs an equality out of two terms. The
types needed in this equality are calculated from the type of the arguments. For
example

let
val eq = HOLogic.mk_eq (@{term "True"}, @{term "False"})
in
eq |> pretty_term @{context}
|> pwriteln
end
> True = False

Read More
There are many functions in Pure/term. ML, Pure/logic.ML and HOL/Tools/hologic.ML
that make manual constructions of terms and types easier.

When constructing terms manually, there are a few subtle issues with constants.
They usually crop up when pattern matching terms or types, or when constructing
them. While it is perfectly ok to write the function is_true as follows

fun is_true @{term True} = true
| is_true = false

this does not work for picking out V -quantified terms. Because the function

fun is_all (@{term All} $ _) = true
| is_all = false

will not correctly match the formula "V x: :nat. P x":

is_all @{term "V x::nat. P x"}
> false

The problem is that the @term-antiquotation in the pattern fixes the type of the
constant A11 to be (’a = bool) = bool for an arbitrary, but fixed type ’a. A
properly working alternative for this function is
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fun is_all (Const ("HOL.A1l", _) $ _) = true
| is_all _ = false

because now

is_all @{term "V x::nat. P x"}
> true

matches correctly (the first wildcard in the pattern matches any type and the second
any term).

However there is still a problem: consider the similar function that attempts to pick
out Nil-terms:

fun is_nil (Const ("Nil", _)) = true
| is_nil _ = false

Unfortunately, also this function does not work as expected, since

is_nil @{term "Nil"}
> false

The problem is that on the ML-level the name of a constant is more subtle than you
might expect. The function is_all worked correctly, because A11 is such a funda-
mental constant, which can be referenced by Const ("A11", some_type). How-
ever, if you look at

@{term "Nil'"}
> Const ("List.list.Nil", ...)

the name of the constant Nil depends on the theory in which the term constructor
is defined (List) and also in which datatype (1ist). Even worse, some constants
have a name involving type-classes. Consider for example the constants for zero
and (op *):

(e{term "O::nat"}, @{term "(op *)"})
> (Const ("Groups.zero_class.zero", ...),
> Const ("Groups.times_class.times", ...))

While you could use the complete name, for example Const ("List.list.Nil",
some_type), for referring to or matching against Nil, this would make the code
rather brittle. The reason is that the theory and the name of the datatype can eas-
ily change. To make the code more robust, it is better to use the antiquotation
@{const_name ...}. With this antiquotation you can harness the variable parts of
the constant’s name. Therefore a function for matching against constants that have
a polymorphic type should be written as follows.
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fun is_nil_or_all (Const (@{const_name "Nil"}, _)) = true
| is_nil_or_all (Const (@{const_name "Al1l"}, _) $ _) = true
| is_nil_or_all _ = false

The antiquotation for properly referencing type constants is @{type_name ... }. For
example

@{type_name "list"}
> "List.list"

Although types of terms can often be inferred, there are many situations where you
need to construct types manually, especially when defining constants. For example
the function returning a function type is as follows:

fun make_fun_type tyl ty2 = Type ("fun", [tyl, ty2])
This can be equally written with the combinator --> as:
fun make_fun_type tyl ty2 = tyl --> ty2

If you want to construct a function type with more than one argument type, then
you can use —-->.

fun make_fun_types tys ty = tys ———> ty

A handy function for manipulating terms is map_types: it takes a function and ap-
plies it to every type in a term. You can, for example, change every nat in a term
into an int using the function:

fun nat_to_int ty =
(case ty of
@{typ nat} => @{typ int}
| Type (s, tys) => Type (s, map nat_to_int tys)
| - => ty)

Here is an example:

map_types nat_to_int @{term "a = (1::nat)"}
> Const ("op =", "int = int = bool")
> $ Free ("a", "int") $ Const ("HOL.one_class.one", "int")

If you want to obtain the list of free type-variables of a term, you can use the function
add_tfrees (similarly add_tvars for the schematic type-variables). One would
expect that such functions take a term as input and return a list of types. But their
type is actually
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Term.term -> (string * Term.sort) list -> (string * Term.sort) list

that is they take, besides a term, also a list of type-variables as input. So in order to
obtain the list of type-variables of a term you have to call them as follows

Term.add_tfrees @{term "(a, b)"} []
> [(”Ibl” [HHDL'type”])’ (H)a”’ [IIHUL'typeHJ)J

The reason for this definition is that add_tfrees can be easily folded over a list of
terms. Similarly for all functions named add_+* in Pure/term.ML.

Exercise 3.2.1: Write a function rev_sum : term -> term that takes a term of the form t,
+ tg + ... + t, (Whereby n might be one) and returns the reversed sum t,, + ... + to +
ty. Assume the t; can be arbitrary expressions and also note that + associates to the left. Try
your function on some examples.

Exercise 3.2.2: Write a function that takes two terms representing natural numbers in unary
notation (like Suc (Suc (Suc 0))), and produces the number representing their sum.

Exercise 3.2.3: Write a function that removes trivial forall and exists quantifiers that do not
quantify over any variables. For example the termVx y z. P x = P zshould be transformed
toVx z. P x = P z deleting the quantification y. Hint: use the functions incr_boundvars
and loose_bvarl.

Exercise 3.2.4: Write a function that takes an integer i and produces an Isabelle integer list
from 1 upto i, and then builds the reverse of this list using rev. The relevant helper functions
are upto, HOLogic.mk_number and HOLogic.mk_list.

Exercise 3.2.5: Implement the function, which we below name deBruijn, that depends on a
natural number n>0 and constructs terms of the form:

rhsn % Ni=1...n. Pi
lhs n d:ef /\i=1...n.Pi=P(i+1modn)—>rhsn

.. d
deBruijn n ef lhsn — rhsn
This function returns for n=3 the term

(P1=P2—PI1ANP2AP3)A
(P2=P3—PI1ANP2AP3)A
(P3=P1—P1ANP2AP3) —PI1IANP2AP3

Make sure you use the functions defined in HOL/Tools/hologic.ML for constructing the terms
for the logical connectives.?

2Thanks to Roy Dyckhoff for suggesting this exercise and working out the details.


http://isabelle.in.tum.de/repos/isabelle/raw-file/tip/src/Pure/term.ML
http://isabelle.in.tum.de/repos/isabelle/raw-file/tip/src/HOL/Tools/hologic.ML
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3.3 Unification and Matching

As seen earlier, Isabelle’s terms and types may contain schematic term variables
(term-constructor Var) and schematic type variables (term-constructor TVar). These
variables stand for unknown entities, which can be made more concrete by instan-
tiations. Such instantiations might be a result of unification or matching. While in
case of types, unification and matching is relatively straightforward, in case of terms
the algorithms are substantially more complicated, because terms need higher-order
versions of the unification and matching algorithms. Below we shall use the an-
tiquotations @{typ_pat ...} and @{term_pat ...} from Section 2.4 in order to
construct examples involving schematic variables.

Let us begin with describing the unification and matching functions for types. Both
return type environments (ML-type Type.tyenv) which map schematic type vari-
ables to types and sorts. Below we use the function typ_unify from the structure
Sign for unifying the types ?’a * ?’b and ?’b list * nat. This will produce the
mapping, or type environment, [?’a := ?’b list, ?’b := nat].

val (tyenv_unif, _) = let

val tyl = @{typ_pat "?’a * 7’b"}

val ty2 = @{typ_pat "7’b list * nat"}
in

Sign.typ_unify @{theory} (tyl, ty2) (Vartab.empty, 0)
end

The environment Vartab.empty in line 5 stands for the empty type environment,
which is needed for starting the unification without any (pre)instantiations. The 0
is an integer index that will be explained below. In case of failure, typ_unify will
throw the exception TUNIFY. We can print out the resulting type environment bound
to tyenv_unif with the built-in function dest from the structure Vartab.

Vartab.dest tyenv_unif
> [(("’a", 0), (["HOL.type"], "?’b List.list")),
> ((")b", 0), (["HDL.type"], ”nat”))]

The first components in this list stand for the schematic type variables and the sec-
ond are the associated sorts and types. In this example the sort is the default sort
HOL.type. Instead of Vartab.dest, we will use in what follows our own pretty-
printing function from Figure 3.1 for Type. tyenvs. For the type environment in the
example this function prints out the more legible:

pretty_tyenv @{context} tyenv_unif
> [?’a := ?’b list, ?’b := nat]

The way the unification function typ_unify is implemented using an initial type
environment and initial index makes it easy to unify more than two terms. For
example
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fun pretty_helper aux env =
env [> Vartab.dest
[> map aux
|> map (fn (s1, s2) => Pretty.block [s1, Pretty.str " := ", s2])
|> Pretty.enum "," "[" "]"
|> pwriteln

fun pretty_tyenv ctxt tyenv =
let
fun get_typs (v, (s, T)) = (TVar (v, s), T)
val print = pairself (pretty_typ ctxt)
in
pretty_helper (print o get_typs) tyenv
end
Figure 3.1: A pretty printing function for type environments, which are produced by
unification and matching.

val (tyenvs, _) = let

val tysl = (@{typ_pat "?’a"}, @{typ_pat "?’b list"})

val tys2 = (@{typ_pat "?’b"}, @{typ_pat "nat"})
in

fold (Sign.typ_unify @{theory}) [tysl, tys2] (Vartab.empty, 0)
end

The index 0 in Line 5 is the maximal index of the schematic type variables occurring
in tys1 and tys2. This index will be increased whenever a new schematic type
variable is introduced during unification. This is for example the case when two
schematic type variables have different, incomparable sorts. Then a new schematic
type variable is introduced with the combined sorts. To show this let us assume two
sorts, say s1 and s2, which we attach to the schematic type variables 7’a and 7’b.
Since we do not make any assumption about the sorts, they are incomparable.

class s1
class s2

val (tyenv, index) = let
val tyl = @{typ_pat "?’a::s1"}

val ty2 = @{typ_pat "?’b::s2"}
in

Sign.typ_unify @{theory} (tyl, ty2) (Vartab.empty, 0)
end

To print out the result type environment we switch on the printing of sort information
by setting show_sorts to true. This allows us to inspect the typing environment.
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pretty_tyenv @{context} tyenv
> [?’a::81 := ?’al::{s1, s2}, ?’b::s82 := ?’al::{s1, s2}]

As can be seen, the type variables 7’a and 7’b are instantiated with a new type
variable ?’a1 with sort {s1, s2}. Since a new type variable has been introduced
the index, originally being 0, has been increased to 1.

index
> 1

Let us now return to the unification problem ?’a * ?’b and ?’b list * nat from
the beginning of this section, and the calculated type environment tyenv_unif:

pretty_tyenv Q@{context} tyenv_unif
> [?’a := ?’b list, ?’b := nat]

Observe that the type environment which the function typ_unify returns is not
an instantiation in fully solved form: while ?’b is instantiated to nat, this is not
propagated to the instantiation for ?’a. In unification theory, this is often called
an instantiation in triangular form. These triangular instantiations, or triangular
type environments, are used because of performance reasons. To apply such a type
environment to a type, say ?’a * ?’b, you should use the function norm_type:

Envir.norm_type tyenv_unif @{typ_pat "?’a * ?’b"}
> nat list * nat

Matching of types can be done with the function typ_match also from the structure
Sign. This function returns a Type.tyenv as well, but might raise the exception
TYPE_MATCH in case of failure. For example

val tyenv_match = let

val pat = @{typ_pat "?’a * 7’b"}

and ty = @{typ_pat "bool list * nat"}
in

Sign.typ_match @{theory} (pat, ty) Vartab.empty
end

Printing out the calculated matcher gives

pretty_tyenv @{context} tyenv_match
> [?’a := bool list, ?’b := nat]

Unlike unification, which uses the function norm_type, applying the matcher to a
type needs to be done with the function subst_type. For example
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Envir.subst_type tyenv_match @{typ_pat "?’a * ?’b"}
> bool list * nat

Be careful to observe the difference: always use subst_type for matchers and norm_type
for unifiers. To show the difference, let us calculate the following matcher:

val tyenv_match’ = let

val pat = @{typ_pat "?’a * ?’b"}

and ty = @{typ_pat "?’b list * nat"}
in

Sign.typ_match @{theory} (pat, ty) Vartab.empty
end

Now tyenv_unif is equal to tyenv_match’. If we apply norm_type to the type ?’a
* ?’b we obtain

Envir.norm_type tyenv_match’ @{typ_pat "?’a * ?’b"}
> nat list * nat

which does not solve the matching problem, and if we apply subst_type to the same
type we obtain

Envir.subst_type tyenv_unif @{typ_pat "7’a * ?’b"}
> ?’b list * nat

which does not solve the unification problem.

Read More

Unification and matching for types is implemented in Pure/type.ML. The “interface” func-
tions for them are in Pure/sign.ML. Matching and unification produce type environments
as results. These are implemented in Pure/envir.ML. This file also includes the substitution
and normalisation functions, which apply a type environment to a type. Type environments
are lookup tables which are implemented in Pure/term_ord.ML.

Unification and matching of terms is substantially more complicated than the type-
case. The reason is that terms have abstractions and, in this context, unification
or matching modulo plain equality is often not meaningful. Nevertheless, Isabelle
implements the function first_order_match for terms. This matching function
returns a type environment and a term environment. To pretty print the latter we
use the function pretty_env:

fun pretty_env ctxt env =
let
fun get_trms (v, (T, t)) = (Var (v, T), t)
val print = pairself (pretty_term ctxt)
in
pretty_helper (print o get_trms) env
end


http://isabelle.in.tum.de/repos/isabelle/raw-file/tip/src/Pure/type.ML
http://isabelle.in.tum.de/repos/isabelle/raw-file/tip/src/Pure/sign.ML
http://isabelle.in.tum.de/repos/isabelle/raw-file/tip/src/Pure/envir.ML
http://isabelle.in.tum.de/repos/isabelle/raw-file/tip/src/Pure/term_ord.ML
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As can be seen from the get_trms-function, a term environment associates a schematic
term variable with a type and a term. An example of a first-order matching problem
istheterm P (Aa b. Q@ b a) and the pattern ?X 7Y.

val (_, fo_env) = let

val fo_pat = @{term_pat "(?X::(nat=-nat=-nat)=-bool) ?Y"}

val trm_a = @{term "P::(nat=-nat=-nat)=-bool"}

val trm_b = @{term "Ma b. (Q::nat=>nat=snat) b a"}

val init = (Vartab.empty, Vartab.empty)
in

Pattern.first_order_match @{theory} (fo_pat, trm_a $ trm_b) init
end

In this example we annotated types explicitly because then the type environment is
empty and can be ignored. The resulting term environment is

pretty_env @{context} fo_env
> [?X := P, ?Y := Aa b. @ b a]

The matcher can be applied to a term using the function subst_term (remember
the same convention for types applies to terms: subst_term is for matchers and
norm_term for unifiers). The function subst_term expects a type environment,
which is set to empty in the example below, and a term environment.

let
val trm = @{term_pat "(7X::(nat=-nat=-nat)=-bool) 7Y"}
in
Envir.subst_term (Vartab.empty, fo_env) trm
[> pretty_term @{context}
|> pwriteln
end
>P (MAab. Qb a)

First-order matching is useful for matching against applications and variables. It
can also deal with abstractions and a limited form of alpha-equivalence, but this
kind of matching should be used with care, since it is not clear whether the result is
meaningful. A meaningful example is matching Ax. P x against the pattern A\y. ?X
y. In this case, first-order matching produces [7?X := P].

let
val fo_pat = @{term_pat "Ay. (?X::nat=-bool) y"}
val trm = @{term "Ax. (P::nat=>bool) x"}
val init = (Vartab.empty, Vartab.empty)
in
Pattern.first_order_match @{theory} (fo_pat, trm) init
[> snd
|> pretty_env @{context}
end
> [?X := P]
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Unification of abstractions is more thoroughly studied in the context of higher-order
pattern unification and higher-order pattern matching. A pattern is a well-formed
term in which the arguments to every schematic variable are distinct bounds. In
particular this excludes terms where a schematic variable is an argument of another
one and where a schematic variable is applied twice with the same bound variable.
The function pattern in the structure Pattern tests whether a term satisfies these
restrictions under the assumptions that it is beta-normal, well-typed and has no loose
bound variables.

