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Chapter 1

Introduction

The purpose of this Cookbook is to guide the reader through the first steps of Isabelle
programming, and to explain tricks of the trade. The code provided in the Cookbook
is as far as possible checked against recent versions of Isabelle. If something does
not work, then please let us know. If you have comments, criticism or like to add to
the Cookbook, feel free—you are most welcome!

1.1 Intended Audience and Prior Knowledge

This Cookbook targets readers who already know how to use Isabelle for writing
theories and proofs. We also assume that readers are familiar with the functional
programming language ML, the language in which most of Isabelle is implemented.
If you are unfamiliar with either of these two subjects, you should first work through
the Isabelle/HOL tutorial [4] or Paulson’s book on ML [5].

1.2 Existing Documentation

The following documentation about Isabelle programming already exists (and is part
of the distribution of Isabelle):

The Implementation Manual describes Isabelle from a high-level perspective, doc-
umenting both the underlying concepts and some of the interfaces.

The Isabelle Reference Manual is an older document that used to be the main ref-
erence of Isabelle at a time when all proof scripts were written on the ML level.
Many parts of this manual are outdated now, but some parts, particularly the
chapters on tactics, are still useful.

The Isar Reference Manual is also an older document that provides material about
Isar and its implementation. Some material in it is still useful.

Then of course there is:
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The code is of course the ultimate reference for how things really work. Therefore
you should not hesitate to look at the way things are actually implemented.
More importantly, it is often good to look at code that does similar things as
you want to do, to learn from other people’s code.

1.3 Typographic Conventions

All ML-code in this Cookbook is typeset in highlighed boxes, like the following ML-
expression.

ML {*

3 + 4

*}

This corresponds to how code can be processed inside the interactive environment
of Isabelle. It is therefore easy to experiment with the code (which by the way is
highly recommended). However, for better readability we will drop the enclosing
ML {*...*} and just write

3 + 4

for the code above. Whenever appropriate we also show the response the code
generates when evaluated. This response is prefixed with a ">" like

3 + 4

> 7

The usual Isabelle commands are written in bold, for example lemma, foobar and
so on. We use $ to indicate that a command needs to be run on the Unix-command
line, for example

$ ls -la

Pointers to further information and Isabelle files are given as follows:

Further information or pointer to file. Read More
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Chapter 2

First Steps

Isabelle programming is done in ML. Just like lemmas and proofs, ML-code in Isabelle
is part of a theory. If you want to follow the code written in this chapter, we assume
you are working inside the theory starting with

theory FirstSteps
imports Main
begin
. . .

2.1 Including ML-Code

The easiest and quickest way to include code in a theory is by using the ML-command.
For example

ML {*

3 + 4

*}

> 7

Like “normal” Isabelle proof scripts, ML-commands can be evaluated by using the
advance and undo buttons of your Isabelle environment. The code inside the ML-
command can also contain value and function bindings, and even those can be un-
done when the proof script is retracted. As mentioned earlier, we will drop the ML
{*...*} whenever we show code.

Once a portion of code is relatively stable, one usually wants to export it to a separate
ML-file. Such files can then be included in a theory by using uses in the header of
the theory, like

theory FirstSteps
imports Main
uses "file_to_be_included.ML" . . .
begin
. . .
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2.2 Debugging and Printing

During development you might find it necessary to inspect some data in your code.
This can be done in a “quick-and-dirty” fashion using the function warning. For
example

warning "any string"

> "any string"

will print out "any string" inside the response buffer of Isabelle. This function ex-
pects a string as argument. If you develop under PolyML, then there is a convenient,
though again “quick-and-dirty”, method for converting values into strings, namely
using the function makestring :

warning (makestring 1)

> "1"

However makestring only works if the type of what is converted is monomorphic
and not a function.

The function warning should only be used for testing purposes, because any output
this function generates will be overwritten as soon as an error is raised. For printing
anything more serious and elaborate, the function tracing is more appropriate.
This function writes all output into a separate tracing buffer. For example

tracing "foo"

> "foo"

It is also possible to redirect the “channel” where the string foo is printed to a
separate file, e.g. to prevent ProofGeneral from choking on massive amounts of trace
output. This redirection can be achieved using the code

val strip_specials =

let

fun strip ("\^A" :: _ :: cs) = strip cs

| strip (c :: cs) = c :: strip cs

| strip [] = [];

in implode o strip o explode end;

fun redirect_tracing stream =

Output.tracing_fn := (fn s =>

(TextIO.output (stream, (strip_specials s));

TextIO.output (stream, "\n");

TextIO.flushOut stream))

Calling redirect_tracing with (TextIO.openOut "foo.bar") will cause that all
tracing information is printed into the file foo.bar.

Error messages can be printed using the function error, as in
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if 0=1 then 1 else (error "foo")

> "foo"

2.3 Antiquotations

The main advantage of embedding all code in a theory is that the code can con-
tain references to entities defined on the logical level of Isabelle. By this we mean
definitions, theorems, terms and so on. This kind of reference is realised with an-
tiquotations. For example, one can print out the name of the current theory by
typing

Context.theory_name @{theory}

> "FirstSteps"

where @{theory} is an antiquotation that is substituted with the current theory
(remember that we assumed we are inside the theory FirstSteps). The name of
this theory can be extracted with the function Context.theory_name.

Note, however, that antiquotations are statically scoped, that is their value is deter-
mined at “compile-time”, not “run-time”. For example the function

fun not_current_thyname () = Context.theory_name @{theory}

does, as its name suggest, not return the name of the current theory, if it is run
in a different theory. Instead, the code above defines the constant function that
always returns the string "FirstSteps", no matter where the function is called.
Operationally speaking, the antiquotation @{theory} is not replaced with code that
will look up the current theory in some data structure and return it. Instead, it is
literally replaced with the value representing the theory name.

In a similar way you can use antiquotations to refer to proved theorems:

@{thm allI}

> (
∧
x. ?P x) =⇒ ∀ x. ?P x

or simpsets:

let

val ({rules,...},_) = MetaSimplifier.rep_ss @{simpset}

in

map #name (Net.entries rules)

end

> ["Nat.of_nat_eq_id", "Int.of_int_eq_id", "Nat.One_nat_def", . . . ]
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The code about simpsets extracts the theorem names that are stored in the current
simpset. We get hold of the current simpset with the antiquotation @{simpset}.
The function rep_ss returns a record containing all information about the simpset.
The rules of a simpset are stored in a discrimination net (a datastructure for fast
indexing). From this net we can extract the entries using the function Net.entries.

The infrastructure for simpsets is implemented in Pure/meta_simplifier.ML and Read More
Pure/simplifier.ML. Discrimination nets are implemented in Pure/net.ML.
While antiquotations have many applications, they were originally introduced in
order to avoid explicit bindings for theorems such as

val allI = thm "allI"

These bindings are difficult to maintain and also can be accidentally overwritten by
the user. This often breakes definitional packages. Antiquotations solve this prob-
lem, since they are “linked” statically at compile-time. However, this static linkage
also limits their usefulness in cases where data needs to be build up dynamically.
In the course of this introduction, we will learn more about these antiquotations:
they greatly simplify Isabelle programming since one can directly access all kinds of
logical elements from ML.

2.4 Terms and Types

One way to construct terms of Isabelle on the ML-level is by using the antiquotation
@{term . . . } . For example

@{term "(a::nat) + b = c"}

> Const ("op =", . . . ) $

> (Const ("HOL.plus_class.plus", . . . ) $ . . . $ . . . ) $ . . .

This will show the term a + b = c, but printed using the internal representation of
this term. This internal representation corresponds to the datatype term.

The internal representation of terms uses the usual de Bruijn index mechanism
where bound variables are represented by the constructor Bound. The index in Bound

refers to the number of Abstractions (Abs) we have to skip until we hit the Abs that
binds the corresponding variable. However, in Isabelle the names of bound vari-
ables are kept at abstractions for printing purposes, and so should be treated only as
comments.

Terms are described in detail in [Impl. Man., Sec. 2.2]. Their definition and many useful Read More
operations are implemented in Pure/term.ML.
Sometimes the internal representation of terms can be surprisingly different from
what you see at the user level, because the layers of parsing/type-checking/pretty
printing can be quite elaborate.

Exercise 2.4.1. Look at the internal term representation of the following terms, and
find out why they are represented like this.
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• case x of 0 ⇒ 0 | Suc y ⇒ y

• λ(x, y). P y x

• {[x] |x. x ≤ -2}

Hint: The third term is already quite big, and the pretty printer may omit parts of it
by default. If you want to see all of it, you can use the following ML function to set the
limit to a value high enough:

print_depth 50

The antiquotation @{prop . . . } constructs terms of propositional type, inserting the
invisible Trueprop -coercions whenever necessary. Consider for example the pairs

(@{term "P x"}, @{prop "P x"})

> (Free ("P", . . . ) $ Free ("x", . . . ),
> Const ("Trueprop", . . . ) $ (Free ("P", . . . ) $ Free ("x", . . . )))

where an coercion is inserted in the second component and

(@{term "P x =⇒ Q x"}, @{prop "P x =⇒ Q x"})

> (Const ("==>", . . . ) $ . . . $ . . . , Const ("==>", . . . ) $ . . . $ . . . )

where it is not (since it is already constructed by a meta-implication).

Types can be constructed using the antiquotation @{typ . . . }. For example

@{typ "bool ⇒ nat"}

> bool ⇒ nat

Types are described in detail in [Impl. Man., Sec. 2.1]. Their definition and many useful Read More
operations are implemented in Pure/type.ML.

2.5 Constructing Terms and Types Manually

While antiquotations are very convenient for constructing terms, they can only con-
struct fixed terms (remember they are “linked” at compile-time). See Recipe A.7 on
Page 58 for a function that pattern-matches over terms and where the pattern are
constructed from antiquotations. However, one often needs to construct terms dy-
namically. For example, a function that returns the implication

∧
(x::τ). P x =⇒

Q x taking P, Q and the type τ as arguments can only be written as
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fun make_imp P Q tau =

let

val x = Free ("x",tau)

in

Logic.all x (Logic.mk_implies (P $ x, Q $ x))

end

The reason is that one cannot pass the arguments P, Q and tau into an antiquotation.
For example the following does not work:

fun make_wrong_imp P Q tau = @{prop "
∧
x. P x =⇒ Q x"}

To see this apply @{term S}, @{term T} and @{typ nat} to both functions. With
make_imp we obtain the intended term involving S, T and @{typ nat}

make_imp @{term S} @{term T} @{typ nat}

> Const . . . $

> Abs ("x", Type ("nat",[]),

> Const . . . $ (Free ("S", . . . ) $ . . . ) $

> (Free ("T", . . . ) $ . . . ))

whereas with make_wrong_imp we obtain a term involving the P and Q from the
antiquotation.

make_wrong_imp @{term S} @{term T} @{typ nat}

> Const . . . $

> Abs ("x", . . . ,
> Const . . . $ (Const . . . $ (Free ("P", . . . ) $ . . . )) $

> (Const . . . $ (Free ("Q", . . . ) $ . . . )))

(FIXME: expand the following point)

One tricky point in constructing terms by hand is to obtain the fully qualified name
for constants. For example the names for zero and + are more complex than one
first expects, namely

HOL.zero_class.zero and HOL.plus_class.plus.