let
val trm_list =
[e{term_pat "7X"}, @{term_pat "a"},
@{term_pat "f (MAa b. ?X a b) c"},
@{term_pat "Xa b. (op +) a b"},
O{term_pat "Xa. (op +) a ?Y"}, @{term_pat "7X ?Y"},
O{term_pat "Aa b. ?X a b ?Y"}, @{term_pat "la. 7X a a'"},
@{term_pat "7X a"}]
in
map Pattern.pattern trm_list
end
> [true, true, true, true, true, false, false, false, false]

The point of the restriction to patterns is that unification and matching are decidable
and produce most general unifiers, respectively matchers. Note that both terms to
be unified have to be higher-order patterns for this to work. The exception Pattern
indicates failure in this regard. In this way, matching and unification can be imple-
mented as functions that produce a type and term environment (unification actually
returns a record of type Envir.env containing a max-index, a type environment and
a term environment). The corresponding functions are match and unify, both im-
plemented in the structure Pattern. An example for higher-order pattern unification
is

let
val trml = @{term_pat "Ax y. g (?X y x) (£ (?Y x))"}
val trm2 = @{term_pat "Au v. g u (f u)"}

val init = Envir.empty O

val env = Pattern.unify @{theory} (trml, trm2) init
in

pretty_env @{context} (Envir.term_env env)
end
> [?X := Ay x. x, ?Y := Ax. x]

The function Envir.empty generates a record with a specified max-index for the
schematic variables (in the example the index is 0) and empty type and term envi-
ronments. The function Envir.term_env pulls out the term environment from the
result record. The corresponding function for type environment is Envir. type_env.
An assumption of this function is that the terms to be unified have already the same
type. In case of failure, the exceptions that are raised are either Pattern, MATCH or
Unif.
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As mentioned before, unrestricted higher-order unification, respectively unrestricted
higher-order matching, is in general undecidable and might also not posses a sin-
gle most general solution. Therefore Isabelle implements the unification function
unifiers so that it returns a lazy list of potentially infinite unifiers. An example is
as follows

val uni_seq =

let
val trml = @{term_pat "7X ?7Y"}
val trm2 = @{term "f a"}

val init = Envir.empty O
in

Unify.unifiers (@{theory}, init, [(trml, trm2)])
end

The unifiers can be extracted from the lazy sequence using the function Seq.pull.
In the example we obtain three unifiers uni...un3.

val SOME ((unl, _), nextl) = Seq.pull uni_seq;
val SOME ((un2, _), next2) = Seq.pull nextl;
val SOME ((un3, _), next3) Seq.pull next2;
val NONE = Seq.pull next3

3

We can print them out as follows.

pretty_env @{context} (Envir.term_env unl);
pretty_env @{context} (Envir.term_env un2);
pretty_env @{context} (Envir.term_env un3)
> [?X := Xa. a, ?Y := f a]

> [?X := f, ?Y := a]

> [?X := Ab. f al

In case of failure the function unifiers does not raise an exception, rather returns
the empty sequence. For example

let
val trml = @{term "a'"}
val trm2 = @{term "b"}
val init = Envir.empty O
in
Unify.unifiers (@{theory}, init, [(trml, trm2)])
[> Seq.pull
end
> NONE

SFIXME: what is the list of term pairs in the unifier: flex-flex pairs?
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In order to find a reasonable solution for a unification problem, Isabelle also tries
first to solve the problem by higher-order pattern unification. Only in case of failure
full higher-order unification is called. This function has a built-in bound, which can
be accessed and manipulated as a configuration value. For example

Config.get_global @{theory} (Unify.search_bound)
> Int 60

If this bound is reached during unification, Isabelle prints out the warning message
"Unification bound exceeded" and plenty of diagnostic information (sometimes
annoyingly plenty of information).

For higher-order matching the function is called matchers implemented in the struc-
ture Unify. Also this function returns sequences with possibly more than one matcher.
Like unifiers, this function does not raise an exception in case of failure, but re-
turns an empty sequence. It also first tries out whether the matching problem can be
solved by first-order matching.

Higher-order matching might be necessary for instantiating a theorem appropriately.
More on this will be given in Sections 3.7. Here we only have a look at a simple case,
namely the theorem spec:

thm spec
> Vx. PP x = 7P 7x

as an introduction rule. Applying it directly can lead to unexpected behaviour since
the unification has more than one solution. One way round this problem is to in-
stantiate the schematic variables ?P and ?x. instantiation function for theorems is
instantiate_normalize from the structure Drule. One problem, however, is that
this function expects the instantiations as lists of ctyp and cterm pairs:

instantiate_normalize: (ctyp * ctyp) list * (cterm * cterm) list -> thm -> thm

This means we have to transform the environment the higher-order matching func-
tion returns into such an instantiation. For this we use the functions term_env and
type_env, which extract from an environment the corresponding variable mappings
for schematic type and term variables. These mappings can be turned into proper
ctyp-pairs with the function

fun prep_trm thy (x, (T, t)) =
(cterm_of thy (Var (x, T)), cterm_of thy t)

and into proper cterm-pairs with

fun prep_ty thy (x, (S, ty)) =
(ctyp_of thy (TVar (x, S)), ctyp_of thy ty)

We can now calculate the instantiations from the matching function.
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fun matcher_inst thy pat trm i =
let
val univ = Unify.matchers thy [(pat, trm)]
val env = nth (Seq.list_of univ) i
val tenv = Vartab.dest (Envir.term_env env)
val tyenv = Vartab.dest (Envir.type_env env)
in
(map (prep_ty thy) tyenv, map (prep_trm thy) tenv)
end

In Line 3 we obtain the higher-order matcher. We assume there is a finite number
of them and select the one we are interested in via the parameter i in the next line.
In Lines 5 and 6 we destruct the resulting environments using the function dest.
Finally, we need to map the functions prep_trm and prep_ty over the respective
environments (Line 8). As a simple example we instantiate the spec rule so that its
conclusion is of the form @ True.

let
val pat = Logic.strip_imp_concl (prop_of @{thm spec})
val trm = @{term "Trueprop (Q True)"}
val inst = matcher_inst @{theory} pat trm 1
in
Drule.instantiate_normalize inst @{thm spec}
end
> Vx. Q x = Q True

Note that we had to insert a Trueprop-coercion in Line 3 since the conclusion of
spec contains one.

Read More

Unification and matching of higher-order patterns is implemented in Pure/pattern.ML.
This file also contains a first-order matcher for terms. Full higher-order unification
is implemented in Pure/unify.ML. It uses lazy sequences which are implemented in
Pure/General/seq.ML.

3.4 Sorts (TBD)

Type classes are formal names in the type system which are linked to predicates of
one type variable (via the axclass mechanism) and thereby express extra properties
on types, to be propagated by the type system. The type-in-class judgement is de-
fined via a simple logic over types, with inferences solely based on modus ponens,
instantiation and axiom use. The declared axioms of this logic are called an order-
sorted algebra (see Schmidt-Schauss). It consists of an acyclic subclass relation and
a set of image containment declarations for type constructors, called arities.

A well-behaved high-level view on type classes has long been established (cite Haftmann-

Wenzel): the predicate behind a type class is the foundation of a locale (for context-
management reasons) and may use so-called type class parameters. These are type-
indexed constants dependent on the sole type variable and are implemented via


http://isabelle.in.tum.de/repos/isabelle/raw-file/tip/src/Pure/pattern.ML
http://isabelle.in.tum.de/repos/isabelle/raw-file/tip/src/Pure/unify.ML
http://isabelle.in.tum.de/repos/isabelle/raw-file/tip/src/Pure/General/seq.ML
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overloading. Overloading a constant means specifying its value on a type based on
a well-founded reduction towards other values of constants on types. When instan-
tiating type classes (i.e. proving arities) you are specifying overloading via primitive
recursion.

Sorts are finite intersections of type classes and are implemented as lists of type class
names. The empty intersection, i.e. the empty list, is therefore inhabited by all types
and is called the topsort.

Free and schematic type variables are always annotated with sorts, thereby restrict-
ing the domain of types they quantify over and corresponding to an implicit hypoth-
esis about the type variable.

Sign.classes_of @{theoryl}

Read More
Classes, sorts and arities are defined in Pure/term.ML.

Pure/sorts.ML contains comparison and normalization functionality for sorts, manages
the order sorted algebra and offers an interface for reinterpreting derivations of type in
class judgements Pure/defs. ML manages the constant dependency graph and keeps it well-
founded (its define function doesn’t terminate for complex non-well-founded dependencies)
Pure/axclass.ML manages the theorems that back up subclass and arity relations and pro-
vides basic infrastructure for establishing the high-level view on type classes Pure/sign.ML
is a common interface to all the type-theory-like declarations (especially names, constants,
paths, type classes) a theory acquires by theory extension mechanisms and manages as-
sociated certification functionality. It also provides the most needed functionality from
individual underlying modules.

3.5 Type-Checking

Remember Isabelle follows the Church-style typing for terms, i.e., a term contains
enough typing information (constants, free variables and abstractions all have typing
information) so that it is always clear what the type of a term is. Given a well-typed
term, the function type_of returns the type of a term. Consider for example:

type_of (@{term "f::nat = bool"} $ @{term "x::nat"})
> bool

To calculate the type, this function traverses the whole term and will detect any
typing inconsistency. For example changing the type of the variable x from nat to
int will result in the error message:

type_of (@{term "f::nat = bool"} $ @{term "x::int"})
> ***x Exception- TYPE ("type_of: type mismatch in application" ...

Since the complete traversal might sometimes be too costly and not necessary, there
is the function fastype_of, which also returns the type of a term.


http://isabelle.in.tum.de/repos/isabelle/raw-file/tip/src/Pure/term.ML
http://isabelle.in.tum.de/repos/isabelle/raw-file/tip/src/Pure/sorts.ML
http://isabelle.in.tum.de/repos/isabelle/raw-file/tip/src/Pure/defs.ML
http://isabelle.in.tum.de/repos/isabelle/raw-file/tip/src/Pure/axclass.ML
http://isabelle.in.tum.de/repos/isabelle/raw-file/tip/src/Pure/sign.ML

58 CHAPTER 3. ISABELLE ESSENTIALS

fastype_of (@{term "f::nat = bool"} $§ @{term "x::nat"})
> bool

However, efficiency is gained on the expense of skipping some tests. You can see this
in the following example

fastype_of (@{term "f::nat = bool"} $§ @{term "x::int"})
> bool

where no error is detected.

Sometimes it is a bit inconvenient to construct a term with complete typing anno-
tations, especially in cases where the typing information is redundant. A short-cut
is to use the “place-holder” type dummyT and then let type-inference figure out the
complete type. The type inference can be invoked with the function check_term. An
example is as follows:

let
val ¢ = Const (@{const_name "plus"}, dummyT)
val o = @{term "1::nat"}
val v = Free ("x", dummyT)
in
Syntax.check_term @{context} (c $ o $§ v)
end

> Const ("HOL.plus_class.plus", "nat = nat = nat") §
> Const ("HOL.one_class.one", "nat") $ Free ("x", "nat")

Instead of giving explicitly the type for the constant plus and the free variable x,
type-inference fills in the missing information.

Read More

See Pure/Syntax/syntax.ML where more functions about reading, checking and pretty-
printing of terms are defined. Functions related to type-inference are implemented in
Pure/type.ML and Pure/type_infer.ML.

Exercise 3.5.1: Check that the function defined in Exercise 3.2.1 returns a result that type-
checks. See what happens to the solutions of this exercise given in Appendix B when they receive
an ill-typed term as input.

3.6 Certified Terms and Certified Types

You can freely construct and manipulate terms and types, since they are just arbi-
trary unchecked trees. However, you eventually want to see if a term is well-formed,
or type-checks, relative to a theory. Type-checking is done via the function cterm_of,
which converts a term into a cterm, a certified term. Unlike terms, which are just
trees, cterms are abstract objects that are guaranteed to be type-correct, and they
can only be constructed via “official interfaces”.

Certification is always relative to a theory context. For example you can write:


http://isabelle.in.tum.de/repos/isabelle/raw-file/tip/src/Pure/Syntax/syntax.ML
http://isabelle.in.tum.de/repos/isabelle/raw-file/tip/src/Pure/type.ML
http://isabelle.in.tum.de/repos/isabelle/raw-file/tip/src/Pure/type_infer.ML
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cterm_of @{theory} @{term "(a::nat) + b = c"}
>a+b=c

This can also be written with an antiquotation:

@{cterm "(a::nat) + b = c"}
>a+b-=c

Attempting to obtain the certified term for

@{cterm "1 + True"}
> Type unification failed ...

yields an error (since the term is not typable). A slightly more elaborate example
that type-checks is:

let
val natT = @{typ "nat"}
val zero = @{term "O::nat"}

val plus = Const (@{const_name plus}, [natT, natT] ---> natT)
in

cterm_of @{theory} (plus $ zero $ zero)
end
>0+0

In Isabelle not just terms need to be certified, but also types. For example, you obtain
the certified type for the Isabelle type nat = bool on the ML-level as follows:

ctyp_of @{theory} (@{typ nat} --> @{typ bool})
> nat = bool

or with the antiquotation:

@{ctyp "nat = bool"}
> nat = bool

Since certified terms are, unlike terms, abstract objects, we cannot pattern-match
against them. However, we can construct them. For example the function capply
produces a certified application.

Thm.capply @{cterm "P::nat = bool"} @{cterm "3::nat"}
> P 3

Similarly the function 1ist_comb from the structure Drule applies a list of cterms.
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let
val chead = @{cterm "P::unit = nat = bool"}
val cargs = [@{cterm "()"}, @{cterm "3::nat"}]
in
Drule.list_comb (chead, cargs)
end
>P (O 3

Read More
For functions related to cterms and ctyps see the files Pure/thm.ML, Pure/more_thm.ML
and Pure/drule.ML.

3.7 Theorems

Just like cterms, theorems are abstract objects of type thm that can only be built
by going through interfaces. As a consequence, every proof in Isabelle is correct by
construction. This follows the tradition of the LCF-approach.

To see theorems in “action”, let us give a proof on the ML-level for the following
statement:

lemma
assumes assmi: "A(x::nat). P x = Q x"
and assmy: "P t"

shows "Q t"

The corresponding ML-code is as follows:

val my_thm =

let
val assml = @{cprop "A(x::nat). P x — Q x"}
val assm2 = @{cprop "(P::nat = bool) t"}

val Pt_implies_Qt =
Thm.assume assml
|> Thm.forall_elim @{cterm "t::nat"}

val Qt = Thm.implies_elim Pt_implies_@t (Thm.assume assm2)
in

Qt

[> Thm.implies_intr assm2

[> Thm.implies_intr assml
end

Note that in Line 3 and 4 we use the antiquotation @{cprop ...}, which inserts
necessary Trueprops.

If we print out the value of my_thm then we see only the final statement of the
theorem.


http://isabelle.in.tum.de/repos/isabelle/raw-file/tip/src/Pure/thm.ML
http://isabelle.in.tum.de/repos/isabelle/raw-file/tip/src/Pure/more_thm.ML
http://isabelle.in.tum.de/repos/isabelle/raw-file/tip/src/Pure/drule.ML
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pwriteln (pretty_thm @{context} my_thm)
>[Ax. Px = Q@ x; Pt] = Q¢

However, internally the code-snippet constructs the following proof.

Nx. Px = QxHA\x. Px = Q@ x (assume)
Nx. Px = QxtPt = Qt (A-elim) PIFP (assum?)
Nx. Px = Q@ x,PtFQt . (==-elim)
Nx. Px = @ xFPt = Qt (:>-’m'tro)
(=>-intro)

F[Ax. Px = Q@ x; Pt] = Q t

While we obtained a theorem as result, this theorem is not yet stored in Isabelle’s
theorem database. Consequently, it cannot be referenced on the user level. One way
to store it in the theorem database is by using the function note.*

local setup {*
Local_Theory.note ((@{binding "my_thm"}, []), [my_thm]) #> snd *}

The third argument of note is the list of theorems we want to store under a name.
We can store more than one under a single name. The first argument of note is the
name under which we store the theorem or theorems. The second argument can
contain a list of theorem attributes, which we will explain in detail in Section 3.8.
Below we just use one such attribute for adding the theorem to the simpset:

local setup {*
Local_Theory.note ((@{binding "my_thm_simp"},
[Attrib.internal (K Simplifier.simp_add)]), [my_thm]) #> snd *}

Note that we have to use another name under which the theorem is stored, since
Isabelle does not allow us to call note twice with the same name. The attribute
needs to be wrapped inside the function internal from the structure Attrib. If we
use the function get_thm_names_from_ss from the previous chapter, we can check
whether the theorem has actually been added.

let
fun pred s = match_string "my_thm_simp" s
in
exists pred (get_thm_names_from_ss @{simpset})
end
> true

The main point of storing the theorems my_thm and my_thm_simp is that they can
now also be referenced with the thm-command on the user-level of Isabelle

“FIXME: make sure a pointer to the section about local-setup is given here.
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thm my_thm my_thm_simp
>[Ax. Px = Qx; Pt] = Qqt
>[Ax. Px = Qx; Pt] = @t

or with the @{thm ... }-antiquotation on the ML-level. Otherwise the user has no
access to these theorems.