The extra prefixes zero_class and plus_class are present because these constants
are defined within type classes; the prefix HOL indicates in which theory they are
defined. Guessing such internal names can sometimes be quite hard. Therefore
Isabelle provides the antiquotation @{const_name . . . } which does the expansion
automatically, for example:

@{const_name "Nil"}

> List.list.Nil
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(FIXME: Is it useful to explain @{const_syntax}?)

Similarly, one can construct types manually. For example the function returning a
function type is as follows:

fun make_fun_type tau1 tau2 = Type ("fun",[tau1,tau2])

This can be equally written as

fun make_fun_type tau1 tau2 = tau1 --> tau2

There are many functions in Pure/logic.ML and HOL/hologic.ML that make such Read More
manual constructions of terms and types easier.
Have a look at these files and try to solve the following two exercises:

Exercise 2.5.1. Write a function rev_sum : term -> term that takes a term of the
form t1 + t2 + . . . + tn (whereby i might be zero) and returns the reversed sum
tn + . . . + t2 + t1. Assume the t i can be arbitrary expressions and also note that
+ associates to the left. Try your function on some examples.

Exercise 2.5.2. Write a function which takes two terms representing natural numbers
in unary notation (like Suc (Suc (Suc 0))), and produce the number representing
their sum.

2.6 Type-Checking

We can freely construct and manipulate terms, since they are just arbitrary unchecked
trees. However, we eventually want to see if a term is well-formed, or type-checks,
relative to a theory. Type-checking is done via the function cterm_of, which converts
a term into a cterm, a certified term. Unlike terms, which are just trees, cterms are
abstract objects that are guaranteed to be type-correct, and they can only be con-
structed via “official interfaces”.

Type-checking is always relative to a theory context. For now we use the @{theory}

antiquotation to get hold of the current theory. For example we can write

cterm_of @{theory} @{term "a + b = c"}

> a + b = c

This can also be wirtten with an antiquotation

@{cterm "(a::nat) + b = c"}

> a + b = c

Attempting to obtain the certified term for
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@{cterm "1 + True"}

> Type unification failed . . .

yields an error (since the term is not typable). A slightly more elaborate example
that type-checks is

let

val natT = @{typ "nat"}

val zero = @{term "0::nat"}

in

cterm_of @{theory}

(Const (@{const_name plus}, natT --> natT --> natT) $ zero $ zero)

end

> 0 + 0

Exercise 2.6.1. Check that the function defined in Exercise 2.5.1 returns a result that
type-checks.

2.7 Theorems

Just like cterms, theorems are abstract objects of type thm that can only be built
by going through interfaces. As a consequence, every proof in Isabelle is correct by
construction (FIXME reference LCF-philosophy)

To see theorems in “action”, let us give a proof on the ML-level for the following
statement:

lemma
assumes assm1: "

∧
(x::nat). P x =⇒ Q x"

and assm2: "P t"

shows "Q t"

The corresponding ML-code is as follows:1

let

val thy = @{theory}

val assm1 = cterm_of thy @{prop "
∧
(x::nat). P x =⇒ Q x"}

val assm2 = cterm_of thy @{prop "(P::nat⇒bool) t"}

val Pt_implies_Qt =

assume assm1

|> forall_elim (cterm_of thy @{term "t::nat"});

val Qt = implies_elim Pt_implies_Qt (assume assm2);

in

1Note that |> is reverse application. See Section 2.11.
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Qt

|> implies_intr assm2

|> implies_intr assm1

end

> [[
∧
x. P x =⇒ Q x; P t ]] =⇒ Q t

This code-snippet constructs the following proof:

∧
x. P x =⇒ Q x `

∧
x. P x =⇒ Q x

(assume)∧
x. P x =⇒ Q x ` P t =⇒ Q t

(
∧

-elim)
P t ` P t

(assume)∧
x. P x =⇒ Q x, P t ` Q t

(=⇒-elim)∧
x. P x =⇒ Q x ` P t =⇒ Q t

(=⇒-intro)

` [[
∧
x. P x =⇒ Q x; P t ]] =⇒ Q t

(=⇒-intro)

For the functions assume, forall_elim etc see [Impl. Man., Sec. 2.3]. The basic func- Read More
tions for theorems are defined in Pure/thm.ML.

2.8 Storing Theorems

2.9 Theorem Attributes

2.10 Operations on Constants (Names)

Sign.base_name "List.list.Nil"

> "Nil"

2.11 Combinators

For beginners, perhaps the most puzzling parts in the existing code of Isabelle are
the combinators. At first they seem to greatly obstruct the comprehension of the
code, but after getting familiar with them, they actually ease the understanding and
also the programming.

The most frequently used combinator are defined in the files Pure/library.ML and Read More
Pure/General/basics.ML. The section ?? in the implementation manual contains
also information about combinators.
The simplest combinator is I, which is just the identity function.

fun I x = x

Another simple combinator is K, defined as
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fun K x = fn _ => x

K “wraps” a function around the argument x. However, this function ignores its
argument. So K defines a constant function returning x.

The next combinator is reverse application, |>, defined as

fun x |> f = f x

While just syntactic sugar for the usual function application, the purpose of this
combinator is to implement functions in a “waterfall fashion”. Consider for example
the function

fun inc_by_five x =1

x |> (fn x => x + 1)2

|> (fn x => (x, x))3

|> fst4

|> (fn x => x + 4)5

which increments the argument x by 5. It does this by first incrementing the argu-
ment by 1 (Line 2); then storing the result in a pair (Line 3); taking the first com-
ponent of the pair (Line 4) and finally incrementing the first component by 4 (Line
5). This kind of cascading manipulations of values is quite common when dealing
with theories (for example by adding a definition, followed by lemmas and so on).
It should also be familiar to anyone who has used Haskell’s do-notation. Writing the
function inc_by_five using the reverse application is much clearer than writing

fun inc_by_five x = fst ((fn x => (x, x)) (x + 1)) + 4

or

fun inc_by_five x =

((fn x => x + 4) o fst o (fn x => (x, x)) o (fn x => x + 1)) x

and typographically more economical than

fun inc_by_five x =

let val y1 = x + 1

val y2 = (y1, y1)

val y3 = fst y2

val y4 = y3 + 4

in y4 end

Another reason why the let-bindings in the code above are better to be avoided: it is
more than easy to get the intermediate values wrong, not to mention the nightmares
the maintenance of this code causes!
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(FIXME: give a real world example involving theories)

Similarly, the combinator #> is the reverse function composition. It can be used to
define functions as follows

val inc_by_six =

(fn x => x + 1)

#> (fn x => x + 2)

#> (fn x => x + 3)

which is the function composed of first the increment-by-one function and then
increment-by-two, followed by increment-by-three. Again, the reverse function com-
position allows one to read the code top-down.

The remaining combinators described in this section add convenience for the “wa-
terfall method” of writing functions. The combinator tap allows one to get hold of
an intermediate result (to do some side-calculations for instance). The function

fun inc_by_three x =1

x |> (fn x => x + 1)2

|> tap (fn x => tracing (makestring x))3

|> (fn x => x + 2)4

increments the argument first by one and then by two. In the middle (Line 3),
however, it uses tap for printing the “plus-one” intermediate result inside the tracing
buffer. The function tap can only be used for side-calculations, because any value
that is computed cannot be merged back into the “main waterfall”. To do this, the
next combinator can be used.

The combinator ‘ is similar to tap, but applies a function to the value and returns
the result together with the value (as a pair). For example the function

fun inc_as_pair x =

x |> ‘(fn x => x + 1)

|> (fn (x, y) => (x, y + 1))

takes x as argument, and then first increments x, but also keeps x. The intermediate
result is therefore the pair (x + 1, x). The function then increments the right-hand
component of the pair. So finally the result will be (x + 1, x + 1).

The combinators |>> and ||> are defined for functions manipulating pairs. The first
applies the function to the first component of the pair, defined as:

fun (x, y) |>> f = (f x, y)

and the second combinator to the second component, defined as
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fun (x, y) ||> f = (x, f y)

With the combinator |-> you can re-combine the elements from a pair. This combi-
nator is defined as

fun (x, y) |-> f = f x y

and can be used to write the following version of the double function

fun double x =

x |> (fn x => (x, x))

|-> (fn x => fn y => x + y)

Recall that |> is the reverse function applications. The related reverse function
composition is #>. In fact all combinators |->, |>> and ||> described above have
related combinators for function composition, namely #->, #>> and ##>. Using |->,
the function double can also be written as

val double =

(fn x => (x, x))

#-> (fn x => fn y => x + y)

(FIXME: find a good exercise for combinators)
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Chapter 3

Parsing

Isabelle distinguishes between outer and inner syntax. Theory commands, such as
definition, inductive and so on, belong to the outer syntax, whereas items inside
double quotation marks, such as terms, types and so on, belong to the inner syntax.
For parsing inner syntax, Isabelle uses a rather general and sophisticated algorithm
due to Earley, which is driven by priority grammars. Parsers for outer syntax are built
up by functional parsing combinators. These combinators are a well-established
technique for parsing, which has, for example, been described in Paulson’s classic
ML-book [5]. Isabelle developers are usually concerned with writing these outer
syntax parsers, either for new definitional packages or for calling tactics with specific
arguments.

The library for writing parser combinators is split up, roughly, into two parts. The Read More
first part consists of a collection of generic parser combinators defined in the structure
Scan in the file Pure/General/scan.ML. The second part of the library consists of
combinators for dealing with specific token types, which are defined in the structure
OuterParse in the file Pure/Isar/outer_parse.ML.