Recall that Isabelle does not let you call note twice with the same theorem name.
In effect, once a theorem is stored under a name, this association is fixed. While
this is a “safety-net” to make sure a theorem name refers to a particular theorem or
collection of theorems, it is also a bit too restrictive in cases where a theorem name
should refer to a dynamically expanding list of theorems (like a simpset). Therefore
Isabelle also implements a mechanism where a theorem name can refer to a custom
theorem list. For this you can use the function add_thms_dynamic. To see how it
works let us assume we defined our own theorem list MyThmList.

structure MyThmList = Generic_Data
(type T = thm list
val empty = []
val extend = I
val merge = merge Thm.eq_thm_prop)

fun update thm = Context.theory_map (MyThmList.map (Thm.add_thm thm))

The function update allows us to update the theorem list, for example by adding the
theorem Truel.

setup {* update @{thm TrueI} *}

We can now install the theorem list so that it is visible to the user and can be refered
to by a theorem name. For this need to call add_thms_dynamic

setup {*
Global_Theory.add_thms_dynamic (@{binding "mythmlist"}, MyThmList.get)
*}

with a name and a function that accesses the theorem list. Now if the user issues the
command

thm mythmlist
> True

the current content of the theorem list is displayed. If more theorems are stored in
the list, say

setup {* update @{thm FalseE} *}

then the same command produces
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thm mythmlist
> False — 7P
> True

Note that if we add the theorem FalseE again to the list
setup {* update @{thm FalseE} *}

we still obtain the same list. The reason is that we used the function add_thm in
our update function. This is a dedicated function which tests whether the theorem is
already in the list. This test is done according to alpha-equivalence of the proposition
of the theorem. The corresponding testing function is eq_thm_prop. Suppose you
proved the following three theorems.

lemma
shows thmi: "Vx. P x"
and thm2: "Vy. P y"
and thm3: "Vy. @ y" sorry

Testing them for alpha equality produces:

(Thm.eq_thm_prop (@{thm thml}, @{thm thm2}),
Thm.eq_thm_prop (@{thm thm2}, @{thm thm3}))
> (true, false)

Many functions destruct theorems into cterms. For example the functions 1hs_of
and rhs_of return the left and right-hand side, respectively, of a meta-equality.

let

val eq = @{thm True_def}
in

(Thm.lhs_of eq, Thm.rhs_of eq)

|> pairself (Pretty.string_of o (pretty_cterm @{contextl}))
end

> (True, (M\x. x) = (A\x. x))

Other function produce terms that can be pattern-matched. Suppose the following
two theorems.

lemma
shows foo_testl: "A =—> B =—> C"
and foo_test2: "A — B — C" sorry

We can destruct them into premises and conclusions as follows.

let
val ctxt = @{context}
fun prems_and_concl thm =
[[Pretty.str "Premises:", pretty_terms ctxt (Thm.prems_of thm)],
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[Pretty.str "Conclusion:", pretty_term ctxt (Thm.concl_of thm)]]
|> map Pretty.block
|> Pretty.chunks
|> pwriteln
in
prems_and_concl @{thm foo_testl};
prems_and_concl @{thm foo_test2}
end
> Premises: 7A, 7B
> Conclusion: 7C
> Premises:
> Conclusion: 7A — 7B — 7C

Note that in the second case, there is no premise. The reason is that =—> separates
premises and conclusion, while — is the object implication from HOL, which just
constructs a formula.

Read More
The basic functions for theorems are defined in Pure/thm.ML, Pure/more_thm.ML and
Pure/drule.ML.

Although we will explain the simplifier in more detail as tactic in Section 6.4, the
simplifier can be used to work directly over theorems, for example to unfold defini-
tions. To show this, we build the theorem True = True (Line 1) and then unfold
the constant True according to its definition (Line 2).

Thm.reflexive @{cterm "True"}
[> Simplifier.rewrite_rule [@{thm True_def}]
|> pretty_thm @{context}
|> pwriteln

> (Mx. x) = (Mx. x) = (Mx. x) = (Ax. x)

Often it is necessary to transform theorems to and from the object logic, that is
replacing all — and V¥ by = and A, or the other way around. A reason for such a
transformation might be stating a definition. The reason is that definitions can only
be stated using object logic connectives, while theorems using the connectives from
the meta logic are more convenient for reasoning. Therefore there are some build in
functions which help with these transformations. The function rulify replaces all
object connectives by equivalents in the meta logic. For example

Object_Logic.rulify @{thm foo_test2}
> [74; 7B] = 7C

The transformation in the other direction can be achieved with function atomize
and the following code.


http://isabelle.in.tum.de/repos/isabelle/raw-file/tip/src/Pure/thm.ML
http://isabelle.in.tum.de/repos/isabelle/raw-file/tip/src/Pure/more_thm.ML
http://isabelle.in.tum.de/repos/isabelle/raw-file/tip/src/Pure/drule.ML
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let
val thm = @{thm foo_testl}
val meta_eq = Object_Logic.atomize (cprop_of thm)
in
Raw_Simplifier.rewrite_rule [meta_eq] thm
end
> 7?4 — 7B — 7C

In this code the function atomize produces a meta-equation between the given the-
orem and the theorem transformed into the object logic. The result is the theorem
with object logic connectives. However, in order to completely transform a theorem
involving meta variables, such as 1ist.induct, which is of the form

[?P [1; Aa list. 7P list — 7P (a # list)] —> 7P ?list

we have to first abstract over the meta variables 7P and ?1ist. For this we can use
the function forall_intr_vars. This allows us to implement the following function
for atomizing a theorem.

fun atomize_thm thm =
let
val thm’ = forall_intr_vars thm
val thm’’ = Object_Logic.atomize (cprop_of thm’)
in
Raw_Simplifier.rewrite_rule [thm’’] thm’
end

This function produces for the theorem 1ist.induct

atomize_thm @{thm list.induct}
> VP list. P [] — (Va list. P list — P (a # list)) — P list

Theorems can also be produced from terms by giving an explicit proof. One way to
achieve this is by using the function prove in the structure Goal. For example below
we use this function to prove the term P — P.

let

val trm = @{term "P — P::bool"}

val tac = K (atac 1)
in

Goal.prove @{context} ["P"] [] trm tac
end

> ?P — 7P

This function takes first a context and second a list of strings. This list specifies
which variables should be turned into schematic variables once the term is proved
(in this case only "P"). The fourth argument is the term to be proved. The fifth is
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a corresponding proof given in form of a tactic (we explain tactics in Chapter 6). In
the code above, the tactic proves the theorem by assumption.

There is also the possibility of proving multiple goals at the same time using the
function prove_multi. For this let us define the following three helper functions.

fun rep_goals i = replicate i @{prop "f x = f x"}
fun rep_tacs i = replicate i (rtac @{thm refl})

fun multi_test ctxt i =
Goal.prove_multi ctxt ["f", "x"] [] (rep_goals i)
(K ((Goal.conjunction_tac THEN’ RANGE (rep_tacs i)) 1))

With them we can now produce three theorem instances of the proposition.

multi_test @{context} 3
> ["?f ?x = ?f 7x", "?f ?x = ?f ?x", "?f ?x = ?f 7x"]

However you should be careful with prove_multi and very large goals. If you in-
crease the counter in the code above to 3000, you will notice that takes approxi-
mately ten(!) times longer than using map and prove.

let
fun test_prove ctxt thm =
Goal.prove ctxt ["P", "x"] [] thm (K (rtac @{thm refl} 1))
in
map (test_prove @{context}) (rep_goals 3000)
end

While the LCF-approach of going through interfaces ensures soundness in Isabelle,
there is the function make_thm in the structure Skip_Proof that allows us to turn any
proposition into a theorem. Potentially making the system unsound. This is some-
times useful for developing purposes, or when explicit proof construction should be
omitted due to performace reasons. An example of this function is as follows:

Skip_Proof.make_thm @{theory} @{prop "True = False"}
> True = False

Read More

Functions that setup goal states and prove theorems are implemented in Pure/goal.ML.
A function and a tactic that allow one to skip proofs of theorems are implemented in
Pure/Isar/skip_proof.ML.

Theorems also contain auxiliary data, such as the name of the theorem, its kind,
the names for cases and so on. This data is stored in a string-string list and can be
retrieved with the function get_tags. Assume you prove the following lemma.

lemma foo_data:


http://isabelle.in.tum.de/repos/isabelle/raw-file/tip/src/Pure/goal.ML
http://isabelle.in.tum.de/repos/isabelle/raw-file/tip/src/Pure/Isar/skip_proof.ML
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shows "P — P — P" by assumption

The auxiliary data of this lemma can be retrieved using the function get_tags. So
far the the auxiliary data of this lemma is

Thm.get_tags @{thm foo_data}
> [("name", "General.foo_data"), ("kind", "lemma")]

consisting of a name and a kind. When we store lemmas in the theorem database,
we might want to explicitly extend this data by attaching case names to the two
premises of the lemma. This can be done with the function name from the structure
Rule_Cases.

local setup {*
Local_Theory.note ((@{binding "foo_data’"}, []),
[(Rule_Cases.name ["foo_case_one", "foo_case_two"]
@{thm foo_data})]) #> snd *}

The data of the theorem foo_data’ is then as follows:

Thm.get_tags @{thm foo_data’}
> [("name", "General.foo_data’"), ("kind", "lemma"),
> ("case_names'", "foo_case_one;foo_case_two")]

You can observe the case names of this lemma on the user level when using the proof
methods cases and induct. In the proof below

lemma

shows "¢ — @ = Q"
proof (cases rule: foo_data’)
print_cases

> cases:

> foo_case_one:

> let "7case" = "7pP"
> foo_case_two:

> let "7case" = "7P"

we can proceed by analysing the cases foo_case_one and foo_case_two. While if
the theorem has no names, then the cases have standard names 1, 2 and so on. This
can be seen in the proof below.

lemma

shows "@ — Q@ — Q"
proof (cases rule: foo_data)
print_cases

> cases:

> 1:

> let "?7case" = "7pP"
> 2:

> let "7case" = "7pP"
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One great feature of Isabelle is its document preparation system, where proved theo-
rems can be quoted in documents referencing directly their formalisation. This helps
tremendously to minimise cut-and-paste errors. However, sometimes the verbatim
quoting is not what is wanted or what can be shown to readers. For such situations
Isabelle allows the installation of theorem styles. These are, roughly speaking, func-
tions from terms to terms. The input term stands for the theorem to be presented;
the output can be constructed to ones wishes. Let us, for example, assume we want
to quote theorems without leading V-quantifiers. For this we can implement the
following function that strips off V's.

fun strip_allq (Const (@{const_name "A11"}, _) $ Abs body) =
Term.dest_abs body [> snd [> strip_allq
| strip_allq (Const (@{const_name "Trueprop"}, _) $ t) =
strip_allqg t
| strip_allg t = t

We use in Line 2 the function dest_abs for deconstructing abstractions, since this
function deals correctly with potential name clashes. This function produces a pair
consisting of the variable and the body of the abstraction. We are only interested
in the body, which we feed into the recursive call. In Line 3 and 4, we also have to
explicitly strip of the outermost Trueprop-coercion. Now we can install this function
as the theorem style named my_strip_allgq.

setup{*
Term_Style.setup "my_strip_allq" (Scan.succeed (K strip_allq))
*}

We can test this theorem style with the following theorem

theorem style_test:
shows "Vx y z. (x, x) = (y, z)" sorry

Now printing out in a document the theorem style_test normally using @{thm
...} produces

@{thm style_test}
>Vxyz (x, x)=_(, z)

as expected. But with the theorem style @{thm (my_strip_allqg) ...} we obtain

@{thm (my_strip_allq) style_test}
> (x, x) = (y, z)

without the leading quantifiers. We can improve this theorem style by explicitly
giving a list of strings that should be used for the replacement of the variables. For
this we implement the function which takes a list of strings and uses them as name
in the outermost abstractions.
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fun rename_allq [] t = ¢
| rename_allq (x::xs) (Const (@{const_name "A11"}, U) $ Abs (_, T, t)) =
Const (@{const_name "A11"}, U) $ Abs (x, T, rename_allq xs t)
| rename_allq xs (Const (@{const_name "Trueprop"}, U) $ t) =
rename_allq xs t
| rename_allq _ t =t

We can now install a the modified theorem style as follows

setup {* let

val parser = Scan.repeat Args.name

fun action xs = K (rename_allq xs #> strip_allq)
in

Term_Style.setup "my_strip_allq2" (parser >> action)
end *}

The parser reads a list of names. In the function action we first call rename_allq
with the parsed list, then we call strip_allq on the resulting term. We can now
suggest, for example, two variables for stripping off the first two V -quantifiers.

O{thm (my_strip_allq2 x’ x’’) style_test}
> (x?, x7) = (x77, z)

Such styles allow one to print out theorems in documents formatted to ones heart
content. The styles can also be used in the document antiquotations @{prop ...},
@{term_type ...} and @{typeof ...}

Next we explain theorem attributes, which is another mechanism for dealing with
theorems.

Read More
Theorem styles are implemented in Pure/Thy/term_style.ML.

3.8 Theorem Attributes

Theorem attributes are [symmetric], [THEN ...], [simp] and so on. Such at-
tributes are neither tags nor flags annotated to theorems, but functions that do fur-
ther processing of theorems. In particular, it is not possible to find out what are
all theorems that have a given attribute in common, unless of course the function
behind the attribute stores the theorems in a retrievable data structure.

If you want to print out all currently known attributes a theorem can have, you can
use the Isabelle command

print_attributes

> COMP: direct composition with rules (no lifting)

> HOL.dest: declaration of Classical destruction rule
> HOL.elim: declaration of Classical elimination rule
> ..


http://isabelle.in.tum.de/repos/isabelle/raw-file/tip/src/Pure/Thy/term_style.ML
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The theorem attributes fall roughly into two categories: the first category manipu-
lates theorems (for example [symmetric] and [THEN ...]), and the second stores
theorems somewhere as data (for example [simp], which adds theorems to the cur-
rent simpset).

To explain how to write your own attribute, let us start with an extremely simple
version of the attribute [symmetric]. The purpose of this attribute is to produce the
“symmetric” version of an equation. The main function behind this attribute is

val my_symmetric = Thm.rule_attribute (fn _ => fn thm => thm RS @{thm sym})

where the function rule_attribute expects a function taking a context (which
we ignore in the code above) and a theorem (thm), and returns another theorem
(namely thm resolved with the theorem sym: s = t = t = s; the function RS is
explained in Section 6.2). The function rule_attribute then returns an attribute.