3.1 Building Generic Parsers

Let us first have a look at parsing strings using generic parsing combinators. The
function (op $$) takes a string as argument and will “consume” this string from a
given input list of strings. “Consume” in this context means that it will return a pair
consisting of this string and the rest of the input list. For example:

($$ "h") (explode "hello")

> ("h", ["e", "l", "l", "o"])

($$ "w") (explode "world")

> ("w", ["o", "r", "l", "d"])

This function will either succeed (as in the two examples above) or raise the excep-
tion FAIL if no string can be consumed. For example trying to parse
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($$ "x") (explode "world")

> Exception FAIL raised

will raise the exception FAIL. There are three exceptions used in the parsing combi-
nators:

• FAIL is used to indicate that alternative routes of parsing might be explored.

• MORE indicates that there is not enough input for the parser. For example in
($$ "h") [].

• ABORT is the exception that is raised when a dead end is reached. It is used for
example in the function (op !!) (see below).

However, note that these exceptions are private to the parser and cannot be accessed
by the programmer (for example to handle them).

Slightly more general than the parser (op $$) is the function Scan.one, in that it
takes a predicate as argument and then parses exactly one item from the input list
satisfying this predicate. For example the following parser either consumes an "h"

or a "w" :

let

val hw = Scan.one (fn x => x = "h" orelse x = "w")

val input1 = (explode "hello")

val input2 = (explode "world")

in

(hw input1, hw input2)

end

> (("h", ["e", "l", "l", "o"]),("w", ["o", "r", "l", "d"]))

Two parser can be connected in sequence by using the function (op --). For exam-
ple parsing h, e and l in this sequence can be achieved by

(($$ "h") -- ($$ "e") -- ($$ "l")) (explode "hello")

> ((("h", "e"), "l"), ["l", "o"])

Note how the result of consumed strings builds up on the left as nested pairs.

If, as in the previous example, one wants to parse a particular string, then one should
use the function Scan.this_string :

Scan.this_string "hell" (explode "hello")

> ("hell", ["o"])

Parsers that explore alternatives can be constructed using the function (op ||). For
example, the parser (p || q) returns the result of p, in case it succeeds, otherwise
it returns the result of q. For example
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let

val hw = ($$ "h") || ($$ "w")

val input1 = (explode "hello")

val input2 = (explode "world")

in

(hw input1, hw input2)

end

> (("h", ["e", "l", "l", "o"]), ("w", ["o", "r", "l", "d"]))

The functions (op |--) and (op --|) work like the sequencing function for parsers,
except that they discard the item being parsed by the first (respectively second)
parser. For example

let

val just_e = ($$ "h") |-- ($$ "e")

val just_h = ($$ "h") --| ($$ "e")

val input = (explode "hello")

in

(just_e input, just_h input)

end

> (("e", ["l", "l", "o"]),("h", ["l", "l", "o"]))

The parser Scan.optional p x returns the result of the parser p, if it succeeds;
otherwise it returns the default value x. For example

let

val p = Scan.optional ($$ "h") "x"

val input1 = (explode "hello")

val input2 = (explode "world")

in

(p input1, p input2)

end

> (("h", ["e", "l", "l", "o"]), ("x", ["w", "o", "r", "l", "d"]))

The function Scan.option works similarly, except no default value can be given.
Instead, the result is wrapped as an option -type. For example:

let

val p = Scan.option ($$ "h")

val input1 = (explode "hello")

val input2 = (explode "world")

in

(p input1, p input2)

end

> ((SOME "h", ["e", "l", "l", "o"]), (NONE, ["w", "o", "r", "l", "d"]))

The function (op !!) helps to produce appropriate error messages during parsing.
For example if one wants to parse that p is immediately followed by q, or start a
completely different parser r, one might write
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(p -- q) || r

However, this parser is problematic for producing an appropriate error message, in
case the parsing of (p -- q) fails. Because in that case one loses the information
that p should be followed by q. To see this consider the case in which p is present in
the input, but not q. That means (p -- q) will fail and the alternative parser r will
be tried. However in many circumstance this will be the wrong parser for the input
“p-followed-by-q” and therefore will also fail. The error message is then caused by
the failure of r, not by the absence of q in the input. This kind of situation can be
avoided when using the function (op !!). This function aborts the whole process
of parsing in case of a failure and prints an error message. For example if we invoke
the parser

(!! (fn _ => "foo") ($$ "h"))

on "hello", the parsing succeeds

(!! (fn _ => "foo") ($$ "h")) (explode "hello")

> ("h", ["e", "l", "l", "o"])

but if we invoke it on "world"

(!! (fn _ => "foo") ($$ "h")) (explode "world")

> Exception ABORT raised

then the parsing aborts and the error message foo is printed out. In order to see
the error message, we need to prefix the parser with the function Scan.error. For
example

Scan.error (!! (fn _ => "foo") ($$ "h"))

> Exception Error "foo" raised

This “prefixing” is usually done by wrappers such as OuterSyntax.command (FIXME:
give reference to later place).

Let us now return to our example of parsing (p -- q) || r. If we want to generate
the correct error message for p-followed-by-q, then we have to write:

fun p_followed_by_q p q r =

let

val err_msg = (fn _ => p ^ " is not followed by " ^ q)

in

($$ p -- (!! err_msg ($$ q))) || ($$ r -- $$ r)

end

Running this parser with the "h" and "e", and the input "holle"
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Scan.error (p_followed_by_q "h" "e" "w") (explode "holle")

> Exception ERROR "h is not followed by e" raised

produces the correct error message. Running it with

Scan.error (p_followed_by_q "h" "e" "w") (explode "wworld")

> (("w", "w"), ["o", "r", "l", "d"])

yields the expected parsing.

The function Scan.repeat p will apply a parser p as often as it succeeds. For exam-
ple

Scan.repeat ($$ "h") (explode "hhhhello")

> (["h", "h", "h", "h"], ["e", "l", "l", "o"])

Note that Scan.repeat stores the parsed items in a list. The function Scan.repeat1

is similar, but requires that the parser p succeeds at least once.

Also note that the parser would have aborted with the exception MORE, if we had run
it only on just "hhhh". This can be avoided by using the wrapper Scan.finite and
the “stopper-token” Symbol.stopper. With them we can write

Scan.finite Symbol.stopper (Scan.repeat ($$ "h")) (explode "hhhh")

> (["h", "h", "h", "h"], [])

Symbol.stopper is the “end-of-input” indicator for parsing strings; other stoppers
need to be used when parsing token, for example. However, this kind of manually
wrapping is often already done by the surrounding infrastructure.

The function Scan.repeat can be used with Scan.one to read any string as in

let

val p = Scan.repeat (Scan.one Symbol.not_eof)

val input = (explode "foo bar foo")

in

Scan.finite Symbol.stopper p input

end

> (["f", "o", "o", " ", "b", "a", "r", " ", "f", "o", "o"], [])

where the function Symbol.not_eof ensures that we do not read beyond the end of
the input string (i.e. stopper symbol).

The function Scan.unless p q takes two parsers: if the first one can parse the
input, then the whole parser fails; if not, then the second is tried. Therefore
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Scan.unless ($$ "h") ($$ "w") (explode "hello")

> Exception FAIL raised

fails, while

Scan.unless ($$ "h") ($$ "w") (explode "world")

> ("w",["o", "r", "l", "d"])

succeeds.

The functions Scan.repeat and Scan.unless can be combined to read any input
until a certain marker symbol is reached. In the example below the marker symbol
is a "*".

let

val p = Scan.repeat (Scan.unless ($$ "*") (Scan.one Symbol.not_eof))

val input1 = (explode "fooooo")

val input2 = (explode "foo*ooo")

in

(Scan.finite Symbol.stopper p input1,

Scan.finite Symbol.stopper p input2)

end

> ((["f", "o", "o", "o", "o", "o"], []),

> (["f", "o", "o"], ["*", "o", "o", "o"]))

After parsing is done, one nearly always wants to apply a function on the parsed
items. To do this the function (p >> f) can be employed, which runs first the parser
p and upon successful completion applies the function f to the result. For example

let

fun double (x,y) = (x^x,y^y)

in

(($$ "h") -- ($$ "e") >> double) (explode "hello")

end

> (("hh", "ee"), ["l", "l", "o"])

doubles the two parsed input strings. Or

let

val p = Scan.repeat (Scan.one Symbol.not_eof) >> implode

val input = (explode "foo bar foo")

in

Scan.finite Symbol.stopper p input

end

> ("foo bar foo",[])

where the single-character strings in the parsed output are transformed back into
one string.
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Exercise 3.1.1. Write a parser that parses an input string so that any comment en-
closed inside (* . . . *) is replaced by a the same comment but enclosed inside (** . . . **)
in the output string. To enclose a string, you can use the function enclose s1 s2 s

which produces the string s1^s^s2.

The function Scan.lift takes a parser and a pair as arguments. This function ap-
plies the given parser to the second component of the pair and leaves the first com-
ponent untouched. For example

Scan.lift (($$ "h") -- ($$ "e")) (1,(explode "hello"))

> (("h", "e"), (1, ["l", "l", "o"]))

(FIXME: In which situations is this useful? Give examples.)

3.2 Parsing Theory Syntax

Most of the time, however, Isabelle developers have to deal with parsing tokens, not
strings. This is because the parsers for the theory syntax, as well as the parsers for
the argument syntax of proof methods and attributes use the type OuterLex.token

(which is identical to the type OuterParse.token). There are also parsers for ML-
expressions and ML-files.

The parser functions for the theory syntax are contained in the structure OuterParse Read More
defined in the file Pure/Isar/outer_parse.ML. The definition for tokens is in the file
Pure/Isar/outer_lex.ML.
The structure OuterLex defines several kinds of tokens (for example Ident for iden-
tifiers, Keyword for keywords and Command for commands). Some token parsers take
into account the kind of tokens.

For the examples below, we can generate a token list out of a string using the function
OuterSyntax.scan, which we give below Position.none as argument since, at the
moment, we are not interested in generating precise error messages. The following
code

OuterSyntax.scan Position.none "hello world"

> [Token ( . . . ,(Ident, "hello"), . . . ),
> Token ( . . . ,(Space, " "), . . . ),
> Token ( . . . ,(Ident, "world"), . . . )]

produces three tokens where the first and the last are identifiers, since "hello" and
"world" do not match any other syntactic category.1 The second indicates a space.

Many parsing functions later on will require spaces, comments and the like to have
already been filtered out. So from now on we are going to use the functions filter
and OuterLex.is_proper do this. For example

1Note that because of a possible a bug in the PolyML runtime system the result is printed as ?,
instead of the tokens.
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let

val input = OuterSyntax.scan Position.none "hello world"

in

filter OuterLex.is_proper input

end

> [Token ( . . . ,(Ident, "hello"), . . . ), Token ( . . . ,(Ident, "world"), . . . )]

For convenience we define the function

fun filtered_input str =

filter OuterLex.is_proper (OuterSyntax.scan Position.none str)

If we parse

filtered_input "inductive | for"

> [Token ( . . . ,(Command, "inductive"), . . . ),
> Token ( . . . ,(Keyword, "|"), . . . ),
> Token ( . . . ,(Keyword, "for"), . . . )]

we obtain a list consisting of only a command and two keyword tokens. If you want
to see which keywords and commands are currently known, type in the following
code (you might have to adjust the print_depth in order to see the complete list):

let

val (keywords, commands) = OuterKeyword.get_lexicons ()

in

(Scan.dest_lexicon commands, Scan.dest_lexicon keywords)

end

> (["}","{", . . . ],["⇀↽","↽", . . . ])

Now the parser OuterParse.$$$ parses a single keyword. For example

let

val input1 = filtered_input "where for"

val input2 = filtered_input "| in"

in

(OuterParse.$$$ "where" input1, OuterParse.$$$ "|" input2)

end

> (("where", . . . ),("|", . . . ))

Like before, we can sequentially connect parsers with (op --). For example

let

val input = filtered_input "| in"

in

(OuterParse.$$$ "|" -- OuterParse.$$$ "in") input

end

> (("|","in"),[])
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The parser OuterParse.enum s p parses a possibly empty list of items recognised
by the parser p, where the items being parsed are separated by the string s. For
example

let

val input = filtered_input "in | in | in foo"

in

(OuterParse.enum "|" (OuterParse.$$$ "in")) input

end

> (["in","in","in"],[ . . . ])

OuterParse.enum1 works similarly, except that the parsed list must be non-empty.
Note that we had to add a string "foo" at the end of the parsed string, otherwise the
parser would have consumed all tokens and then failed with the exception MORE. Like
in the previous section, we can avoid this exception using the wrapper Scan.finite.
This time, however, we have to use the “stopper-token” OuterLex.stopper. We can
write

let

val input = filtered_input "in | in | in"

in

Scan.finite OuterLex.stopper

(OuterParse.enum "|" (OuterParse.$$$ "in")) input

end

> (["in","in","in"],[])

The following function will help to run examples.

fun parse p input = Scan.finite OuterLex.stopper (Scan.error p) input

The function OuterParse.!!! can be used to force termination of the parser in
case of a dead end, just like Scan.!! (see previous section), except that the error
message is fixed to be "Outer syntax error" with a relatively precise description
of the failure. For example:

let

val input = filtered_input "in |"

val parse_bar_then_in = OuterParse.$$$ "|" -- OuterParse.$$$ "in"

in

parse (OuterParse.!!! parse_bar_then_in) input

end

> Exception ERROR "Outer syntax error: keyword "|" expected,

> but keyword in was found" raised

Exercise 3.2.1. (FIXME) A type-identifier, for example ’a, is a token of kind Keyword.
It can be parsed using the function OuterParse.type_ident.
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3.3 Positional Information

OuterParse.position

OuterParse.position

3.4 Parsing Inner Syntax

let

val input = OuterSyntax.scan Position.none "0"

in

OuterParse.prop input

end

OuterParse.opt_target

(FIXME funny output for a proposition)

OuterParse.opt_target --

OuterParse.fixes --

OuterParse.for_fixes --

Scan.optional (OuterParse.$$$ "where" |--

OuterParse.!!! (OuterParse.enum1 "|" (SpecParse.opt_thm_name ":" --

OuterParse.prop))) []

OuterSyntax.command

3.5 New Commands and Keyword Files

Often new commands, for example for providing new definitional principles, need to
be implemented. While this is not difficult on the ML-level, new commands, in order
to be useful, need to be recognised by ProofGeneral. This results in some subtle
configuration issues, which we will explain in this section.

To keep things simple, let us start with a “silly” command that does nothing at all.
We shall name this command foobar. On the ML-level it can be defined as

let

val do_nothing = Scan.succeed (Toplevel.theory I)

val kind = OuterKeyword.thy_decl
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theory Command

imports Main
begin
ML {*

let

val do_nothing = Scan.succeed (Toplevel.theory I)

val kind = OuterKeyword.thy_decl

in

OuterSyntax.command "foobar" "description of foobar" kind do_nothing

end

*}

end

Figure 3.1: The file Command.thy is necessary for generating a log file. This log file enables
Isabelle to generate a keyword file containing the command foobar.

in

OuterSyntax.command "foobar" "description of foobar" kind do_nothing

end

The crucial function OuterSyntax.command expects a name for the command, a
short description, a kind indicator (which we will explain later on more thoroughly)
and a parser producing a top-level transition function (its purpose will also explained
later).

While this is everything we have to do on the ML-level, we need a keyword file that
can be loaded by ProofGeneral. This is to enable ProofGeneral to recognise foobar
as a command. Such a keyword file can be generated with the command-line:

$ isabelle keywords -k foobar some_log_files

The option -k foobar indicates which postfix the name of the keyword file will be
assigned. In the case above the file will be named isar-keywords-foobar.el. As
can be seen, this command requires log files to be present (in order to extract the
keywords from them). To generate these log files, we first package the code above
into a separate theory file named Command.thy, say—see Figure 3.1 for the complete
code.

For our purposes it is sufficient to use the log files of the theories Pure, HOL and
Pure-ProofGeneral, as well as the log file for the theory Command.thy, which con-
tains the new foobar-command. If you target other logics besides HOL, such as
Nominal or ZF, then you need to adapt the log files appropriately. Pure and HOL are
usually compiled during the installation of Isabelle. So log files for them should be
already available. If not, then they can be conveniently compiled with the help of
the build-script from the Isabelle distribution

$ ./build -m "Pure"

$ ./build -m "HOL"
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The Pure-ProofGeneral theory needs to be compiled with

$ ./build -m "Pure-ProofGeneral" "Pure"

For the theory Command.thy, we first create a “managed” subdirectory with

$ isabelle mkdir FoobarCommand

This generates a directory containing the files

./IsaMakefile

./FoobarCommand/ROOT.ML

./FoobarCommand/document

./FoobarCommand/document/root.tex

We need to copy the file Command.thy into the directory FoobarCommand and add
the line

use_thy "Command";

to the file ./FoobarCommand/ROOT.ML. We can now compile the theory by just typing

$ isabelle make

We created finally all the necessary log files. They are stored in the directory

~/.isabelle/heaps/Isabelle2008/polyml-5.2.1_x86-linux/log

or something similar depending on your Isabelle distribution and architecture. One
quick way to assign a shell variable to this directory is by typing

$ ISABELLE_LOGS="$(isabelle getenv -b ISABELLE_OUTPUT)"/log

on the Unix prompt. The directory should include the files

Pure.gz

HOL.gz

Pure-ProofGeneral.gz

HOL-FoobarCommand.gz

From them we create the keyword files. Assuming the name of the directory is in
$ISABELLE_LOGS, then the Unix command for creating the keyword file is:

$ isabelle keywords -k foobar

$ISABELLE_LOGS/{Pure.gz,HOL.gz,Pure-ProofGeneral.gz,HOL-FoobarCommand.gz}

The result is the file isar-keywords-foobar.el. It should contain the string foobar

twice (to see whether things went wrong, check that grep foobar on this file re-
turns something non-empty). This keyword file needs to be copied into the directory
~/.isabelle/etc. To make Isabelle aware of this keyword file, we have to start
Isabelle with the option -k foobar, i.e.
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$ isabelle -k foobar a_theory_file

If we now build a theory on top of Command.thy, then we can make use of the
command foobar. Similarly with any other new command.

At the moment foobar is not very useful. Let us refine it a bit next by taking a
proposition as argument and printing this proposition inside the tracing buffer.

The crucial part of a command is the function that determines the behaviour of the
command. In the code above we used a “do-nothing”-function, which because of
Scan.succeed does not parse any argument, but immediately returns the simple
toplevel function Toplevel.theory I. We can replace this code by a function that
first parses a proposition (using the parser OuterParse.prop), then prints out the
tracing information (using a new top-level function trace_top_lvl) and finally does
nothing. For this we can write

let

fun trace_top_lvl str =

Toplevel.theory (fn thy => (tracing str; thy))

val trace_prop = OuterParse.prop >> trace_top_lvl

val kind = OuterKeyword.thy_decl

in

OuterSyntax.command "foobar" "traces a proposition" kind trace_prop

end

Now we can type

foobar "True ∧ False"

> "True ∧ False"

and see the proposition in the tracing buffer.

Note that so far we used thy_decl as the kind indicator for the command. This
means that the command finishes as soon as the arguments are processed. Examples
of this kind of commands are definition and declare. In other cases, commands are
expected to parse some arguments, for example a proposition, and then “open up”
a proof in order to prove the proposition (for example lemma) or prove some other
properties (for example in function). To achieve this kind of behaviour, we have to
use the kind indicator thy_goal.

Below we change foobar so that it takes a proposition as argument and then starts
a proof in order to prove it. Therefore in Line 13 below, we set the kind indicator to
thy_goal.

let1

fun set_up_thm str ctxt =2

let3

val prop = Syntax.read_prop ctxt str4

in5
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Proof.theorem_i NONE (K I) [[(prop,[])]] ctxt6

end;7

8

val prove_prop = OuterParse.prop >>9

(fn str => Toplevel.print o10

Toplevel.local_theory_to_proof NONE (set_up_thm str))11

12

val kind = OuterKeyword.thy_goal13

in14

OuterSyntax.command "foobar" "proving a proposition" kind prove_prop15

end16

The function set_up_thm takes a string (the proposition to be proved) and a con-
text. The context is necessary in order to be able to use Syntax.read_prop, which
converts a string into a proper proposition. In Line 6 the function Proof.theorem_i

starts the proof for the proposition. Its argument NONE stands for a locale (which
we chose to omit); the argument (K I) stands for a function that determines what
should be done with the theorem once it is proved (we chose to just forget about it).
In Lines 9 to 11 contain the parser for the proposition.

If we now type foobar "True ∧ True", we obtain the following proof state:

foobar "True ∧ True"

goal (1 subgoal)

1. True ∧ True

and we can build the proof

foobar "True ∧ True"

apply(rule conjI)

apply(rule TrueI)+

done

(FIXME What does Toplevel.theory Toplevel.print?)