Before we can use the attribute, we need to set it up. This can be done using the
Isabelle command attribute _setup as follows:

attribute _setup my_sym =
{* Scan.succeed my_symmetric *} "applying the sym rule"

Inside the {* ... *}, we have to specify a parser for the theorem attribute. Since the
attribute does not expect any further arguments (unlike [THEN ... ], for instance),
we use the parser Scan.succeed. An example for the attribute [my_sym] is the proof

lemma test[my_sym]: "2 = Suc (Suc 0)" by simp

which stores the theorem Suc (Suc 0) = 2 under the name test. You can see this,
if you query the lemma:

thm test
> Suc (Suc 0) = 2

We can also use the attribute when referring to this theorem:

thm test[my_sym]
> 2 = Suc (Suc 0)

An alternative for setting up an attribute is the function setup. So instead of using
attribute_setup, you can also set up the attribute as follows:

Attrib.setup @{binding "my_sym"} (Scan.succeed my_symmetric)
"applying the sym rule"

This gives a function from theory -> theory, which can be used for example with
setup or with Context.>> o Context .map_theory.5

SFIXME: explain what happens here.
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As an example of a slightly more complicated theorem attribute, we implement our
own version of [THEN ...]. This attribute will take a list of theorems as argument
and resolve the theorem with this list (one theorem after another). The code for this
attribute is

fun MY_THEN thms =

let

fun RS_rev thml thm2 = thm2 RS thml
in

Thm.rule_attribute (fn _ => fn thm => fold RS_rev thms thm)
end

where for convenience we define the reverse and curried version of RS. The setup of
this theorem attribute uses the parser thms, which parses a list of theorems.

attribute_setup MY_THEN = {* Attrib.thms >> MY_THEN *}
"resolving the list of theorems with the theorem"

You can, for example, use this theorem attribute to turn an equation into a meta-
equation:

thm test[MY_THEN eq_reflection]
> Suc (Suc 0) = 2

If you need the symmetric version as a meta-equation, you can write

thm test[MY_THEN sym eq_reflection]
> 2 = Suc (Suc 0)

It is also possible to combine different theorem attributes, as in:

thm test[my_sym, MY_THEN eq_reflection]
> 2 = Suc (Suc 0)

However, here also a weakness of the concept of theorem attributes shows through:
since theorem attributes can be arbitrary functions, they do not commute in general.
If you try

thm test[MY_THEN eq_reflection, my_sym]
> exception THM 1 raised: RSN: no unifiers

you get an exception indicating that the theorem sym does not resolve with meta-
equations.

The purpose of rule_attribute is to directly manipulate theorems. Another usage
of theorem attributes is to add and delete theorems from stored data. For example
the theorem attribute [simp] adds or deletes a theorem from the current simpset.
For these applications, you can use declaration_attribute. To illustrate this func-
tion, let us introduce a theorem list.
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structure MyThms = Named_Thms
(val name = @{binding "attr_thms"}
val description = "Theorems for an Attribute")

We are going to modify this list by adding and deleting theorems. For this we use
the two functions MyThms.add_thm and MyThms.del_thm. You can turn them into
attributes with the code

val my_add = Thm.declaration_attribute MyThms.add_thm
val my_del = Thm.declaration_attribute MyThms.del_thm

and set up the attributes as follows

attribute_setup my_thms = {* Attrib.add_del my_add my_del *}
"maintaining a list of my_thms"

The parser add_del is a predefined parser for adding and deleting lemmas. Now if
you prove the next lemma and attach to it the attribute [my_thms]

lemma trueI_2[my_thms]: "True" by simp
then you can see it is added to the initially empty list.

MyThms.get @{context}
> ["True n]

You can also add theorems using the command declare.
declare test[my_thms] truel_2[my_thms add]
With this attribute, the add operation is the default and does not need to be explicitly

given. These three declarations will cause the theorem list to be updated as:

MyThms.get @{context}
> ["True", "Suc (Suc 0) = 2"]

The theorem trueI_2 only appears once, since the function add_thm tests for dupli-
cates, before extending the list. Deletion from the list works as follows:

declare test[my_thms del]

After this, the theorem list is again:

MyThms.get @{context}
> [”True”]
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We used in this example two functions declared as declaration_attribute, but
there can be any number of them. We just have to change the parser for reading the
arguments accordingly.

67

Read More
FIXME: Pure/more_thm.ML; parsers for attributes is in Pure/Isar/attrib.ML...also ex-
plained in the chapter about parsing.

3.9 Pretty-Printing

So far we printed out only plain strings without any formatting except for occasional
explicit line breaks using "\n". This is sufficient for “quick-and-dirty” printouts.
For something more sophisticated, Isabelle includes an infrastructure for properly
formatting text. Most of its functions do not operate on strings, but on instances of

the pretty type:

Pretty.T

The function str transforms a (plain) string into such a pretty type. For example

Pretty.str "test"
> String ("test", 4)

where the result indicates that we transformed a string with length 4. Once you
have a pretty type, you can, for example, control where linebreaks may occur in case
the text wraps over a line, or with how much indentation a text should be printed.
However, if you want to actually output the formatted text, you have to transform
the pretty type back into a string. This can be done with the function string_of.
In what follows we will use the following wrapper function for printing a pretty type:

fun pprint prt = tracing (Pretty.string_of prt)

The point of the pretty-printing infrastructure is to give hints about how to layout
text and let Isabelle do the actual layout. Let us first explain how you can insert
places where a line break can occur. For this assume the following function that
replicates a string n times:

fun rep n str = implode (replicate n str)

and suppose we want to print out the string:

SFIXME What are: theory_attributes, proof_attributes?
’FIXME readmore
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val test_str = rep 8 '"fooooooooooooooobaaaaaaaaaaaar "

We deliberately chose a large string so that it spans over more than one line. If we
print out the string using the usual “quick-and-dirty” method, then we obtain the
ugly output:

tracing test_str

> fooooooooooooooobaaaaaaaaaaaar fo0oooooooooooooobaaaaaaaaaaaar 0000000000
> ooooobaaaaaaaaaaaar fooooooooooooooobaaaaaaaaaaaar f0000000000000OObaaaaa
> aaaaaaar fooooooooooooooobaaaaaaaaaaaar f0000000000OOOOObaaaaaaaaaaaar fo
> 000000000000OOObaaaaaaaaaaaar

We obtain the same if we just use the function pprint.

pprint (Pretty.str test_str)

> foo000000000000Obaaaaaaaaaaaar £000000000000000baaaaaaaaaaaar £0000000000
> ooooobaaaaaaaaaaaar f0000000000000OObaaaaaaaaaaaar f000000000000000baaaaa
> aaaaaaar f000000000000000baaaaaaaaaaaar f000000000000000baaaaaaaaaaaar fo
> 00000000000000baaaaaaaaaaaar

However by using pretty types you have the ability to indicate possible linebreaks for
example at each whitespace. You can achieve this with the function breaks, which
expects a list of pretty types and inserts a possible line break in between every two
elements in this list. To print this list of pretty types as a single string, we concatenate
them with the function blk as follows:

let

val ptrs = map Pretty.str (space_explode " " test_str)
in

pprint (Pretty.blk (0, Pretty.breaks ptrs))
end

> fooooooooooooooobaaaaaaaaaaaar fooo00o0oooooooooobaaaaaaaaaaaar
> fooooooooooooooobaaaaaaaaaaaar f000000000000OOOObaaaaaaaaaaaar
> fooooooooooooooobaaaaaaaaaaaar f0000000000000OObaaaaaaaaaaaar
> fooooooooooooooobaaaaaaaaaaaar f00000000000000Obaaaaaaaaaaaar

Here the layout of test_str is much more pleasing to the eye. The 0 in b1k stands
for no hanging indentation of the printed string. You can increase the indentation
and obtain

let
val ptrs = map Pretty.str (space_explode " " test_str)
in
pprint (Pretty.blk (3, Pretty.breaks ptrs))
end
> fooooooooooooooobaaaaaaaaaaaar f0000000000000OOObaaaaaaaaaaaar
> fooooooooooooooobaaaaaaaaaaaar fooooooooooooooobaaaaaaaaaaaar
> fooooooooooooooobaaaaaaaaaaaar f0o000o0o00000OOOOObaaaaaaaaaaaar
> fooooooooooooooobaaaaaaaaaaaar fooooooooooooooobaaaaaaaaaaaar
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where starting from the second line the indent is 3. If you want that every line starts
with the same indent, you can use the function indent as follows:

let

val ptrs = map Pretty.str (space_explode " " test_str)
in

pprint (Pretty.indent 10 (Pretty.blk (0, Pretty.breaks ptrs)))
end
> fooooooooooooooobaaaaaaaaaaaar f00000000000000OObaaaaaaaaaaaar
> fooooooooooooooobaaaaaaaaaaaar fooooooooooooooobaaaaaaaaaaaar
> fooooooooooooooobaaaaaaaaaaaar fooooooooooooooobaaaaaaaaaaaar
> fooooooooooooooobaaaaaaaaaaaar fooooooooooooooobaaaaaaaaaaaar

If you want to print out a list of items separated by commas and have the linebreaks
handled properly, you can use the function commas. For example

let
val ptrs = map (Pretty.str o string_of_int) (99998 upto 100020)
in
pprint (Pretty.blk (0, Pretty.commas ptrs))
end
> 99998, 99999, 100000, 100001, 100002, 100003, 100004, 100005, 100006,
> 100007, 100008, 100009, 100010, 100011, 100012, 100013, 100014, 100015,
> 100016, 100017, 100018, 100019, 100020

where upto generates a list of integers. You can print out this list as a “set”, that
means enclosed inside "{" and "}", and separated by commas using the function
enum. For example

let
val ptrs = map (Pretty.str o string_of_int) (99998 upto 100020)
in
pprint (Pretty.enum "," "{" "}" ptrs)
end
> {99998, 99999, 100000, 100001, 100002, 100003, 100004, 100005, 100006,
> 100007, 100008, 100009, 100010, 100011, 100012, 100013, 100014, 100015,
> 100016, 100017, 100018, 100019, 100020}

As can be seen, this function prints out the “set” so that starting from the second,
each new line has an indentation of 2.

If you print out something that goes beyond the capabilities of the standard func-
tions, you can do relatively easily the formatting yourself. Assume you want to print
out a list of items where like in “English” the last two items are separated by "and".
For this you can write the function
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fun and_list [] = []
| and_list [x] = [x]
| and_list xs =
let
val (front, last) = split_last xs
in
(Pretty.commas front) @
[Pretty.brk 1, Pretty.str "and", Pretty.brk 1, last]
end

where Line 7 prints the beginning of the list and Line 8 the last item. We have to use
Pretty.brk 1 in order to insert a space (of length 1) before the "and". This space
is also a place where a line break can occur. We do the same after the "and". This
gives you for example

let
val ptrsl = map (Pretty.str o string_of_int) (1 upto 22)
val ptrs2 = map (Pretty.str o string_of_int) (10 upto 28)
in
pprint (Pretty.blk (0, and_list ptrsi1));
pprint (Pretty.blk (0, and_list ptrs2))
end
>1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21
> and 22
> 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27 and
> 28

Like blk, the function chunks prints out a list of items, but automatically inserts
forced breaks between each item. Compare

let
val a_and_b = [Pretty.str "a", Pretty.str "b"]
in
pprint (Pretty.blk (0, a_and_b));
pprint (Pretty.chunks a_and_b)
end
> ab
> a
> b

The function big_list helps with printing long lists. It is used for example in the
command print_theorems. An example is as follows.

let
val pstrs = map (Pretty.str o string_of_int) (4 upto 10)
in
pprint (Pretty.big_list "header" pstrs)
end
> header
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The point of the pretty-printing functions is to conveninetly obtain a lay-out of terms
and types that is pleasing to the eye. If we print out the the terms produced by the
the function de_bruijn from exercise 3.2.5 we obtain the following:

pprint (Syntax.pretty_term @{context} (de_bruijn 4))
>(P3=P4 — P4 ANP3ANP2API1I) A

>P2=P3 —P4 ANP3AP2API1)A
>(P1=P2 — P4 ANP3AP2API1)A
>(P1=P4 —P4NP3ANP2API1 —
>P4 NP3 ANP2ANPI1

We use the function pretty_term for pretty-printing terms. Next we like to pretty-
print a term and its type. For this we use the function tell_type.

fun tell_type ctxt trm =

let
fun pstr s = Pretty.breaks (map Pretty.str (space_explode " " s))
val ptrm = Pretty.quote (Syntax.pretty_term ctxt trm)

val pty = Pretty.quote (Syntax.pretty_typ ctxt (fastype_of trm))
in
pprint (Pretty.blk (O,
(pstr "The term " @ [ptrm] @ pstr " has type "
@ [pty, Pretty.str "."])))
end

In Line 3 we define a function that inserts possible linebreaks in places where a
space is. In Lines 4 and 5 we pretty-print the term and its type using the functions
pretty_term and pretty_typ. We also use the function quote in order to enclose
the term and type inside quotation marks. In Line 9 we add a period right after the
type without the possibility of a line break, because we do not want that a line break
occurs there. Now you can write

tell_type @{context} @{term "min (Suc 0)"}
> The term "min (Suc 0)" has type "mat = nat".

To see the proper line breaking, you can try out the function on a bigger term and
type. For example:
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tell_type @{context} @{term "op = (op = (op = (op = (op = op =))))"}
> The term "op = (op = (op = (op = (op = op =))))" has type
> "(((((’a = ’a = bool) = bool) = bool) = bool) = bool) = bool".

Read More

The general infrastructure for pretty-printing is implemented in the file
Pure/General/pretty.ML. The file Pure/Syntax/syntax.ML contains pretty-printing
functions for terms, types, theorems and so on.

Pure/General/markup.ML

3.10 Summary

Coding Conventions / Rules of Thumb

e Start with a proper context and then pass it around through all your functions.


http://isabelle.in.tum.de/repos/isabelle/raw-file/tip/src/Pure/General/pretty.ML
http://isabelle.in.tum.de/repos/isabelle/raw-file/tip/src/Pure/Syntax/syntax.ML
http://isabelle.in.tum.de/repos/isabelle/raw-file/tip/src/Pure/General/markup.ML

Chapter 4

Advanced Isabelle

All things are difficult before they are easy.

proverb

While terms, types and theorems are the most basic data structures in Isabelle, there
are a number of layers built on top of them. Most of these layers are concerned
with storing and manipulating data. Handling them properly is an essential skill for
programming on the ML-level of Isabelle. The most basic layer are theories. They
contain global data and can be seen as the “long-term memory” of Isabelle. There
is usually only one theory active at each moment. Proof contexts and local theories,
on the other hand, store local data for a task at hand. They act like the “short-term
memory” and there can be many of them that are active in parallel.

4.1 Theories and Setups

Theories, as said above, are the most basic layer of abstraction in Isabelle. They
record information about definitions, syntax declarations, axioms, theorems and
much more. For example, if a definition is made, it must be stored in a theory in
order to be usable later on. Similar with proofs: once a proof is finished, the proved
theorem needs to be stored in the theorem database of the theory in order to be
usable. All relevant data of a theory can be queried with the Isabelle command
print_theory.

print_theory

names: Pure Code_Generator HOL ...

classes: Inf < type ...

default sort: type

syntactic types: #prop ...

logical types: ’a X ’b ...

type arities: * :: (random, random) random ...
logical constants: == :: ’a = ’a = prop ...
abbreviations:

axioms:

vV VVVVVVYVVYV

oracles:

79
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> definitions:
> theorems:

Functions acting on theories often end with the suffix _global, for example the
function read_term_global in the structure Syntax. The reason is to set them
syntactically apart from functions acting on contexts or local theories, which will
be discussed in the next sections. There is a tendency amongst Isabelle developers
to prefer “non-global” operations, because they have some advantages, as we will
also discuss later. However, some basic understanding of theories is still necessary
for effective Isabelle programming.

An important Isabelle command with theories is setup. In the previous chapters we
used it already to make a theorem attribute known to Isabelle and to register a theo-
rem under a name. What happens behind the scenes is that setup expects a function
of type theory -> theory: the input theory is the current theory and the output
the theory where the attribute has been registered or the theorem has been stored.
This is a fundamental principle in Isabelle. A similar situation arises with declaring
a constant, which can be done on the ML-level with function declare_const from
the structure Sign. To see how setup works, consider the following code:

let

val thy = @{theory}

val bar_const = ((@{binding "BAR"}, @{typ "nat"}), NoSyn)
in

Sign.declare_const @{context} bar_const thy
end

If you simply run this code! with the intention of declaring a constant BAR having
type nat, then indeed you obtain a theory as result. But if you query the constant on
the Isabelle level using the command term

term BAR
> "BAR" :: "ig"

you can see that you do not obtain a constant of type nat, but a free variable (printed
in blue) of polymorphic type. The problem is that the ML-expression above did not
“register” the declaration with the current theory. This is what the command setup
is for. The constant is properly declared with

setup {* fn thy =>
let
val bar_const = ((@{binding "BAR"}, @{typ "nat"}), NoSyn)
val (_, thy’) = Sign.declare_const @{context} bar_const thy
in
thy’
end *}

where the declaration is actually applied to the current theory and

1Recall that ML-code needs to be enclosed in ML {* ... *}.
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term "BAR"
> "BAR" :: "nat"

now returns a (black) constant with the type nat, as expected.