(FIXME read a name and show how to store theorems)

(FIXME possibly also read a locale)
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Chapter 4

Tactical Reasoning

The main reason for descending to the ML-level of Isabelle is to be able to implement
automatic proof procedures. Such proof procedures usually lessen considerably the
burden of manual reasoning, for example, when introducing new definition. These
proof procedures are centred around refining a goal state using tactics. This is similar
to the apply -style reasoning at the user level, where goals are modified in a sequence
of proof steps until all of them are solved.

4.1 Tactical Reasoning

To see how tactics work, let us first transcribe a simple apply -style proof into ML.
Consider the following proof.

lemma disj_swap: "P ∨ Q =⇒ Q ∨ P"

apply(erule disjE)

apply(rule disjI2)

apply(assumption)
apply(rule disjI1)

apply(assumption)
done

This proof translates to the following ML-code.

let

val ctxt = @{context}

val goal = @{prop "P ∨ Q =⇒ Q ∨ P"}

in

Goal.prove ctxt ["P", "Q"] [] goal

(fn _ =>

etac @{thm disjE} 1

THEN rtac @{thm disjI2} 1

THEN atac 1

THEN rtac @{thm disjI1} 1

THEN atac 1)

end

> ?P ∨ ?Q =⇒ ?Q ∨ ?P
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To start the proof, the function Goal.prove ctxt xs As C tac sets up a goal state
for proving the goal C under the assumptions As (empty in the proof at hand) with
the variables xs that will be generalised once the goal is proved (in our case P

and Q). The tac is the tactic that proves the goal; it can make use of the local
assumptions (there are none in this example). The functions etac, rtac and atac

correspond to erule, rule and assumption, respectively. The operator THEN strings
tactics together.

To learn more about the function Goal.prove see [Impl. Man., Sec. 4.3] and the file Read More
Pure/goal.ML. For more on the internals of goals see [Impl. Man., Sec. 3.1].
Note that we used antiquotations for referencing the theorems. We could also just
have written etac disjE 1 and so on, but this is considered bad style. The reason
is that the binding for disjE can be re-assigned by the user and thus one does not
have complete control over which theorem is actually applied. This problem is nicely
prevented by using antiquotations, because then the theorems are fixed statically at
compile time.

During the development of automatic proof procedures, it will often be necessary
to test a tactic on examples. This can be conveniently done with the command
apply(tactic {* . . . *}). Consider the following sequence of tactics

val foo_tac =

(etac @{thm disjE} 1

THEN rtac @{thm disjI2} 1

THEN atac 1

THEN rtac @{thm disjI1} 1

THEN atac 1)

and the Isabelle proof:

lemma "P ∨ Q =⇒ Q ∨ P"

apply(tactic {* foo_tac *})

done

The apply-step applies the foo_tac. Inside tactic {* . . . *} we can write any func-
tion that returns a tactic.

As can be seen, each tactic in foo_tac has a hard-coded number that stands for the
subgoal analysed by the tactic. In our case, we only focus on the first subgoal. This
is sometimes wanted, but usually not. To avoid the explicit numbering in the tactic,
you can write

val foo_tac’ =

(etac @{thm disjE}

THEN’ rtac @{thm disjI2}

THEN’ atac

THEN’ rtac @{thm disjI1}

THEN’ atac)

and then give the number for the subgoal explicitly when the tactic is called. So in
the next proof we discharge first the second subgoal, and then the first.
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lemma "P1 ∨ Q1 =⇒ Q1 ∨ P1"

and "P2 ∨ Q2 =⇒ Q2 ∨ P2"

apply(tactic {* foo_tac’ 2 *})

apply(tactic {* foo_tac’ 1 *})

done

The tactic foo_tac is very specific for analysing goals of the form P ∨ Q =⇒ Q

∨ P. If the goal is not of this form, then foo_tac throws the error message about
an empty result sequence—meaning the tactic failed. The reason for this message
is that tactics are functions that map a goal state to a (lazy) sequence of successor
states, hence the type of a tactic is

type tactic = thm -> thm Seq.seq

Consequently, if a tactic fails, then it returns the empty sequence. This is by the way
the default behaviour for a failing tactic; tactics should not raise exceptions.

In the following example there are two possibilities for how to apply the tactic.

lemma " [[P ∨ Q; P ∨ Q ]] =⇒ Q ∨ P"

apply(tactic {* foo_tac’ 1 *})

back
done

The application of the tactic results in a sequence of two possible proofs. The Isabelle
command back allows us to explore both possibilities.

See Pure/General/seq.ML for the implementation of lazy sequences. However in day- Read More
to-day Isabelle programming, one rarely constructs sequences explicitly, but uses the
predefined functions instead. See Pure/tactic.ML and Pure/tctical.ML for the code;
see also Chapters 3 and 4 in the old Isabelle Reference Manual.

4.2 Basic Tactics

lemma shows "False =⇒ False"

apply(tactic {* atac 1 *})

done

lemma shows "True ∧ True"

apply(tactic {* rtac @{thm conjI} 1 *})

1. True

2. True

lemma
shows "Foo"

and "True ∧ True"

apply(tactic {* rtac @{thm conjI} 2 *})

1. Foo

2. True

3. True
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lemma shows "False ∧ False =⇒ False"

apply(tactic {* etac @{thm conjE} 1 *})

1. [[False; False ]] =⇒ False

lemma shows "False ∧ True =⇒ False"

apply(tactic {* dtac @{thm conjunct2} 1 *})

1. True =⇒ False

similarly ftac

diagnostics

lemma shows "True =⇒ False"

apply(tactic {* print_tac "foo message" *})

PRIMITIVE? SUBGOAL see page 32 in ref

all_tac no_tac

4.3 Operations on Tactics

THEN

lemma shows "(True ∧ True) ∧ False"

apply(tactic {* (rtac @{thm conjI} 1) THEN (rtac @{thm conjI} 1) *})

1. True

2. True

3. False

lemma shows "True ∧ False"

apply(tactic {* (rtac @{thm disjI1} 1) ORELSE (rtac @{thm conjI} 1) *})

1. True

2. False

EVERY REPEAT SUBPROOF

rewrite_goals_tac cut_facts_tac ObjectLogic.full_atomize_tac ObjectLogic.rulify_tac

resolve_tac

A goal (or goal state) is a special thm, which by convention is an implication of the
form:
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A1 =⇒ . . . =⇒ An =⇒ #(C)

where C is the goal to be proved and the A i are the open subgoals. Since the goal C
can potentially be an implication, there is a # wrapped around it, which prevents that
premises are misinterpreted as open subgoals. The wrapper # :: prop ⇒ prop is
just the identity function and used as a syntactic marker.

While tactics can operate on the subgoals (the A i above), they are expected to leave
the conclusion C intact, with the exception of possibly instantiating schematic vari-
ables.
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Chapter 5

How to write a definitional
package

5.1 Introduction

“My thesis is that programming is not at the bottom of the intellectual
pyramid, but at the top. It’s creative design of the highest order. It
isn’t monkey or donkey work; rather, as Edsger Dijkstra famously

claimed, it’s amongst the hardest intellectual tasks ever attempted.”

Richard Bornat, In defence of programming

Higher order logic, as implemented in Isabelle/HOL, is based on just a few primitive
constants, like equality, implication, and the description operator, whose properties
are described as axioms. All other concepts, such as inductive predicates, datatypes,
or recursive functions are defined using these constants, and the desired properties,
for example induction theorems, or recursion equations are derived from the defi-
nitions by a formal proof. Since it would be very tedious for the average user to
define complex inductive predicates or datatypes “by hand” just using the primitive
operators of higher order logic, Isabelle/HOL already contains a number of packages
automating such tedious work. Thanks to those packages, the user can give a high-
level specification, like a list of introduction rules or constructors, and the package
then does all the low-level definitions and proofs behind the scenes. The packages
are written in Standard ML, the implementation language of Isabelle, and can be
invoked by the user from within theory documents written in the Isabelle/Isar lan-
guage via specific commands. Most of the time, when using Isabelle for applications,
users do not have to worry about the inner workings of packages, since they can just
use the packages that are already part of the Isabelle distribution. However, when
developing a general theory that is intended to be applied by other users, one may
need to write a new package from scratch. Recent examples of such packages in-
clude the verification environment for sequential imperative programs by Schirmer
[7], the package for defining general recursive functions by Krauss [2], as well as
the nominal datatype package by Berghofer and Urban [9].

The scientific value of implementing a package should not be underestimated: it is
often more than just the automation of long-established scientific results. Of course,
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a carefully-developed theory on paper is indispensable as a basis. However, without
an implementation, such a theory will only be of very limited practical use, since only
an implementation enables other users to apply the theory on a larger scale without
too much effort. Moreover, implementing a package is a bit like formalizing a paper
proof in a theorem prover. In the literature, there are many examples of paper proofs
that turned out to be incomplete or even faulty, and doing a formalization is a good
way of uncovering such errors and ensuring that a proof is really correct. The same
applies to the theory underlying definitional packages. For example, the general
form of some complicated induction rules for nominal datatypes turned out to be
quite hard to get right on the first try, so an implementation is an excellent way to
find out whether the rules really work in practice.

Writing a package is a particularly difficult task for users that are new to Isabelle,
since its programming interface consists of thousands of functions. Rather than just
listing all those functions, we give a step-by-step tutorial for writing a package, using
an example that is still simple enough to be easily understandable, but at the same
time sufficiently complex to demonstrate enough of Isabelle’s interesting features.
As a running example, we have chosen a rather simple package for defining induc-
tive predicates. To keep things simple, we will not use the general Knaster-Tarski
fixpoint theorem on complete lattices, which forms the basis of Isabelle’s standard
inductive definition package originally due to Paulson [6]. Instead, we will use a
simpler impredicative (i.e. involving quantification on predicate variables) encoding
of inductive predicates suggested by Melham [3]. Due to its simplicity, this package
will necessarily have a reduced functionality. It does neither support introduction
rules involving arbitrary monotone operators, nor does it prove case analysis (or in-
version) rules. Moreover, it only proves a weaker form of the rule induction theorem.

Reading this article does not require any prior knowledge of Isabelle’s programming
interface. However, we assume the reader to already be familiar with writing proofs
in Isabelle/HOL using the Isar language. For further information on this topic, con-
sult the book by Nipkow, Paulson, and Wenzel [4]. Moreover, in order to understand
the pieces of code given in this tutorial, some familiarity with the basic concepts of
the Standard ML programming language, as described for example in the textbook
by Paulson [5], is required as well.

The rest of this article is structured as follows. In §5.2, we will illustrate the “manual”
definition of inductive predicates using some examples. Starting from these exam-
ples, we will describe in §5.3 how the construction works in general. The following
sections are then dedicated to the implementation of a package that carries out the
construction of such inductive predicates. First of all, a parser for a high-level nota-
tion for specifying inductive predicates via a list of introduction rules is developed in
§5.4. Having parsed the specification, a suitable primitive definition must be added
to the theory, which will be explained in §??. Finally, §?? will focus on methods for
proving introduction and induction rules from the definitions introduced in §??.
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5.2 Examples of inductive definitions

In this section, we will give three examples showing how to define inductive pred-
icates by hand and prove characteristic properties such as introduction rules and
an induction rule. From these examples, we will then figure out a general method
for defining inductive predicates, which will be described in §5.3. This description
will serve as a basis for the actual implementation to be developed in §5.4 – §??. It
should be noted that our aim in this section is not to write proofs that are as beauti-
ful as possible, but as close as possible to the ML code producing the proofs that we
will develop later. As a first example, we consider the transitive closure trcl R of a
relation R. It is characterized by the following two introduction rules

trcl R x x

R x y =⇒ trcl R y z =⇒ trcl R x z

Note that the trcl predicate has two different kinds of parameters: the first param-
eter R stays fixed throughout the definition, whereas the second and third parameter
changes in the “recursive call”. Since an inductively defined predicate is the least
predicate closed under a collection of introduction rules, we define the predicate
trcl R x y in such a way that it holds if and only if P x y holds for every predicate
P closed under the above rules. This gives rise to a definition containing a universal
quantifier over the predicate P :

definition "trcl ≡ λR x y.

∀ P. (∀ x. P x x) −→ (∀ x y z. R x y −→ P y z −→ P x z) −→ P x y"

Since the predicate trcl R x y yields an element of the type of object level truth
values bool, the meta-level implications =⇒ in the above introduction rules have
to be converted to object-level implications −→. Moreover, we use object-level uni-
versal quantifiers ∀ rather than meta-level universal quantifiers

∧
for quantifying

over the variable parameters of the introduction rules. Isabelle already offers some
infrastructure for converting between meta-level and object-level connectives, which
we will use later on.

With this definition of the transitive closure, the proof of the (weak) induction theo-
rem is almost immediate. It suffices to convert all the meta-level connectives in the
induction rule to object-level connectives using the atomize proof method, expand
the definition of trcl, eliminate the universal quantifier contained in it, and then
solve the goal by assumption.

lemma trcl_induct:

assumes trcl: "trcl R x y"

shows "(
∧
x. P x x) =⇒ (

∧
x y z. R x y =⇒ P y z =⇒ P x z) =⇒ P x y"

apply (atomize (full))

apply (cut_tac trcl)

apply (unfold trcl_def)

apply (drule spec [where x=P])

apply assumption

done

The above induction rule is weak in the sense that the induction step may only be
proved using the assumptions R x y and P y z, but not using the additional as-
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sumption trcl R y z . A stronger induction rule containing this additional assump-
tion can be derived from the weaker one with the help of the introduction rules for
trcl.

We now turn to the proofs of the introduction rules, which are slightly more com-
plicated. In order to prove the first introduction rule, we again unfold the definition
and then apply the introdution rules for ∀ and −→ as often as possible. We then end
up in a proof state of the following form:

1.
∧
P. [[∀ x. P x x; ∀ x y z. R x y −→ P y z −→ P x z ]] =⇒ P x x

The two assumptions correspond to the introduction rules, where trcl R has been
replaced by P. Thus, all we have to do is to eliminate the universal quantifier in front
of the first assumption, and then solve the goal by assumption:

lemma trcl_base: "trcl R x x"

apply (unfold trcl_def)

apply (rule allI impI)+

apply (drule spec)

apply assumption

done

Since the second introduction rule has premises, its proof is not as easy as the pre-
vious one. After unfolding the definitions and applying the introduction rules for ∀
and −→, we get the proof state

1.
∧
P. [[R x y;

∀ P. (∀ x. P x x) −→ (∀ x y z. R x y −→ P y z −→ P x z) −→ P y z;

∀ x. P x x; ∀ x y z. R x y −→ P y z −→ P x z ]]
=⇒ P x z

The third and fourth assumption corresponds to the first and second introduction
rule, respectively, whereas the first and second assumption corresponds to the premises
of the introduction rule. Since we want to prove the second introduction rule, we
apply the fourth assumption to the goal P x z. In order for the assumption to be
applicable, we have to eliminate the universal quantifiers and turn the object-level
implications into meta-level ones. This can be accomplished using the rule_format

attribute. Applying the assumption produces two new subgoals, which can be solved
using the first and second assumption. The second assumption again involves a
quantifier and implications that have to be eliminated before it can be applied. To
avoid problems with higher order unification, it is advisable to provide an instantia-
tion for the universally quantified predicate variable in the assumption.

lemma trcl_step: "R x y =⇒ trcl R y z =⇒ trcl R x z"

apply (unfold trcl_def)

apply (rule allI impI)+

proof -

case goal1

show ?case

apply (rule goal1(4) [rule_format])

apply (rule goal1(1))

apply (rule goal1(2) [THEN spec [where x=P], THEN mp, THEN mp,

OF goal1(3-4)])
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done
qed

This method of defining inductive predicates easily generalizes to mutually inductive
predicates, like the predicates even and odd characterized by the following introduc-
tion rules:

even 0

odd m =⇒ even (Suc m)

even m =⇒ odd (Suc m)

Since the predicates are mutually inductive, each of the definitions contain two quan-
tifiers over the predicates P and Q.
definition "even ≡ λn.
∀ P Q. P 0 −→ (∀ m. Q m −→ P (Suc m)) −→ (∀ m. P m −→ Q (Suc m)) −→ P n"

definition "odd ≡ λn.
∀ P Q. P 0 −→ (∀ m. Q m −→ P (Suc m)) −→ (∀ m. P m −→ Q (Suc m)) −→ Q n"

For proving the induction rule, we use exactly the same technique as in the transitive
closure example:
lemma even_induct:

assumes even: "even n"

shows "P 0 =⇒
(
∧
m. Q m =⇒ P (Suc m)) =⇒ (

∧
m. P m =⇒ Q (Suc m)) =⇒ P n"

apply (atomize (full))

apply (cut_tac even)

apply (unfold even_def)

apply (drule spec [where x=P])

apply (drule spec [where x=Q])

apply assumption

done

A similar induction rule having Q n as a conclusion can be proved for the odd pred-
icate. The proofs of the introduction rules are also very similar to the ones in the
previous example. We only show the proof of the second introduction rule, since it
is almost the same as the one for the third introduction rule, and the proof of the
first rule is trivial.
lemma evenS: "odd m =⇒ even (Suc m)"

apply (unfold odd_def even_def)

apply (rule allI impI)+

proof -

case goal1

show ?case

apply (rule goal1(3) [rule_format])

apply (rule goal1(1) [THEN spec [where x=P], THEN spec [where x=Q],

THEN mp, THEN mp, THEN mp, OF goal1(2-4)])

done
qed

As a final example, we will consider the definition of the accessible part of a relation
R characterized by the introduction rule

(
∧

y. R y x =⇒ accpart R y) =⇒ accpart R x
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whose premise involves a universal quantifier and an implication. The definition of
accpart is as follows:

definition "accpart ≡ λR x. ∀ P. (∀ x. (∀ y. R y x −→ P y) −→ P x) −→ P x"

The proof of the induction theorem is again straightforward:

lemma accpart_induct:

assumes acc: "accpart R x"

shows "(
∧
x. (

∧
y. R y x =⇒ P y) =⇒ P x) =⇒ P x"

apply (atomize (full))

apply (cut_tac acc)

apply (unfold accpart_def)

apply (drule spec [where x=P])

apply assumption

done

Proving the introduction rule is a little more complicated, due to the quantifier and
the implication in the premise. We first convert the meta-level universal quanti-
fier and implication to their object-level counterparts. Unfolding the definition of
accpart and applying the introduction rules for ∀ and −→ yields the following
proof state:

1.
∧
P. [[

∧
y. R y x =⇒ ∀ P. (∀ x. (∀ y. R y x −→ P y) −→ P x) −→ P y;

∀ x. (∀ y. R y x −→ P y) −→ P x ]]
=⇒ P x

Applying the second assumption produces a proof state with the new local assump-
tion R y x, which will then be used to solve the goal P y using the first assumption.

lemma accpartI: "(
∧
y. R y x =⇒ accpart R y) =⇒ accpart R x"

apply (unfold accpart_def)

apply (rule allI impI)+

proof -

case goal1

note goal1’ = this

show ?case

apply (rule goal1’(2) [rule_format])

proof -

case goal1

show ?case

apply (rule goal1’(1) [OF goal1, THEN spec [where x=P],

THEN mp, OF goal1’(2)])

done
qed

qed

5.3 The general construction principle

Before we start with the implementation, it is useful to describe the general form of
inductive definitions that our package should accept. We closely follow the notation
for inductive definitions introduced by Schwichtenberg [8] for the Minlog system.