In a sense, setup can be seen as a transaction that takes the current theory thy,
applies an operation, and produces a new current theory thy’. This means that we
have to be careful to apply operations always to the most current theory, not to a
stale one. Consider again the function inside the setup-command:

U
v

setup {* fn thy
let
val bar_const = ((@{binding "BAR"}, @{typ "nat"}), NoSyn)
val (_, thy’) = Sign.declare_const @{context} bar_const thy
in
thy
end *}
> ERROR "Stale theory encountered"

This time we erroneously return the original theory thy, instead of the modified one
thy’. Such buggy code will always result into a runtime error message about stale
theories.

However, sometimes it does make sense to work with two theories at the same time,
especially in the context of parsing and typing. In the code below we use in Line 3 the
function copy from the structure Theory for obtaining a new theory that contains
the same data, but is unrelated to the existing theory.

U
v

setup {* fn thy
let
val tmp_thy = Theory.copy thy
val foo_const = ((@{binding "F00"}, @{typ "nat => nat"}), NoSyn)
val (_, tmp_thy’) = Sign.declare_const @{context} foo_const tmp_thy
val trml = Syntax.read_term_global tmp_thy’ "FOO baz"
val trm2 = Syntax.read_term_global thy "FOO baz"
val _ = writeln (@{make_string} trml ~ "\n" ~ @{make_string} trm2)
in
thy
end *}

That means we can make changes to the theory tmp_thy without affecting the cur-
rent theory thy. In this case we declare in tmp_thy the constant FOO (Lines 4 and
5). The point of this code is that we next, in Lines 6 and 7, parse a string to become
a term (both times the string is "FOO baz"). But since we parse the string once in
the context of the theory tmp_thy’ in which F0O is declared to be a constant of type
nat = nat and once in the context of thy where it is not, we obtain two different
terms, namely
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> Const ("Advanced.F00", "nat = nat") $ Free ("baz", '"nat")
> Free (!IFDDII’ "ig = )bn) $ Free ("baz", n)au)

There are two reasons for parsing a term in a temporary theory. One is to obtain fully
qualified names for constants and the other is appropriate type inference. This is rel-
evant in situations where definitions are made later, but parsing and type inference
has to take already proceed as if the definitions were already made.

4.2 Contexts (TBD)

Contexts are arguably more important than theories, even though they only contain
“short-term memory data”. The reason is that a vast number of functions in Isabelle
depend in one way or another on contexts. Even such mundane operations like
printing out a term make essential use of contexts. For this consider the following
contrived proof-snippet whose purpose is to fix two variables:

lemma "True"
proof -

ML _prf {* Variable.dest_fixes @{context} *}
fix x y
ML _prf {* Variable.dest_fixes @{context} *}

The interesting point in this proof is that we injected ML-code before and after the
variables are fixed. For this remember that ML-code inside a proof needs to be en-
closed inside ML_prf {* ... *}, not ML {* ... *}. The function dest_fixes from
the structure Variable takes a context and returns all its currently fixed variable
(names). That means a context has a dataslot containing information about fixed
variables. The ML-antiquotation @{context} points to the context that is active at
that point of the theory. Consequently, in the first call to dest_fixes this dataslot is
empty; in the second it is filled with x and y. What is interesting is that contexts can
be stacked. For this consider the following proof fragment:

lemma "True"
proof -
fix x y
{ fix zw
ML _prf {* Variable.dest_fixes @{context} *}

}

ML prf {* Variable.dest_fixes @{context} *}

The first time we call dest_fixes we have four fixes variables; the second time we
get only the fixes variables x and y as answer. This means the curly-braces act as
opening and closing statements for a context. The above proof corresoponds roughly
to the following ML-code.
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val ctxt0 = @{context};
val ([x, yl, ctxtl) = Variable.add_fixes ["x", "y"] ctxtO;
val ([z, w], ctxt2) = Variable.add_fixes ["z", "w"] ctxtl

where the function add_fixes fixes a list of variables specified by strings. Let us
come back to the point about printing terms. Consider printing out the term (x, y,
z, w) using the function pretty_term. This function takes a term and a context as
argument.

let
val trm = @{term "(x, y, z, w)"}
in
pwriteln (Pretty.chunks
[ pretty_term ctxtO trm,
pretty_term ctxtl trm,
pretty_term ctxt2 trm ])
end

The term we are printing is in all three cases the same—a tuple containing four free
variables. As you can see in case of ctxt0, however, all variables are highlighted
indicating a problem, while in case of ctxt1 x and y are printed as normal (blue)
free variables, but not z and w. In the last case all variables are printed as expected.
The point is that the context contains the information which variables are fixed, and
designates all other free variables as being alien or faulty. While this seems like a
minor feat, the concept of making the context aware of fixed variables is actually
quite useful. For example it prevents us from fixing a variable twice

@{context}

|> Variable.add_fixes ["x", "y"]

| [>> Variable.add_fixes ["x", "y"]
> Duplicate fixed variable(s): "x"

4.3 Local Theories (TBD)

In contrast to an ordinary theory, which simply consists of a type signature, as well as
tables for constants, axioms and theorems, a local theory contains additional context
information, such as locally fixed variables and local assumptions that may be used
by the package. The type local_theory is identical to the type of proof contexts
Proof.context, although not every proof context constitutes a valid local theory.

Context.>> o Context.map_theory Local_Theory.declaration

A similar command is local setup, which expects a function of type local_theory
-> local_theory. Later on we will also use the commands method_setup for in-
stalling methods in the current theory and simproc_setup for adding new simprocs
to the current simpset.
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4.4 Morphisms (TBD)

Morphisms are arbitrary transformations over terms, types, theorems and bindings.
They can be constructed using the function morphism, which expects a record with
functions of type
binding: binding -> binding
typ: typ —> typ

term: term -> term
fact: thm list -> thm list

The simplest morphism is the identity-morphism defined as

val identity = Morphism.morphism {binding = [], typ = [], term = [], fact =
1

Morphisms can be composed with the function $>

fun trm_phi (Free (x, T)) = Var ((x, 0), T)
| trm_phi (Abs (x, T, t)) = Abs (x, T, trm_phi t)
| trm_phi (t $ s) = (trm_phi t) $ (trm_phi s)
| trm_phi t = ¢

val phi = Morphism.term_morphism trm_phi

Morphism.term phi @{term "P x y"}

term_morphism

term, thm

Read More
Morphisms are implemented in the file Pure/morphism.ML.

4.5 Misc (TBD)

Datatype.get_info @{theory} "List.list"

FIXME: association lists: Pure/General/alist.ML
FIXME: calling the ML-compiler

4.6 What Is In an Isabelle Name? (TBD)

On the ML-level of Isabelle, you often have to work with qualified names. These
are strings with some additional information, such as positional information and
qualifiers. Such qualified names can be generated with the antiquotation @{binding
... }. For example


http://isabelle.in.tum.de/repos/isabelle/raw-file/tip/src/Pure/morphism.ML
http://isabelle.in.tum.de/repos/isabelle/raw-file/tip/src/Pure/General/alist.ML
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@{binding "name"}
> name

An example where a qualified name is needed is the function define. This function
is used below to define the constant TrueConj as the conjunction True A True.

local_setup {*
Local_Theory.define ((@{binding "TrueConj"}, NoSyn),
(Attrib.empty_binding, @{term "True A True"})) #> snd *}

Now querying the definition you obtain:

thm TrueConj_def
> TrueConj = True A True

Read More
The basic operations on bindings are implemented in Pure/General/binding.ML.

234

Sign.intern_type @{theory} "list"
Sign.intern_const @{theory} "prod_fun"

5

Occasionally you have to calculate what the “base” name of a given constant is. For
this you can use the function Long_Name . base_name. For example:

Long_Name.base_name "List.list.Nil"
> "Nil"

Read More
Functions about naming are implemented in Pure/General/name_space.ML; functions
about signatures in Pure/sign.ML.

Binding.name_of returns the string without markup

Binding.conceal

4.7 Concurrency (TBD)

prove_future future_result fork_pri

2FIXME give a better example why bindings are important

SFIXME give a pointer to local_setup; if not, then explain why snd is needed.

“FIXME: There should probably a separate section on binding, long-names and sign.

SFIXME: Explain the following better; maybe put in a separate section and link with the com-
ment in the antiquotation section.


http://isabelle.in.tum.de/repos/isabelle/raw-file/tip/src/Pure/General/binding.ML
http://isabelle.in.tum.de/repos/isabelle/raw-file/tip/src/Pure/General/name_space.ML
http://isabelle.in.tum.de/repos/isabelle/raw-file/tip/src/Pure/sign.ML
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4.8 Parse and Print Translations (TBD)

4.9 Summary

TBD



Chapter 5

Parsing

An important principle underlying the success and popularity of Unix
is the philosophy of building on the work of others.

Linus Torwalds in the email exchange
with Andrew S. Tannenbaum

Isabelle distinguishes between outer and inner syntax. Commands, such as defini-
tion, inductive and so on, belong to the outer syntax, whereas terms, types and so
on belong to the inner syntax. For parsing inner syntax, Isabelle uses a rather gen-
eral and sophisticated algorithm, which is driven by priority grammars. Parsers for
outer syntax are built up by functional parsing combinators. These combinators are
a well-established technique for parsing, which has, for example, been described in
Paulson’s classic ML-book [5]. Isabelle developers are usually concerned with writ-
ing these outer syntax parsers, either for new definitional packages or for calling
methods with specific arguments.

Read More

The library for writing parser combinators is split up, roughly, into two parts: The
first part consists of a collection of generic parser combinators defined in the struc-
ture Scan in the file Pure/General/scan.ML. The second part of the library consists
of combinators for dealing with specific token types, which are defined in the struc-
ture Parse in the file Pure/Isar/parse.ML. In addition specific parsers for packages
are defined in Pure/Isar/parse_spec.ML. Parsers for method arguments are defined in
Pure/Isar/args.ML.

5.1 Building Generic Parsers

Let us first have a look at parsing strings using generic parsing combinators. The
function $$ takes a string as argument and will “consume” this string from a given
input list of strings. “Consume” in this context means that it will return a pair con-
sisting of this string and the rest of the input list. For example:

87
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($$ "n") (Symbol.explode "hello")
> ("h”, [”e”’ ”l", ”l", ”OHJ)

($$ "w") (Symbol.explode "world")
> (IIWII, [VIOIV’ Vlrll’ Vllll’ Hdll])

The function $$ will either succeed (as in the two examples above) or raise the
exception FAIL if no string can be consumed. For example trying to parse

($$ "x") (Symbol.explode "world")
> Exception FAIL raised

will raise the exception FAIL. There are three exceptions used in the parsing combi-
nators:

e FAIL is used to indicate that alternative routes of parsing might be explored.

e MORE indicates that there is not enough input for the parser. For example in

($$ "n") I[].

e ABORT is the exception that is raised when a dead end is reached. It is used for
example in the function !! (see below).

However, note that these exceptions are private to the parser and cannot be accessed
by the programmer (for example to handle them).

In the examples above we use the function explode from the structure Symbol,
instead of the more standard library function explode, for obtaining an input list for
the parser. The reason is that explode is aware of character sequences, for example
\<foo>, that have a special meaning in Isabelle. To see the difference consider

let
val input = "\<foo> bar"
in
(String.explode input, Symbol.explode input)
end
> (["\", "<, MfM, Mo, Mo, MM mowiHpn g Hph]
> ["\<foo>", " ", "b", "a", "r"])

Slightly more general than the parser $$ is the function one, in that it takes a predi-
cate as argument and then parses exactly one item from the input list satisfying this
predicate. For example the following parser either consumes an "h" or a "w":

let
val hw = Scan.one (fn x => x = "h" orelse x = "w")
val inputl = Symbol.explode "hello"
val input2 = Symbol.explode "world"
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in
(hw inputl, hw input2)
end
> (("h”, [”e”’ ”l”’ ”l”’ ”O"J),("W", ["o”, "r”, "1”, "d”]))

Two parsers can be connected in sequence by using the function --. For example
parsing h, e and 1 (in this order) you can achieve by:

($$ "n" —- $$ "e" -- $$ "1") (Symbol.explode "hello")
> (((”h”’ ”e”)’ ”lll)’ [lll ”, IIOHJ)

Note how the result of consumed strings builds up on the left as nested pairs.

If, as in the previous example, you want to parse a particular string, then you can
use the function this_string.

Scan.this_string "hell" (Symbol.explode "hello")
> (I!hell I!’ ["OIIJ)

Parsers that explore alternatives can be constructed using the function [ /. The parser
(p Il q) returns the result of p, in case it succeeds, otherwise it returns the result
of q. For example:

let
val hw = $$ "h" || $$ "w"
val inputl = Symbol.explode "hello"
val input2 = Symbol.explode "world"
in
(hw inputl, hw input2)
end
> (("n", ["e", "1", "1", "o"]), ("w", ["o", "r", "1", "d"]))

The functions /-- and --/ work like the sequencing function for parsers, except
that they discard the item being parsed by the first (respectively second) parser.
That means the item being dropped is the one that /-- and --/ “point” away. For
example:

let
val just_e = $$ "h" [-- $$ "e"
val just_h = $$ "h" --| $$ "e"
val input = Symbol.explode "hello"
in
(just_e input, just_h input)
end
> (("e", ["1", "1", "o"]), ("n", ["1", "1", "o"]))

The parser Scan.optional p x returns the result of the parser p, if it succeeds;
otherwise it returns the default value x. For example:
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let
val p = Scan.optional ($$ "h") "x"
val inputl = Symbol.explode "hello"
val input2 = Symbol.explode "world"
in
(p inputl, p input2)
end
> ((Vlh”’ [Ilell’ Hlll’ Hlll’ ”O"J), (VIXIV’ [IIWII’ IIOII’ Hrll’ Hlll, IVdIIJ))

The function option works similarly, except no default value can be given. Instead,
the result is wrapped as an option-type. For example:

let
val p = Scan.option ($$ "h")
val inputl = Symbol.explode "hello"
val input2 = Symbol.explode "world"
in
(p inputl, p input2)
end
> ((SOME "n", ["e", "1", "1", "o"]), (NONE, ["w", "o", "r", "1", "d"]))

The function ahead parses some input, but leaves the original input unchanged. For
example:

Scan.ahead (Scan.this_string "foo") (Symbol.explode "foo")
> ("fooll [”f” ”O” HO”J)

The function !! helps with producing appropriate error messages during parsing.
For example if you want to parse p immediately followed by g, or start a completely
different parser r, you might write:

p -9 |l r

However, this parser is problematic for producing a useful error message, if the pars-
ing of (p -- g) fails. Because with the parser above you lose the information that
p should be followed by g. To see this assume that p is present in the input, but it is
not followed by q. That means (p -- g) will fail and hence the alternative parser
r will be tried. However, in many circumstances this will be the wrong parser for
the input “p-followed-by-something” and therefore will also fail. The error message
is then caused by the failure of r, not by the absence of q in the input. This kind of
situation can be avoided when using the function ! !. This function aborts the whole
process of parsing in case of a failure and prints an error message. For example if
you invoke the parser
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't (fn _ => fn _ =>"foo") ($$ "h")

on "hello", the parsing succeeds

(!! (fn _ => fn _ => "foo") ($$ "h")) (Symbol.explode "hello")

> (Hh n [lleH Hl n Hl n HOHJ)
but if you invoke it on "world"

(! (fn _ => fn _ => "foo") ($$ "h")) (Symbol.explode "world")

> Exception ABORT raised

then the parsing aborts and the error message foo is printed. In order to see the
error message properly, you need to prefix the parser with the function error. For
example:

Scan.error (!! (fn _ => fn _ => "foo") ($$ "h"))
> Exception Error "foo" raised

This “prefixing” is usually done by wrappers such as Iocal_theory (see Section 5.8
which explains this function in more detail).

Let us now return to our example of parsing (p -- q) [/ r. If youwant to generate
the correct error message for failure of parsing p-followed-by-q, then you have to
write:

fun p_followed_by_q p q r =
let

val err_msg = fn
in

($8 p -— (1! (fn _ => err_msg) ($% q))) || ($$ r —— $$ r)

end

=>p - " is not followed by " ~ q

Running this parser with the arguments "h", "e" and "w", and the input "holle"

Scan.error (p_followed_by_q "h" "e" "w") (Symbol.explode "holle")
> Exception ERROR "h is not followed by e" raised

produces the correct error message. Running it with

Scan.error (p_followed_by_q "h" "e" "w") (Symbol.explode "wworld")
> ((Hw”, Hw”)’ [”O", ”rll, ”l H, ”d"])

yields the expected parsing.

The function Scan.repeat p will apply a parser p as often as it succeeds. For exam-
ple:
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Scan.repeat ($$ "h") (Symbol.explode "hhhhello")
> ([”h ”’ ”h ”’ ”h H’ ”h HJ , [He”’ lll ”’ lll ”, llo ”J)

Note that repeat stores the parsed items in a list. The function repeat1 is similar,
but requires that the parser p succeeds at least once.

Also note that the parser would have aborted with the exception MORE, if you had it
run with the string "hhhh". This can be avoided by using the wrapper finite and
the “stopper-token” stopper. With them you can write:

Scan.finite Symbol.stopper (Scan.repeat ($$ "h")) (Symbol.explode "hhhh")
> ([”h ”’ ”h ”’ ”h ”’ ”h HJ , [J)

The function stopper is the “end-of-input” indicator for parsing strings; other stop-
pers need to be used when parsing, for example, tokens. However, this kind of
manually wrapping is often already done by the surrounding infrastructure.

The function repeat can be used with one to read any string as in

let
val p = Scan.repeat (Scan.one Symbol.not_eof)
val input = Symbol.explode "foo bar foo"
in
Scan.finite Symbol.stopper p input
end
> (["f", "o", '"o", " ", "p", Mg, ftpm, n w o unfn ot o], [])

where the function not_eof ensures that we do not read beyond the end of the input
string (i.e. stopper symbol).

The function unless takes two parsers: if the first one can parse the input, then the
whole parser fails; if not, then the second is tried. Therefore

Scan.unless ($$ "h") ($$ "w") (Symbol.explode "hello")
> Exception FAIL raised

fails, while

Scan.unless ($$ "h") ($$ "w") (Symbol.explode "world")
> ("w” [HOH Hrl’ ”l” ”d”])

succeeds.

The functions repeat and unless can be combined to read any input until a certain
marker symbol is reached. In the example below the marker symbol is a "*".
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let
val p = Scan.repeat (Scan.unless ($$ "*") (Scan.one Symbol.not_eof))
val inputl = Symbol.explode "fooooo"
val input2 = Symbol.explode "foo*ooo0"
in
(Scan.finite Symbol.stopper p inputl,
Scan.finite Symbol.stopper p input2)
end
> ((["f", "o", "o", "o", "o", "o"I], [1),
> (["£", "o", "o"], ["x", "o", "o", "0"]))

After parsing is done, you almost always want to apply a function to the parsed
items. One way to do this is the function >> where (p >> f) runs first the parser p
and upon successful completion applies the function f to the result. For example

let

fun double (x, y) = (x ~ x, y ~ y)

val parser = $$ "h" -- §§ "e"
in

(parser >> double) (Symbol.explode "hello")
end

> ((llhhl” ”eell)’ [lll ”, lll ”, HOHJ)

doubles the two parsed input strings; or

let
val p = Scan.repeat (Scan.one Symbol.not_eof)
val input = Symbol.explode "foo bar foo"
in
Scan.finite Symbol.stopper (p >> implode) input
end
> ("foo bar foo", [])

where the single-character strings in the parsed output are transformed back into
one string.

The function 1ift takes a parser and a pair as arguments. This function applies the
given parser to the second component of the pair and leaves the first component
untouched. For example

Scan.lift ($$ "h" -- $$ "e") (1, Symbol.explode "hello")
> (("h”, "e”)’ (1, [”l”, ”l”’ ”O”J))
1

Be aware of recursive parsers. Suppose you want to read strings separated by com-
mas and by parentheses into a tree datastructure; for example, generating the tree

IFIXME: In which situations is 1ift useful? Give examples.
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corresponding to the string " (4, A), (A, A)" where the As will be the leaves. We
assume the trees are represented by the datatype:

datatype tree =
Lf of string
| Br of tree * tree

Since nested parentheses should be treated in a meaningful way—for example the
string " ((4)) " should be read into a single leaf—you might implement the following
parser.

fun parse_basic s =
$$ s >> Lf || $$ "(" |-- parse_tree s ——| $$ ")"

and parse_tree s =
parse_basic s —-—| $$ "," -- parse_tree s >> Br || parse_basic s

This parser corrsponds to the grammar:

<Basic> ::= <String> | (<Tree>)
<Tree> ::= <Basic>, <Tree> | <Basic>

The parameter s is the string over which the tree is parsed. The parser parse_basic
reads either a leaf or a tree enclosed in parentheses. The parser parse_tree reads
either a pair of trees separated by a comma, or acts like parse_basic. Unfortunately,
because of the mutual recursion, this parser will immediately run into a loop, even
if it is called without any input. For example

parse_tree "A"
> **x Exception- TOPLEVEL_ERROR raised

raises an exception indicating that the stack limit is reached. Such looping parser
are not useful, because of ML’s strict evaluation of arguments. Therefore we need
to delay the execution of the parser until an input is given. This can be done by
adding the parsed string as an explicit argument. So the parser above should be
implemented as follows.

fun parse_basic s xs =
($$ s >> Lf || $$ "(" |-- parse_tree s ——| $$ ")") xs

and parse_tree s xs =
(parse_basic s ——| $$ "," -- parse_tree s >> Br || parse_basic s) xs

While the type of the parser is unchanged by the addition, its behaviour changed:
with this version of the parser the execution is delayed until some string is applied
for the argument xs. This gives us exactly the parser what we wanted. An example
is as follows:
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let

val input = Symbol.explode "(A, ((4))),A"
in

Scan.finite Symbol.stopper (parse_tree "A") input
end

> (Br (Br (Lf "A", Lf "A"), Lf "A"), [])

Exercise 5.1.1: Write a parser that parses an input string so that any comment enclosed within
(*...%) is replaced by the same comment but enclosed within (**...**) in the output string.
To enclose a string, you can use the function enclose s1 s2 s which produces the string s1 ~

s " s2. Hint: To simplify the task ignore the proper nesting of comments.

5.2 Parsing Theory Syntax

Most of the time, however, Isabelle developers have to deal with parsing tokens, not
strings. These token parsers have the type:

type ’a parser = Token.T list -> ’a * Token.T list

The reason for using token parsers is that theory syntax, as well as the parsers for
the arguments of proof methods, use the type Token.T.

Read More
The parser functions for the theory syntax are contained in the structure Parse defined in
the file Pure/Isar/parse.ML. The definition for tokens is in the file Pure/Isar/token.ML.

The structure Token defines several kinds of tokens (for example Ident for identi-
fiers, Keyword for keywords and Command for commands). Some token parsers take
into account the kind of tokens. The first example shows how to generate a token
list out of a string using the function scan. It is given the argument Position.none
since, at the moment, we are not interested in generating precise error messages.
The following code

Outer_Syntax.scan Position.none "hello world"
> [Token (..., (Ident, "hello"),...),

> Token (..., (Space, " "),...),

> Token (..., (Ident, "world"),...)]

produces three tokens where the first and the last are identifiers, since "hello" and
"world" do not match any other syntactic category. The second indicates a space.

We can easily change what is recognised as a keyword with the function keyword.
For example calling it with

val _ = Keyword.keyword "hello"

then lexing "hello world" will produce


http://isabelle.in.tum.de/repos/isabelle/raw-file/tip/src/Pure/Isar/parse.ML
http://isabelle.in.tum.de/repos/isabelle/raw-file/tip/src/Pure/Isar/token.ML
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Outer_Syntax.scan Position.none "hello world"
> [Token (..., (Keyword, "hello"),...),

> Token (..., (Space, " "),...),

> Token (..., (Ident, "world"),...)]

Many parsing functions later on will require white space, comments and the like to
have already been filtered out. So from now on we are going to use the functions
filter and is_proper to do this. For example:

let
val input = Outer_Syntax.scan Position.none "hello world"
in
filter Token.is_proper input
end
> [Token (..., (Ident, "hello"), ...), Token (..., (Ident, "world"), ...)]

For convenience we define the function:

fun filtered_input str =
filter Token.is_proper (Outer_Syntax.scan Position.none str)

If you now parse

filtered_input "inductive | for"

> [Token (..., (Command, "inductive"),...),
> Token (..., (Keyword, "["),...),

> Token (..., (Keyword, "for"),...)]

you obtain a list consisting of only one command and two keyword tokens. If you
want to see which keywords and commands are currently known to Isabelle, use the
function get_lexicons:

let

val (keywords, commands) = Keyword.get_lexicons ()
in

(Scan.dest_lexicon commands, Scan.dest_lexicon keywords)
end

> ([n}n’ n{n’ J, [n\:\n, nﬁn, J)

You might have to adjust the print_depth in order to see the complete list.
The parser $$$ parses a single keyword. For example:

let
val inputl = filtered_input "where for"

val input2 = filtered_input "/ in"
in

(Parse. $$$ "where" inputl, Parse.$$$ "[|" input2)
end

> (("where",...), ("[",...))
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Any non-keyword string can be parsed with the function reserved. For example:

let

val p = Parse.reserved "bar"

val input = filtered_input "bar"
in

p input
end

> ("par", [])

Like before, you can sequentially connect parsers with --. For example:

let

val input = filtered_input "| in"
in

(Parse.$$$ "|" -- Parse.$$$ "in") input
end

> (", "in"), [1)

The parser Parse.enum s p parses a possibly empty list of items recognised by the
parser p, where the items being parsed are separated by the string s. For example:

let
val input = filtered_input "in | in | in foo"
in
(Parse.enum "[|" (Parse.$$$ "in")) input
end
> (["in", "in", "in"], [...])

The function enum1 works similarly, except that the parsed list must be non-empty.
Note that we had to add a string "foo" at the end of the parsed string, otherwise the
parser would have consumed all tokens and then failed with the exception MORE. Like
in the previous section, we can avoid this exception using the wrapper Scan.finite.
This time, however, we have to use the “stopper-token” Token.stopper. We can
write:

let
val input = filtered_input "in | in [ in"
val p = Parse.enum "|" (Parse.$$$ "in")
in
Scan.finite Token.stopper p input
end
> (["in", "in", "in"], [])

The following function will help to run examples.
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fun parse p input = Scan.finite Token.stopper (Scan.error p) input

The function !!! can be used to force termination of the parser in case of a dead
end, just like Scan.!! (see previous section). A difference, however, is that the
error message of Parse.!!! is fixed to be "Outer syntax error" together with a
relatively precise description of the failure. For example:

let

val input = filtered_input "in |["

val parse_bar_then_in = Parse.$$$ "|" -- Parse.$$$ "in"
in

parse (Parse.!!! parse_bar_then_in) input
end
> Exception ERROR "Outer syntax error: keyword "|" expected,
> but keyword in was found" raised

Exercise 5.2.1: (FIXME) A type-identifier, for example ’a, is a token of kind Keyword. It can
be parsed using the function type_ident.

(FIXME: or give parser for numbers)

Whenever there is a possibility that the processing of user input can fail, it is a
good idea to give all available information about where the error occurred. For this
Isabelle can attach positional information to tokens and then thread this informa-
tion up the “processing chain”. To see this, modify the function filtered_input,
described earlier, as follows

fun filtered_input’ str =
filter Token.is_proper (Outer_Syntax.scan (Position.line 7) str)

where we pretend the parsed string starts on line 7. An example is

filtered_input’ "foo \n bar"
> [Token (("foo", ({line=7, end_line=7}, {line=7})), (Ident, "foo"), ...),
> Token (("bar", ({line=8, end_line=8}, {line=8})), (Ident, "bar"), ...)]

in which the "\n" causes the second token to be in line 8.

By using the parser position you can access the token position and return it as part
of the parser result. For example

let

val input = filtered_input’ "where"
in

parse (Parse.position (Parse.$$$ "where")) input
end

> (("where", {line=7, end_line=7}), [])



5.3. PARSERS FOR ML-CODE (TBD) 99

Read More
The functions related to positions are implemented in the file Pure/General/position.ML.

Exercise 5.2.2: Write a parser for the context-free grammar representing arithmetic expres-
sions with addition and multiplication. As usual, multiplication binds stronger than addition,
and both of them nest to the right. The context-free grammar is defined as:

<Basic> ::= <Number> | (<Expr>)
<Factor> ::= <Basic> * <Factor> | <Basic>
<Expr> = <Factor> + <Expr> | <Factor>

Hint: Be careful with recursive parsers.

5.3 Parsers for ML-Code (TBD)

ML_source

5.4 Context Parser (TBD)

Args.context

Args.context

Used for example in attribute_setup and method_setup.

5.5 Argument and Attribute Parsers (TBD)

5.6 Parsing Inner Syntax

There is usually no need to write your own parser for parsing inner syntax, that is
for terms and types: you can just call the predefined parsers. Terms can be parsed
using the function term. For example:

let

val input = (Outer_Syntax.scan Position.none "foo"
in

Parse.term input
end

> ("\"E\ Ftoken\ Efoo\"E\"F\"E", [])

The function prop is similar, except that it gives a different error message, when
parsing fails. As you can see, the parser not just returns the parsed string, but also
some encoded information. You can decode the information with the function parse
in YXML. For example


http://isabelle.in.tum.de/repos/isabelle/raw-file/tip/src/Pure/General/position.ML
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YXML.parse "\“E\"Ftoken\ Efoo\"E\"F\"E"
> Text "\"E\"Ftoken\ Efoo\"E\"F\"E"

The result of the decoding is an XML-tree. You can see better what is going on if you
replace Position.none by Position.line 42, say:

let

val input = Outer_Syntax.scan (Position.line 42) "foo"
in

YXML.parse (fst (Parse.term input))
end

> Elem ("token", [("line", "42"), ("end_line", "42")], [XML.Text "foo"])

The positional information is stored as part of an XML-tree so that code called later
on will be able to give more precise error messages.

Read More
The functions to do with input and output of XML and YXML are defined in
Pure/PIDE/xml.ML and Pure/PIDE/yxml.ML.

FIXME: parse_term check_term parse_typ check_typ read_term read_term

5.7 Parsing Specifications

There are a number of special purpose parsers that help with parsing specifications
of function definitions, inductive predicates and so on. In Chapter 7, for example,
we will need to parse specifications for inductive predicates of the form:

simple_inductive
even and odd
where
evenO: "even 0"
| evenS: "odd n —> even (Suc n)"
| oddS: "evemn n —> odd (Suc n)"

For this we are going to use the parser:

val spec_parser =
Parse.fixes --
Scan.optional
(Parse. $$$ "where" |--
Parse.!!!
(Parse.enumi "|["
(Parse_Spec.opt_thm_name ":" -- Parse.prop))) []

Note that the parser must not parse the keyword simple_inductive, even if it is
meant to process definitions as shown above. The parser of the keyword will be
given by the infrastructure that will eventually call spec_parser.

To see what the parser returns, let us parse the string corresponding to the definition
of even and odd:


http://isabelle.in.tum.de/repos/isabelle/raw-file/tip/src/Pure/PIDE/xml.ML
http://isabelle.in.tum.de/repos/isabelle/raw-file/tip/src/Pure/PIDE/yxml.ML
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let
val input = filtered_input
("even and odd " ~
"where " ~
" evenO[intro]: \"even O\" " °
"| evenS[intro]: \"odd n = even (Suc n)\" " ~
"| oddS[intro]: \"even n — odd (Suc n)\"")

in
parse spec_parser input
end
> (([(even, NONE, NoSyn), (odd, NONE, NoSyn)],
> [((evenO,...), "\"E\"Ftoken\"Eeven O\"E\"F\"E"),
> ((evenS,...), "\"E\"Ftoken\"Eodd n — even (Suc n)\"E\"F\"E"),
> ((oddS,...), "\"E\"Ftoken\"Eeven n —> odd (Suc n)\"E\"F\"E")]), [])

As you see, the result is a pair consisting of a list of variables with optional type-
annotation and syntax-annotation, and a list of rules where every rule has optionally
a name and an attribute.

The function fixes in Line 2 of the parser reads an and-separated list of variables
that can include optional type annotations and syntax translations. For example:?

let

val input = filtered_input

"foo::\"int = bool\" and bar::nat (\"BAR\" 100) and blonk"

in

parse Parse.fixes input
end
> ([(foo, SOME "\"E\"Ftoken\"Eint = bool\"E\"F\"E", NoSyn),
> (bar, SOME "\“E\"Ftoken\ Enat\“E\"F\"E", Mixfix ("BAR", [], 100)),
>  (blonk, NONE, NoSyn)J,[])

Whenever types are given, they are stored in the SOMEs. The types are not yet used to
type the variables: this must be done by type-inference later on. Since types are part
of the inner syntax they are strings with some encoded information (see previous
section). If a mixfix-syntax is present for a variable, then it is stored in the Mixfix
data structure; no syntax translation is indicated by NoSyn.