41



Let R1, . . . , Rn be mutually inductive predicates and ~p be parameters. Then the
introduction rules for R1, . . . , Rn may have the form∧

~xi. ~Ai =⇒
(∧

~yij . ~Bij =⇒ Rkij
~p ~sij

)
j=1,...,mi

=⇒ Rli ~p ~ti for i = 1, . . . , r

where ~Ai and ~Bij are formulae not containing R1, . . . , Rn. Note that by disallow-
ing the inductive predicates to occur in ~Bij we make sure that all occurrences of
the predicates in the premises of the introduction rules are strictly positive. This
condition guarantees the existence of predicates that are closed under the introduc-
tion rules shown above. The inductive predicates R1, . . . , Rn can then be defined as
follows:

Ri ≡ λ~p ~zi. ∀P1 . . . Pn. K1 −→ · · · −→ Kr −→ Pi ~zi for i = 1, . . . , n

where

Ki ≡ ∀~xi. ~Ai −→
(
∀~yij . ~Bij −→ Pkij

~sij

)
j=1,...,mi

−→ Pli
~ti for i = 1, . . . , r

The (weak) induction rules for the inductive predicates R1, . . . , Rn are

Ri ~p ~zi =⇒ I1 =⇒ · · · =⇒ Ir =⇒ Pi ~zi for i = 1, . . . , n

where

Ii ≡
∧
~xi. ~Ai =⇒

(∧
~yij . ~Bij =⇒ Pkij

~sij

)
j=1,...,mi

=⇒ Pli
~ti for i = 1, . . . , r

Since Ki and Ii are equivalent modulo conversion between meta-level and object-
level connectives, it is clear that the proof of the induction theorem is straight-
forward. We will therefore focus on the proof of the introduction rules. When
proving the introduction rule shown above, we start by unfolding the definition of
R1, . . . , Rn, which yields∧
~xi. ~Ai =⇒

(∧
~yij . ~Bij =⇒ ∀P1 . . . Pn. ~K −→ Pkij

~sij

)
j=1,...,mi

=⇒ ∀P1 . . . Pn. ~K −→ Pli
~ti

where ~K abbreviates K1, . . . ,Kr. Applying the introduction rules for ∀ and −→
yields a proof state in which we have to prove Pli

~ti from the additional assumptions
~K. When using Kli (converted to meta-logic format) to prove Pli

~ti, we get subgoals
~Ai that are trivially solvable by assumption, as well as subgoals of the form∧

~yij . ~Bij =⇒ Pkij
~sij for j = 1, . . . ,mi

that can be solved using the assumptions∧
~yij . ~Bij =⇒ ∀P1 . . . Pn. ~K −→ Pkij

~sij and ~K
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5.4 The interface

In order to add a new inductive predicate to a theory with the help of our package,
the user must invoke it. For every package, there are essentially two different ways of
invoking it, which we will refer to as external and internal. By external invocation we
mean that the package is called from within a theory document. In this case, the type
of the inductive predicate, as well as its introduction rules, are given as strings by the
user. Before the package can actually make the definition, the type and introduction
rules have to be parsed. In contrast, internal invocation means that the package is
called by some other package. For example, the function definition package [2] calls
the inductive definition package to define the graph of the function. However, it is
not a good idea for the function definition package to pass the introduction rules for
the function graph to the inductive definition package as strings. In this case, it is
better to directly pass the rules to the package as a list of terms, which is more robust
than handling strings that are lacking the additional structure of terms. These two
ways of invoking the package are reflected in its ML programming interface, which
consists of two functions:

signature SIMPLE_INDUCTIVE_PACKAGE =

sig

val add_inductive_i:

((Binding.binding * typ) * mixfix) list -> predicates
(Binding.binding * typ) list -> parameters
(Attrib.binding * term) list -> rules
local_theory -> (thm list * thm list) * local_theory

val add_inductive:

(Binding.binding * string option * mixfix) list -> predicates
(Binding.binding * string option * mixfix) list -> parameters
(Attrib.binding * string) list -> rules
local_theory -> (thm list * thm list) * local_theory

end;

The function for external invocation of the package is called add_inductive, whereas
the one for internal invocation is called add_inductive_i. Both of these functions
take as arguments the names and types of the inductive predicates, the names and
types of their parameters, the actual introduction rules and a local theory. They re-
turn a local theory containing the definition, together with a tuple containing the
introduction and induction rules, which are stored in the local theory, too. In con-
trast to an ordinary theory, which simply consists of a type signature, as well as
tables for constants, axioms and theorems, a local theory also contains additional
context information, such as locally fixed variables and local assumptions that may
be used by the package. The type local_theory is identical to the type of proof
contexts Proof.context, although not every proof context constitutes a valid local
theory. Note that add_inductive_i expects the types of the predicates and param-
eters to be specified using the datatype typ of Isabelle’s logical framework, whereas
add_inductive expects them to be given as optional strings. If no string is given
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for a particular predicate or parameter, this means that the type should be inferred
by the package. Additional mixfix syntax may be associated with the predicates and
parameters as well. Note that add_inductive_i does not allow mixfix syntax to
be associated with parameters, since it can only be used for parsing. The names of
the predicates, parameters and rules are represented by the type Binding.binding.
Strings can be turned into elements of the type Binding.binding using the function

Binding.name : string -> Binding.binding

Each introduction rule is given as a tuple containing its name, a list of attributes and a
logical formula. Note that the type Attrib.binding used in the list of introduction
rules is just a shorthand for the type Binding.binding * Attrib.src list. The
function add_inductive_i expects the formula to be specified using the datatype
term, whereas add_inductive expects it to be given as a string. An attribute speci-
fies additional actions and transformations that should be applied to a theorem, such
as storing it in the rule databases used by automatic tactics like the simplifier. The
code of the package, which will be described in the following section, will mostly
treat attributes as a black box and just forward them to other functions for stor-
ing theorems in local theories. The implementation of the function add_inductive

for external invocation of the package is quite simple. Essentially, it just parses the
introduction rules and then passes them on to add_inductive_i :

fun add_inductive preds_syn params_syn intro_srcs lthy =

let

val ((vars, specs), _) = Specification.read_specification

(preds_syn @ params_syn) (map (fn (a, s) => [(a, [s])]) intro_srcs)

lthy;

val (preds_syn’, params_syn’) = chop (length preds_syn) vars;

val intrs = map (apsnd the_single) specs

in

add_inductive_i preds_syn’ (map fst params_syn’) intrs lthy

end;

For parsing and type checking the introduction rules, we use the function

Specification.read_specification:

(Binding.binding * string option * mixfix) list -> variables
(Attrib.binding * string list) list list -> rules
local_theory ->

(((Binding.binding * typ) * mixfix) list *

(Attrib.binding * term list) list) *

local_theory

During parsing, both predicates and parameters are treated as variables, so the lists
preds_syn and params_syn are just appended before being passed to read_specification.
Note that the format for rules supported by read_specification is more general
than what is required for our package. It allows several rules to be associated
with one name, and the list of rules can be partitioned into several sublists. In
order for the list intro_srcs of introduction rules to be acceptable as an input for
read_specification, we first have to turn it into a list of singleton lists. This trans-
formation has to be reversed later on by applying the function
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the_single: ’a list -> ’a

to the list specs containing the parsed introduction rules. The function read_specification

also returns the list vars of predicates and parameters that contains the inferred
types as well. This list has to be chopped into the two lists preds_syn’ and params_syn’
for predicates and parameters, respectively. All variables occurring in a rule but not
in the list of variables passed to read_specification will be bound by a meta-level
universal quantifier.

Finally, read_specification also returns another local theory, but we can safely
discard it. As an example, let us look at how we can use this function to parse the
introduction rules of the trcl predicate:

Specification.read_specification

[(Binding.name "trcl", NONE, NoSyn),

(Binding.name "r", SOME "’a ⇒ ’a ⇒ bool", NoSyn)]

[[((Binding.name "base", []), ["trcl r x x"])],

[((Binding.name "step", []), ["trcl r x y =⇒ r y z =⇒ trcl r x z"])]]

@{context}

> (( . . . ,
> [( . . . ,
> [Const ("all", . . . ) $ Abs ("x", TFree ("’a", . . . ),
> Const ("Trueprop", . . . ) $

> (Free ("trcl", . . . ) $ Free ("r", . . . ) $ Bound 0 $ Bound 0))]),

> ( . . . ,
> [Const ("all", . . . ) $ Abs ("x", TFree ("’a", . . . ),
> Const ("all", . . . ) $ Abs ("y", TFree ("’a", . . . ),
> Const ("all", . . . ) $ Abs ("z", TFree ("’a", . . . ),
> Const ("==>", . . . ) $

> (Const ("Trueprop", . . . ) $

> (Free ("trcl", . . . ) $ Free ("r", . . . ) $ Bound 2 $ Bound 1)) $

> (Const ("==>", . . . ) $ . . . $ . . . ))))])]),
> . . . )
> : (((Binding.binding * typ) * mixfix) list *

> (Attrib.binding * term list) list) * local_theory

In the list of variables passed to read_specification, we have used the mixfix
annotation NoSyn to indicate that we do not want to associate any mixfix syntax
with the variable. Moreover, we have only specified the type of r, whereas the
type of trcl is computed using type inference. The local variables x, y and z of
the introduction rules are turned into bound variables with the de Bruijn indices,
whereas trcl and r remain free variables.

Parsers for theory syntax Although the function add_inductive parses terms and
types, it still cannot be used to invoke the package directly from within a theory
document. In order to do this, we have to write another parser. Before we describe
the process of writing parsers for theory syntax in more detail, we first show some
examples of how we would like to use the inductive definition package.

The definition of the transitive closure should look as follows:

simple inductive
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trcl for r :: "’a ⇒ ’a ⇒ bool"

where
base: "trcl r x x"

| step: "trcl r x y =⇒ r y z =⇒ trcl r x z"

Even and odd numbers can be defined by

simple inductive
even and odd

where
even0: "even 0"

| evenS: "odd n =⇒ even (Suc n)"

| oddS: "even n =⇒ odd (Suc n)"

The accessible part of a relation can be introduced as follows:

simple inductive
accpart for r :: "’a ⇒ ’a ⇒ bool"

where
accpartI: "(

∧
y. r y x =⇒ accpart r y) =⇒ accpart r x"

Moreover, it should also be possible to define the accessible part inside a locale fixing
the relation r :

locale rel =

fixes r :: "’a ⇒ ’a ⇒ bool"

simple inductive ( in rel) accpart’

where
accpartI’: "

∧
x. (

∧
y. r y x =⇒ accpart’ y) =⇒ accpart’ x"

In this context, it is important to note that Isabelle distinguishes between outer and
inner syntax. Theory commands such as simple inductive . . . for . . . where . . .
belong to the outer syntax, whereas items in quotation marks, in particular terms
such as "trcl r x x" and types such as "’a ⇒ ’a ⇒ bool" belong to the inner
syntax. Separating the two layers of outer and inner syntax greatly simplifies mat-
ters, because the parser for terms and types does not have to know anything about
the possible syntax of theory commands, and the parser for theory commands need
not be concerned about the syntactic structure of terms and types.