Read More
The data structure for mixfix annotations are implemented in Pure/Syntax/mixfix.ML
and Pure/Syntax/syntax.ML.

Lines 3 to 7 in the function spec_parser implement the parser for a list of intro-
duction rules, that is propositions with theorem annotations such as rule names and
attributes. The introduction rules are propositions parsed by prop. However, they
can include an optional theorem name plus some attributes. For example

ZNote that in the code we need to write \"int = bool\" in order to properly escape the double
quotes in the compound type.


http://isabelle.in.tum.de/repos/isabelle/raw-file/tip/src/Pure/Syntax/mixfix.ML
http://isabelle.in.tum.de/repos/isabelle/raw-file/tip/src/Pure/Syntax/syntax.ML
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let

val input = filtered_input "foo_lemmal[intro,dest!]:"

val ((name, attrib), _) = parse (Parse_Spec.thm_name ":") input
in

(name, map Args.dest_src attrib)
end

> (foo_lemma, [(("intro", [1), ...), (("dest", [...1), ...)1)

The function opt_thm_name is the “optional” variant of thm_name. Theorem names
can contain attributes. The name has to end with ":"—see the argument of the
function Parse_Spec.opt_thm_name in Line 7.

Read More
Attributes and arguments are implemented in the files Pure/Isar/attrib.ML and
Pure/Isar/args.ML.

Exercise 5.7.1: Have a look at how the parser Parse_Spec.where_alt_specs is implemented
in file Pure/Isar/parse_spec.ML. This parser corresponds to the “where-part” of the introduc-
tion rules given above. Below we paraphrase the code of where_alt_specs adapted to our
purposes.

val spec_parser’ =
Parse.fixes --
Scan.optional
(Parse. $$$ "where" [--
Parse.!!!
(Parse.enuml "|
((Parse_Spec.opt_thm_name ":" -- Parse.prop) —-—|
Scan.option (Scan.ahead (Parse.name ||
Parse.$$$ "[") —-
Parse.!!! (Parse.$$$ "/"))))) []

n

Both parsers accept the same input, but if you look closely, you can notice an additional “tail”
(Lines 8 to 10) in spec_parser’. What is the purpose of this additional “tail”?

(FIXME: Parse.type_args, Parse.typ, Parse.opt_mixfix)

5.8 New Commands and Keyword Files

Often new commands, for example for providing new definitional principles, need to
be implemented. While this is not difficult on the ML-level, new commands, in order
to be useful, need to be recognised by ProofGeneral. This results in some subtle
configuration issues, which we will explain in this section.

To keep things simple, let us start with a “silly” command that does nothing at all.
We shall name this command foobar. On the ML-level it can be defined as:


http://isabelle.in.tum.de/repos/isabelle/raw-file/tip/src/Pure/Isar/attrib.ML
http://isabelle.in.tum.de/repos/isabelle/raw-file/tip/src/Pure/Isar/args.ML
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let

val do_nothing = Scan.succeed (Local_Theory.background_theory I)

val kind = Keyword.thy_decl
in

Outer_Syntax.local_theory "foobar" '"description of foobar'" kind do_nothing
end

The crucial function local_theory expects a name for the command, a short de-
scription, a kind indicator (which we will explain later more thoroughly) and a parser
producing a local theory transition (its purpose will also explained later).

While this is everything you have to do on the ML-level, you need a keyword file that
can be loaded by ProofGeneral. This is to enable ProofGeneral to recognise foobar
as a command. Such a keyword file can be generated with the command-line:

$ isabelle keywords -k foobar some_log_files

The option -k foobar indicates which postfix the name of the keyword file will be
assigned. In the case above the file will be named isar-keywords-foobar.el. This
command requires log files to be present (in order to extract the keywords from
them). To generate these log files, you first need to package the code above into a
separate theory file named Command. thy, say—see Figure 5.1 for the complete code.

For our purposes it is sufficient to use the log files of the theories Pure, HOL and
Pure-ProofGeneral, as well as the log file for the theory Command. thy, which con-
tains the new foobar-command. If you target other logics besides HOL, such as
Nominal or ZF, then you need to adapt the log files appropriately.

Pure and HOL are usually compiled during the installation of Isabelle. So log files
for them should be already available. If not, then they can be conveniently compiled
with the help of the build-script from the Isabelle distribution.

$ ./build -m "Pure"
$ ./build -m "HOL"

The Pure-ProofGeneral theory needs to be compiled with:

$ ./build -m "Pure-ProofGeneral" "Pure"

For the theory Command. thy, you first need to create a “managed” subdirectory with:
$ isabelle mkdir FoobarCommand

This generates a directory containing the files:

./IsaMakefile

. /FoobarCommand/ROOT . ML

. /FoobarCommand/document
./FoobarCommand/document/root . tex
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theory Command
imports Main
begin
ML {*
let
val do_nothing = Scan.succeed (Local_Theory.background_theory I)
val kind = Keyword.thy_decl
in
Outer_Syntax.local_theory "foobar" '"description of foobar" kind do_nothing
end

*}
end

Figure 5.1: This file can be used to generate a log file. This log file in turn can be
used to generate a keyword file containing the command foobar.

You need to copy the file Command. thy into the directory FoobarCommand and add
the line

no_document use_thy "Command";

to the file . /FoobarCommand/ROOT.ML. You can now compile the theory by just typ-
ing:

$ isabelle make

If the compilation succeeds, you have finally created all the necessary log files. They
are stored in the directory

“/.isabelle/heaps/Isabelle2009/polyml-5.2.1_x86-1inux/log

or something similar depending on your Isabelle distribution and architecture. One
quick way to assign a shell variable to this directory is by typing

$ ISABELLE_LOGS="$(isabelle getenv -b ISABELLE_OUTPUT)"/log

on the Unix prompt. If you now type 1s $ISABELLE_LOGS, then the directory should
include the files:

Pure.gz

HOL.gz
Pure-ProofGeneral.gz
HOL-FoobarCommand.gz

From them you can create the keyword files. Assuming the name of the directory is
in $ISABELLE_LOGS, then the Unix command for creating the keyword file is:
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$ isabelle keywords -k foobar
$ISABELLE_LOGS/{Pure.gz,HOL.gz,Pure-ProofGeneral .gz,HOL-FoobarCommand. gz}

The result is the file isar-keywords-foobar.el. It should contain the string foobar
twice.? This keyword file needs to be copied into the directory ~/.isabelle/etc. To
make ProofGeneral aware of it, you have to start Isabelle with the option -k foobar,
that is:

$ isabelle emacs -k foobar a_theory_file

If you now build a theory on top of Command. thy, then you can use the command
foobar. You can just write

foobar

but you will not see any action as we chose to implement this command to do noth-
ing. The point of this command is only to show the procedure of how to interact with
ProofGeneral. A similar procedure has to be done with any other new command, and
also any new keyword that is introduced with the function keyword. For example:

val _ = Keyword.keyword "blink"

At the moment the command foobar is not very useful. Let us refine it a bit next
by letting it take a proposition as argument and printing this proposition inside the
tracing buffer.

The crucial part of a command is the function that determines the behaviour of the
command. In the code above we used a “do-nothing”-function, which because of
succeed does not parse any argument, but immediately returns the simple function
Local_Theory.background_theory I. We can replace this code by a function that
first parses a proposition (using the parser Parse.prop), then prints out the tracing
information (using a new function trace_prop) and finally does nothing. For this
you can write:

let
fun trace_prop str =
Local_Theory.background_theory (fn ctxt => (tracing str; ctxt))

val kind = Keyword.thy_decl
in
Outer_Syntax.local_theory "foobar_trace" "traces a proposition"
kind (Parse.prop >> trace_prop)
end

The command is now foobar_trace and can be used to see the proposition in the
tracing buffer.

foobar_trace "True A False"

3To see whether things are fine, check that grep foobar on this file returns something non-empty.
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Note that so far we used thy_decl as the kind indicator for the command. This
means that the command finishes as soon as the arguments are processed. Examples
of this kind of commands are definition and declare. In other cases, commands are
expected to parse some arguments, for example a proposition, and then “open up”
a proof in order to prove the proposition (for example lemma) or prove some other
properties (for example function). To achieve this kind of behaviour, you have to
use the kind indicator thy_goal and the function local_theory_to_proof to set
up the command. Note, however, once you change the “kind” of a command from
thy_decl to thy_goal then the keyword file needs to be re-created!

Below we show the command foobar_goal which takes a proposition as argument
and then starts a proof in order to prove it. Therefore in Line 9, we set the kind
indicator to thy_goal.

let
fun goal_prop str 1lthy =
let
val prop = Syntax.read_prop lthy str
in
Proof.theorem NONE (K I) [[(prop, []1)]] 1thy
end

val kind = Keyword.thy_goal
in
Outer_Syntax.local_theory_to_proof "foobar_goal" "proves a proposition"
kind (Parse.prop >> goal_prop)
end

The function goal_prop in Lines 2 to 7 takes a string (the proposition to be proved)
and a context as argument. The context is necessary in order to be able to use
read_prop, which converts a string into a proper proposition. In Line 6 the function
theorem starts the proof for the proposition. Its argument NONE stands for a locale
(which we chose to omit); the argument (K I) stands for a function that determines
what should be done with the theorem once it is proved (we chose to just forget
about it). Line 9 contains the parser for the proposition.

If you now type foobar _goal "True A True", you obtain the following proof state
foobar_goal "True A True"

goal (1 subgoal):
1. True A True

and can prove the proposition as follows.

apply (rule conjI)

apply (rule Truel)+

done

TBD below

(FIXME: read a name and show how to store theorems; see note)
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structure Result = Proof_Data(
type T = unit -> term
fun init thy () = error "Result")

val result_cookie = (Result.get, Result.put, "Result.put")
let
fun after_qged thm_name thms lthy =

Local_Theory.note (thm_name, (flat thms)) lthy |> snd

fun setup_proof (thm_name, (txt, pos)) lthy =

Ilet

val trm = Code_Runtime.value lthy result_cookie ("", txt)
in

Proof.theorem NONE (after_qed thm_name) [[(trm,[])]] lthy
end
val parser = Parse_Spec.opt_thm_name ":" -- Parse.ML_source

in
Outer_Syntax.local_theory_to_proof "foobar_prove" "proving a proposition"

Keyword.thy_goal (parser >> setup_proof)
end

5.9 Methods (TBD)

(FIXME: maybe move to after the tactic section)

Methods are central to Isabelle. They are the ones you use for example in apply. To
print out all currently known methods you can use the Isabelle command:

print_methods

> methods:

> -: do nothing (insert current facts only)

> HOL.default: apply some intro/elim rule (potentially classical)
>

An example of a very simple method is:

method setup foo =
{* Scan.succeed
(K (SIMPLE_METHOD ((etac @{thm conjE} THEN’ rtac @{thm conjI}) 1))) *}
"foo method for conjE and conjI"

It defines the method foo, which takes no arguments (therefore the parser Scan. succeed)
and only applies a single tactic, namely the tactic which applies conjE and then
conjI. The function SIMPLE_METHOD turns such a tactic into a method. The method

foo can be used as follows
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lemma shows "A AN B =— C A D"
apply (foo)

where it results in the goal state
goal (2 subgoals):
1. [A; B = C 2. [A; B] = D

method setup test = {* Scan.lift (Scan.succeed (K Method.succeed)) *} {* bla *}

lemma "True"
apply (test)
00ps

method setup joker = {* Scan.lift (Scan.succeed (fn ctxt => Method.cheating true
ctxt)) *} {* bla *}

lemma "False"
apply (joker)
00ps

if true is set then always works

atac

method setup first_atac = {* Scan.lift (Scan.succeed (K (SIMPLE_METHOD (atac 1))))
*} {* bla *}

HEADGOAL

lemma "4 =— A"
apply (first_atac)
00ps

method_setup my_atac = {* Scan.lift (Scan.succeed (K (SIMPLE_METHOD’ atac))) *}
{* bla *}

lemma "4 = A"
apply (my_atac)
oops
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resolve_tac

method _setup myrule =

{* Scan.lift (Scan.succeed (K (METHOD (fn thms => resolve_tac thms 1)))) *}
{* bla *}

lemma
assumes a: "A — B — C"
shows "C"

using a

apply (myrule)

oops

o e st ot e sl e Sl e e sl e Sl e S sl e st e St sl e sl e st st e st e St e S sl e st ot S sl e st o S sl e St e St sl e sl o S st e S o .
TSN S Tk e S e e S e v e v S e s e e e s e e s e s e v s e s e e s e s e e s e s e e sl e e e e e FIXME- eXp ain

a version of rule-tac)
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Chapter 6

Tactical Reasoning

One of the main reason for descending to the ML-level of Isabelle is to be able to
implement automatic proof procedures. Such proof procedures can considerably
lessen the burden of manual reasoning. They are centred around the idea of refining
a goal state using tactics. This is similar to the apply-style reasoning at the user-
level, where goals are modified in a sequence of proof steps until all of them are
discharged. In this chapter we will explain simple tactics and how to combine them
using tactic combinators. We also describe the simplifier, simprocs and conversions.

6.1 Basics of Reasoning with Tactics

To see how tactics work, let us first transcribe a simple apply-style proof into ML.
Suppose the following proof.

lemma disj_swap:

shows "P Vv Q = Q Vv P"
apply (erule disjE)
apply (rule disjI2)
apply (assumption)
apply (rule disjI1)
apply (assumption)
done

This proof translates to the following ML-code.

let
val ctxt = @{context}
val goal = @{prop "P V @ = Q V P"}
in
Goal.prove ctxt ["P", "Q"] [] goal
(fn _ => etac @{thm disjE} 1
THEN rtac @{thm disjI2} 1
THEN atac 1
THEN rtac @{thm disjIi1} 1
THEN atac 1)
end
>?P V ?7Q = ?7Q V 7P

111
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To start the proof, the function prove sets up a goal state for proving the goal P V
Q = Q V P. We can give this function some assumptions in the third argument
(there are no assumption in the proof at hand). The second argument stands for a
list of variables (given as strings). This list contains the variables that will be turned
into schematic variables once the goal is proved (in our case P and ). The last
argument is the tactic that proves the goal. This tactic can make use of the local
assumptions (there are none in this example). The tactics etac, rtac and atac in
the code above correspond roughly to erule, rule and assumption, respectively.
The combinator THEN strings the tactics together.

TBD: Write something about prove_multi.

Read More

To learn more about the function prove see [Impl.Man., Sec. 4.3] and the file
Pure/goal.ML. See Pure/tactic.ML and Pure/tactical.ML for the code of basic tac-
tics and tactic combinators; see also Chapters 3 and 4 in the old Isabelle Reference Manual,
and Chapter 3 in the Isabelle/Isar Implementation Manual.

During the development of automatic proof procedures, you will often find it neces-
sary to test a tactic on examples. This can be conveniently done with the command
apply (tactic {* ... *}). Consider the following sequence of tactics

val foo_tac =
(etac @{thm disjE} 1
THEN rtac @{thm disjI2} 1
THEN atac 1
THEN rtac @{thm disjI1} 1
THEN atac 1)

and the Isabelle proof:

lemma

shows "P V @ = Q V P"
apply (tactic {* foo_tac *})
done

By using tactic {* ... *} you can call from the user-level of Isabelle the tactic
foo_tac or any other function that returns a tactic. There are some goal transfor-
mation that are performed by tactic. They can be avoided by using raw_tactic
instead.

The tactic foo_tac is just a sequence of simple tactics stringed together by THEN. As
can be seen, each simple tactic in foo_tac has a hard-coded number that stands for
the subgoal analysed by the tactic (1 stands for the first, or top-most, subgoal). This
hard-coding of goals is sometimes wanted, but usually it is not. To avoid the explicit
numbering, you can write

val foo_tac’ =
(etac @{thm disjE}
THEN’ rtac @{thm disjI2}
THEN’ atac
THEN’ rtac @{thm disjI1}
THEN’ atac)


http://isabelle.in.tum.de/repos/isabelle/raw-file/tip/src/Pure/goal.ML
http://isabelle.in.tum.de/repos/isabelle/raw-file/tip/src/Pure/tactic.ML
http://isabelle.in.tum.de/repos/isabelle/raw-file/tip/src/Pure/tactical.ML
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where THEN’ is used instead of THEN. (For most combinators that combine tactics—
THEN is only one such combinator—a “primed” version exists.) With foo_tac’ you
can give the number for the subgoal explicitly when the tactic is called. So in the
next proof you can first discharge the second subgoal, and subsequently the first.

lemma
shows "P1 Vv Q1 = Q1 VvV P1"
and "P2 V Q2 = Q2 VvV P2"
apply (tactic {* foo_tac’ 2 *})
apply (tactic {* foo_tac’ 1 *})
done

This kind of addressing is more difficult to achieve when the goal is hard-coded
inside the tactic.

The tactics foo_tac and foo_tac’ are very specific for analysing goals being only of
theform P Vv @ = Q V P. If the goal is not of this form, then these tactics return
the error message:!

*** empty result sequence —-- proof command failed
*** At command "apply".

This means they failed. The reason for this error message is that tactics are functions
mapping a goal state to a (lazy) sequence of successor states. Hence the type of a
tactic is:

type tactic = thm -> thm Seq.seq

By convention, if a tactic fails, then it should return the empty sequence. Therefore,
if you write your own tactics, they should not raise exceptions willy-nilly; only in
very grave failure situations should a tactic raise the exception THM.

The simplest tactics are no_tac and all_tac. The first returns the empty sequence
and is defined as

fun no_tac thm = Seq.empty

which means no_tac always fails. The second returns the given theorem wrapped
in a single member sequence; it is defined as

fun all_tac thm = Seq.single thm

which means all_tac always succeeds, but also does not make any progress with
the proof.

The lazy list of possible successor goal states shows through at the user-level of
Isabelle when using the command back. For instance in the following proof there

To be precise, tactics do not produce this error message; the message originates from the apply
wrapper that calls the tactic.
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are two possibilities for how to apply foo_tac’: either using the first assumption or
the second.

lemma
shows "[P vV Q; PV Q] = Q@ Vv P"
apply (tactic {* foo_tac’ 1 *})
back
done

By using back, we construct the proof that uses the second assumption. While in the
proof above, it does not really matter which assumption is used, in more interesting
cases provability might depend on exploring different possibilities.

Read More

See Pure/General/seq.ML for the implementation of lazy sequences. In day-to-day
Isabelle programming, however, one rarely constructs sequences explicitly, but uses the pre-
defined tactics and tactic combinators instead.

It might be surprising that tactics, which transform one goal state to the next, are
functions from theorems to theorem (sequences). The surprise resolves by knowing
that every goal state is indeed a theorem. To shed more light on this, let us modify
the code of all_tac to obtain the following tactic

fun my_print_tac ctxt thm =

let

val _ = tracing (Pretty.string of (pretty_thm_no_vars ctxt thm))
in

Seq.single thm
end

which prints out the given theorem (using the string-function defined in Section 2.2)
and then behaves like al1l1_tac. With this tactic we are in the position to inspect
every goal state in a proof. For this consider the proof in Figure 6.1: as can be seen,
internally every goal state is an implication of the form

Ay — ... = A, = #C

where C is the goal to be proved and the A; are the subgoals. So after setting
up the lemma, the goal state is always of the form ¢ = #C; when the proof is
finished we are left with #C. Since the goal C can potentially be an implication,
there is a “protector” wrapped around it (the wrapper is the outermost constant
Const ("prop", bool = bool); in the figure we make it visible as a #). This
wrapper prevents that premises of C are misinterpreted as open subgoals. While
tactics can operate on the subgoals (the A; above), they are expected to leave the
conclusion C intact, with the exception of possibly instantiating schematic variables.
This instantiations of schematic variables can be observed on the user level. Have a
look at the following definition and proof.
definition

EQ_TRUE


http://isabelle.in.tum.de/repos/isabelle/raw-file/tip/src/Pure/General/seq.ML
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notation (output) "prop" ("#." [1000] 1000)

lemma
shows "[4; B] = A A B"
apply(tactic {* my_print_tac @{context} *})
goal (1 subgoal):
1. [A; B] = A A B

internal goal state:
([4; B] = A AN B) = #([A; B] = A A B)

apply (rule conjI)

apply (tactic {* my_print_tac @{context} *})
goal (2 subgoals):

1. [A; B] = 4

2. [4; B] = B

internal goal state:
[[A; B] = 4; [4; B] = B] = #([A; B] = A A B)

apply (assumption)
apply (tactic {* my_print_tac @{context} *})
goal (1 subgoal):
1. [A; B] = B

internal goal state:

([4; B] = B) = #([4; B] = A A B)
apply (assumption)
apply (tactic {* my_print_tac @{context} *})

No subgoals!

internal goal state:
#([A; B] = A A B)

Figure 6.1: The figure shows an Isabelle snippet of a proof where each intermediate
goal state is printed by the Isabelle system and by my_print_tac. The latter shows
the goal state as represented internally (highlighted boxes). This tactic shows that
every goal state in Isabelle is represented by a theorem: when you start the proof of
[A; B] = A A Bthetheoremis ([A; B] = A A B) — #([A; B] = A A
B) ; when you finish the proof the theorem is #([A; B] = A4 A B).
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where
"EQ_TRUE X = (X = True)"

schematic_lemma test:

shows "EQ_TRUE 7X"
unfolding EG_TRUE_def
by (zrule refl)

By using schematic_lemma it is possible to prove lemmas including meta-variables
on the user level. However, the proved theorem is not EQ_TRUE ?X, as one might
expect, but EQ_TRUE True. We can test this with:

thm test
> EQ_TRUE True

The reason for this result is that the schematic variable ?X is instantiated inside the
proof to be True and then the instantiation propagated to the “outside”.

Read More
For more information about the internals of goals see [Impl. Man., Sec. 3.1].

6.2 Simple Tactics

In this section we will introduce more of the simple tactics in Isabelle. The first one
is print_tac, which is quite useful for low-level debugging of tactics. It just prints
out a message and the current goal state. Unlike my_print_tac shown earlier, it
prints the goal state as the user would see it. For example, processing the proof

lemma
shows "False — True"
apply (tactic {* print_tac "foo message" *})

gives:
foo message

False =— True
1. False — True

A simple tactic for easy discharge of any proof obligations, even difficult ones, is
cheat_tac in the structure Skip_Proof. This tactic corresponds to the Isabelle com-
mand sorry and is sometimes useful during the development of tactics.

lemma

shows "False" and "Goldbach_conjecture"
apply (tactic {* Skip_Proof.cheat_tac @{theory} *})

No subgoals!

Another simple tactic is the function atac, which, as shown earlier, corresponds to
the assumption method.
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lemma
shows "P — P"
apply (tactic {* atac 1 *})

No subgoals!

Similarly, rtac, dtac, etac and ftac correspond (roughly) to rule, drule, erule
and frule, respectively. Each of them takes a theorem as argument and attempts to
apply it to a goal. Below are three self-explanatory examples.

lemma
shows "P A Q"
apply(tactic {* rtac @{thm conjI} 1 *})

goal (2 subgoals):
1. P

2. Q

lemma
shows "P A @ = False"
apply(tactic {* etac @{thm conjE} 1 *})

goal (1 subgoal):
1. [P; Q) = False

lemma
shows "False A True =—> False"
apply (tactic {* dtac @{thm conjunct2} 1 *})

goal (1 subgoal):
1. True = False

The function resolve_tac is similar to rtac, except that it expects a list of theorems
as argument. From this list it will apply the first applicable theorem (later theorems
that are also applicable can be explored via the lazy sequences mechanism). Given
the code

val resolve_xmp_tac = resolve_tac [@{thm impI}, @{thm conjI}]

an example for resolve_tac is the following proof where first an outermost impli-
cation is analysed and then an outermost conjunction.

lemma

shows "C — (4 A B)"

and "(A — B) A C"
apply (tactic {* resolve_xmp_tac 1 *})
apply (tactic {* resolve_xmp_tac 2 *})

goal (3 subgoals):
1. C = A NB
2. A — B

3. ¢C

Similar versions taking a list of theorems exist for the tactics dtac (dresolve_tac),
etac (eresolve_tac) and so on.
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Another simple tactic is cut_facts_tac. It inserts a list of theorems into the assump-
tions of the current goal state. Below we will insert the definitions for the constants
True and False. So

lemma
shows "True # False"
apply (tactic {* cut_facts_tac [@{thm True_def}, @{thm False_def}] 1 *})

produces the goal state

goal (1 subgoal):
1. [True = (Ax. x) = (Ax. x); False = VP. P] = True # False

Often proofs on the ML-level involve elaborate operations on assumptions and A-
quantified variables. To do such operations using the basic tactics shown so far is
very unwieldy and brittle. Some convenience and safety is provided by the functions
FOCUS and SUBPROOF. These tactics fix the parameters and bind the various compo-
nents of a goal state to a record. To see what happens, suppose the function defined
in Figure 6.2, which takes a record and just prints out the contents of this record.
Then consider the proof:

schematic_ lemma
shows "Ax y. Ax y = By x — C (?7z y) x"
apply (tactic {* Subgoal.FOCUS foc_tac @{context} 1 *})

The tactic produces the following printout:

params: X:= X, y:=y
schematics: 7z:=z
assumptions: A4 x y
conclusion: Byx — C(zy)x
premises: Axy

The params and schematics stand for list of pairs where the left-hand side of := is
replaced by the right-hand side inside the tactic. Notice that in the actual output the
variables x and y have a brown colour. Although they are parameters in the original
goal, they are fixed inside the tactic. By convention these fixed variables are printed
in brown colour. Similarly the schematic variable ?z. The assumption, or premise, A
x y is bound as cterm to the record-variable asms, but also as thm to prems.

If we continue the proof script by applying the impI-rule

apply (zrule impI)
apply (tactic {* Subgoal.FOCUS foc_tac @{context} 1 *})

then the tactic prints out:

params: X:=xy:=y
schematics: 7z:=z
assumptions: A x y,B y x
conclusion: C (zy) x

premises: A xy, B

<
]
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fun foc_tac {prems, params, asms, concl, context, schematics} =
let
fun assgnl f1 f2 xs =
Pretty.list "" "" (map (fn (x, y) => Pretty.enum ":=" "" "" [f1 x, f2
yl) xs)

fun assgn2 f xs = assgnl f f xs

val pps = map (fn (s, pp) => Pretty.block [Pretty.str s, ppl)
[("params: ", assgnl Pretty.str (pretty_cterm context) params),
("assumptions: ", pretty_cterms context asms),
("conclusion: ", pretty_cterm context concl),
("premises: ", pretty_thms_no_vars context prems),
("schematics: ", assgn2 (pretty_cterm context) (snd schematics))]
in
tracing (Pretty.string of (Pretty.chunks pps)); all_tac
end
Figure 6.2: A function that prints out the various parameters provided by FOCUS and
SUBPROOCF. It uses the functions defined in Section 2.2 for extracting strings from

cterms and thms.

Now also B y x is an assumption bound to asms and prems.

One difference between the tactics SUBPROOF and FOCUS is that the former ex-
pects that the goal is solved completely, which the latter does not. Another is that
SUBPROOF cannot instantiate any schematic variables.

Observe that inside FOCUS and SUBPROOF, we are in a goal state where there is only a
conclusion. This means the tactics dtac and the like are of no use for manipulating
the goal state. The assumptions inside FOCUS and SUBPROOF are given as cterms
and theorems in the arguments asms and prems, respectively. This means we can
apply them using the usual assumption tactics. With this you can for example easily
implement a tactic that behaves almost like atac:

val atac’ = Subgoal.FOCUS (fn {prems, ...} => resolve_tac prems 1)

If you apply atac’ to the next lemma

lemma
shows "[Bx y; Axy; Cxy] = Axy"
apply (tactic {* atac’ @{context} 1 *})

it will produce
No subgoals!
Notice that atac’ inside FOCUS calls resolve_tac with the subgoal number 1 and

also the outer call to FOCUS in the apply-step uses 1. This is another advantage of
FOCUS and SUBPROOF: the addressing inside it is completely local to the tactic inside
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the subproof. It is therefore possible to also apply atac’ to the second goal by just
writing:
lemma
shows "True"
and "[Bxy; Axy; Cxy] = Axy"
apply (tactic {* atac’ @{context} 2 *})
apply (rule Truel)
done

To sum up, both FOCUS and SUBPROOF are rather convenient, but can impose a con-
siderable run-time penalty in automatic proofs. If speed is of the essence, then maybe
the two lower level combinators described next are more appropriate.

Read More
The functions FOCUS and SUBPROOF are defined in Pure/subgoal.ML and also described in
[Impl. Man., Sec. 4.3].

Similar but less powerful functions than FOCUS, respectively SUBPROOF, are SUBGOAL
and CSUBGOAL. They allow you to inspect a given subgoal (the former presents the
subgoal as a term, while the latter as a cterm). With them you can implement a
tactic that applies a rule according to the topmost logic connective in the subgoal
(to illustrate this we only analyse a few connectives). The code of the tactic is as
follows.

fun select_tac (t, i) =
case t of
@{term "Trueprop"} $ t’ => select_tac (t’, i)
| e{term "op ="} $ _ $ t’ => select_tac (t’, i)
| e{term "op A"} $ _ $ _ => rtac @{thm conjI} i
| e{term "op —"} $ _ $ _ => rtac O@{thm impI} i
| e{term "Not"} $ _ => rtac @{thm notI} i
| Const (@{const_name "Al11l"}, _) $ _ => rtac @{thm allI} i
| _ => all_tac

The input of the function is a term representing the subgoal and a number speci-
fying the subgoal of interest. In Line 3 you need to descend under the outermost
Trueprop in order to get to the connective you like to analyse. Otherwise goals like
A A B are not properly analysed. Similarly with meta-implications in the next line.
While for the first five patterns we can use the @term-antiquotation to construct the
patterns, the pattern in Line 8 cannot be constructed in this way. The reason is that
an antiquotation would fix the type of the quantified variable. So you really have to
construct this pattern using the basic term-constructors. This is not necessary in the
other cases, because their type is always fixed to function types involving only the
type bool. (See Section 3.2 about constructing terms manually.) For the catch-all
pattern, we chose to just return all_tac. Consequently, select_tac never fails.

Let us now see how to apply this tactic. Consider the four goals:

lemma
shows "4 A B" and "A — B —C" and "Vx. D x" and "E = F"
apply (tactic {* SUBGOAL select_tac 4 *})
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apply (tactic {* SUBGOAL select_tac 3 *})
apply (tactic {* SUBGOAL select_tac 2 *})
apply(tactic {* SUBGOAL select_tac 1 *})

goal (5 subgoals):
1. A

2. B

A =—= B — C
. Nx. D x

E = F

[$2 I SNVV)

where in all but the last the tactic applies an introduction rule. Note that we applied
the tactic to the goals in “reverse” order. This is a trick in order to be independent
from the subgoals that are produced by the rule. If we had applied it in the other
order

lemma

shows "4 A B" and "A — B —C" and "Vx. D x" and "E — F"
apply (tactic {* SUBGOAL select_tac 1 *})
apply (tactic {* SUBGOAL select_tac 3 *})
apply (tactic {* SUBGOAL select_tac 4 *})
apply (tactic {* SUBGOAL select_tac 5 *})

then we have to be careful to not apply the tactic to the two subgoals produced by
the first goal. To do this can result in quite messy code. In contrast, the “reverse
application” is easy to implement.

Of course, this example is contrived: there are much simpler methods available in
Isabelle for implementing a tactic analysing a goal according to its topmost con-
nective. These simpler methods use tactic combinators, which we will explain in the
next section. But before that we will show how tactic application can be constrained.

Read More
The functions SUBGOAL and CSUBGOAL are defined in Pure/tactical.ML.

Since rtac and the like use higher-order unification, an automatic proof procedure
based on them might become too fragile, if it just applies theorems as shown above.
The reason is that a number of theorems introduce schematic variables into the goal
state. Consider for example the proof

lemma
shows "Vx € A. Px — Q x"
apply(tactic {* dtac @{thm bspec} 1 *})

goal (2 subgoals):
1. 2x € A
2. P?7x — (Q x

where the application of theorem bspec generates two subgoals involving the new
schematic variable 7?x. Now, if you are not careful, tactics applied to the first sub-
goal might instantiate this schematic variable in such a way that the second subgoal
becomes unprovable. If