The syntax of the simple inductive command can be described by the following
railroad diagram:
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|| : (’a -> ’b) * (’a -> ’b) -> ’a -> ’b

-- : (’a -> ’b * ’c) * (’c -> ’d * ’e) -> ’a -> (’b * ’d) * ’e

|-- : (’a -> ’b * ’c) * (’c -> ’d * ’e) -> ’a -> ’d * ’e

--| : (’a -> ’b * ’c) * (’c -> ’d * ’e) -> ’a -> ’b * ’e

optional: (’a -> ’b * ’a) -> ’b -> ’a -> ’b * ’a

repeat: (’a -> ’b * ’a) -> ’a -> ’b list * ’a

repeat1: (’a -> ’b * ’a) -> ’a -> ’b list * ’a

>> : (’a -> ’b * ’c) * (’b -> ’d) -> ’a -> ’d * ’c

!! : (’a * string option -> string) -> (’a -> ’b) -> ’a -> ’b

simple inductive
�� ��

� target

�


fixes �
�for

�� �fixes

�


�
�

��
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Functional parsers For parsing terms and types, Isabelle uses a rather general
and sophisticated algorithm due to Earley, which is driven by priority grammars. In
contrast, parsers for theory syntax are built up using a set of combinators. Functional
parsing using combinators is a well-established technique, which has been described
by many authors, including Paulson [?] and Wadler [10]. The central idea is that a
parser is a function of type ’a list -> ’b * ’a list, where ’a is a type of tokens,
and ’b is a type for encoding items that the parser has recognized. When a parser
is applied to a list of tokens whose prefix it can recognize, it returns an encoding
of the prefix as an element of type ’b, together with the suffix of the list containing
the remaining tokens. Otherwise, the parser raises an exception indicating a syntax
error. The library for writing functional parsers in Isabelle can roughly be split up
into two parts. The first part consists of a collection of generic parser combinators
that are contained in the structure Scan defined in the file Pure/General/scan.ML

in the Isabelle sources. While these combinators do not make any assumptions about
the concrete structure of the tokens used, the second part of the library consists of
combinators for dealing with specific token types. The following is an excerpt from
the signature of Scan :

Interestingly, the functions shown above are so generic that they do not even rely on
the input and output of the parser being a list of tokens. If p succeeds, i.e. does not
raise an exception, the parser p || q returns the result of p, otherwise it returns the
result of q. The parser p -- q first parses an item of type ’b using p, then passes
the remaining tokens of type ’c to q, which parses an item of type ’d and returns
the remaining tokens of type ’e, which are finally returned together with a pair of
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one: (’a -> bool) -> ’a list -> ’a * ’a list

$$ : string -> string list -> string * string list

type ’b * ’d containing the two parsed items. The parsers p |-- q and p --| q

work in a similar way as the previous one, with the difference that they discard the
item parsed by the first and the second parser, respectively. If p succeeds, the parser
optional p x returns the result of p, otherwise it returns the default value x. The
parser repeat p applies p as often as it can, returning a possibly empty list of parsed
items. The parser repeat1 p is similar, but requires p to succeed at least once. The
parser p >> f uses p to parse an item of type ’b, to which it applies the function f
yielding a value of type ’d, which is returned together with the remaining tokens of
type ’c. Finally, !! is used for transforming exceptions produced by parsers. If p
raises an exception indicating that it cannot parse a given input, then an enclosing
parser such as

q -- p || r

will try the alternative parser r. By writing

q -- !! err p || r

instead, one can achieve that a failure of p causes the whole parser to abort. The
!! operator is similar to the cut operator in Prolog, which prevents the interpreter
from backtracking. The err function supplied as an argument to !! can be used to
produce an error message depending on the current state of the parser, as well as
the optional error message returned by p.

So far, we have only looked at combinators that construct more complex parsers from
simpler parsers. In order for these combinators to be useful, we also need some basic
parsers. As an example, we consider the following two parsers defined in Scan :

The parser one pred parses exactly one token that satisfies the predicate pred,
whereas $$ s only accepts a token that equals the string s. Note that we can easily
express $$ s using one :

one (fn s’ => s’ = s)

As an example, let us look at how we can use $$ and -- to parse the prefix “hello”
of the character list “hello world”:

($$ "h" -- $$ "e" -- $$ "l" -- $$ "l" -- $$ "o")

["h", "e", "l", "l", "o", " ", "w", "o", "r", "l", "d"]

> ((((("h", "e"), "l"), "l"), "o"), [" ", "w", "o", "r", "l", "d"])

> : ((((string * string) * string) * string) * string) * string list

Most of the time, however, we will have to deal with tokens that are not just strings.
The parsers for the theory syntax, as well as the parsers for the argument syntax of
proof methods and attributes use the token type OuterParse.token, which is iden-
tical to OuterLex.token. The parser functions for the theory syntax are contained
in the structure OuterParse defined in the file Pure/Isar/outer_parse.ML. In our
parser, we will use the following functions:
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$$$ : string -> token list -> string * token list

enum1: string -> (token list -> ’a * token list) -> token list ->

’a list * token list

prop: token list -> string * token list

opt_target: token list -> string option * token list

fixes: token list ->

(Binding.binding * string option * mixfix) list * token list

for_fixes: token list ->

(Binding.binding * string option * mixfix) list * token list

!!! : (token list -> ’a) -> token list -> ’a

opt_thm_name:

string -> token list -> Attrib.binding * token list

The parsers $$$ and !!! are defined using the parsers one and !! from Scan.
The parser enum1 s p parses a non-emtpy list of items recognized by the parser p,
where the items are separated by s. A proposition can be parsed using the function
prop. Essentially, a proposition is just a string or an identifier, but using the specific
parser function prop leads to more instructive error messages, since the parser will
complain that a proposition was expected when something else than a string or
identifier is found. An optional locale target specification of the form ( in . . .) can
be parsed using opt_target. The lists of names of the predicates and parameters,
together with optional types and syntax, are parsed using the functions fixes and
for_fixes, respectively. In addition, the following function from SpecParse for
parsing an optional theorem name and attribute, followed by a delimiter, will be
useful:

We now have all the necessary tools to write the parser for our simple inductive
command:

local structure P = OuterParse and K = OuterKeyword in

val ind_decl =

P.opt_target --

P.fixes -- P.for_fixes --

Scan.optional (P.$$$ "where" |--

P.!!! (P.enum1 "|" (SpecParse.opt_thm_name ":" -- P.prop))) [] >>

(fn (((loc, preds), params), specs) =>

Toplevel.local_theory loc (add_inductive preds params specs #> snd));

val _ = OuterSyntax.command "simple_inductive" "define inductive predicates"

K.thy_decl ind_decl;

end;

The definition of the parser ind_decl closely follows the railroad diagram shown
above. In order to make the code more readable, the structures OuterParse and
OuterKeyword are abbreviated by P and K, respectively. Note how the parser com-
binator !!! is used: once the keyword where has been parsed, a non-empty list
of introduction rules must follow. Had we not used the combinator !!!, a where
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not followed by a list of rules would have caused the parser to respond with the
somewhat misleading error message

Outer syntax error: end of input expected, but keyword where was found

rather than with the more instructive message

Outer syntax error: proposition expected, but terminator was found

Once all arguments of the command have been parsed, we apply the function add_inductive,
which yields a local theory transformer of type local_theory -> local_theory.
Commands in Isabelle/Isar are realized by transition transformers of type

Toplevel.transition -> Toplevel.transition

We can turn a local theory transformer into a transition transformer by using the
function

Toplevel.local_theory : string option ->

(local_theory -> local_theory) ->

Toplevel.transition -> Toplevel.transition

which, apart from the local theory transformer, takes an optional name of a locale to
be used as a basis for the local theory.

(FIXME : needs to be adjusted to new parser type)

The whole parser for our command has type

OuterLex.token list ->

(Toplevel.transition -> Toplevel.transition) * OuterLex.token list

which is abbreviated by OuterSyntax.parser_fn. The new command can be added to
the system via the function

OuterSyntax.command :

string -> string -> OuterKeyword.T -> OuterSyntax.parser_fn -> unit

which imperatively updates the parser table behind the scenes.
In addition to the parser, this function takes two strings representing the name of the
command and a short description, as well as an element of type OuterKeyword.T de-
scribing which kind of command we intend to add. Since we want to add a command
for declaring new concepts, we choose the kind OuterKeyword.thy_decl. Other
kinds include OuterKeyword.thy_goal, which is similar to thy_decl, but requires
the user to prove a goal before making the declaration, or OuterKeyword.diag,
which corresponds to a purely diagnostic command that does not change the con-
text. For example, the thy_goal kind is used by the function command [2], which
requires the user to prove that a given set of equations is non-overlapping and covers
all cases. The kind of the command should be chosen with care, since selecting the
wrong one can cause strange behaviour of the user interface, such as failure of the
undo mechanism.
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Appendix A

Recipes

A.1 Accumulate a List of Theorems under a Name

Problem: Your tool foo works with special rules, called foo -rules. Users should be
able to declare foo -rules in the theory, which are then used in a method.

Solution: This can be achieved using named theorem lists.

Named theorem lists can be set up using the code

structure FooRules = NamedThmsFun (

val name = "foo"

val description = "Rules for foo");

and the command

setup {* FooRules.setup *}

This code declares a context data slot where the theorems are stored, an attribute
foo (with the usual add and del options for adding and deleting theorems) and an
internal ML interface to retrieve and modify the theorems.

Furthermore, the facts are made available on the user level under the dynamic fact
name foo. For example we can declare three lemmas to be of the kind foo by:

lemma rule1[foo]: "A" sorry
lemma rule2[foo]: "B" sorry
lemma rule3[foo]: "C" sorry

and undeclare the first one by:

declare rule1[foo del]

and query the remaining ones with:
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thm foo

> ?C

> ?B

On the ML-level the rules marked with foo an be retrieved using the function
FooRules.get :

FooRules.get @{context}

> ["?C","?B"]

For more information see Pure/Tools/named_thms.ML and also the recipe in Sec- Read More
tion A.6 about storing arbitrary data.

(FIXME: maybe add a comment about the case when the theorems to be added need
to satisfy certain properties)

A.2 Ad-hoc Transformations of Theorems

A.3 Useful Document Antiquotations

Problem: How to keep your ML-code inside a document synchronised with the ac-
tual code?

Solution: This can be achieved using document antiquotations.

Document antiquotations can be used for ensuring consistent type-setting of various
entities in a document. They can also be used for sophisticated LATEX-hacking. If
you type Ctrl-c Ctrl-a h A inside ProofGeneral, you obtain a list of all currently
available document antiquotations and their options.

Below we give the code for two additional antiquotations that can be used to typeset
ML-code and also to check whether the given code actually compiles. This provides
a sanity check for the code and also allows one to keep documents in sync with other
code, for example Isabelle.

We first describe the antiquotation ML_checked with the syntax:
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@{ML_checked "a_piece_of_code"}

The code is checked by sending the ML-expression "val _ = a_piece_of_code"

to the ML-compiler (i.e. the function ML_Context.eval_in in Line 4 below). The
complete code of the antiquotation is as follows:

fun ml_val code_txt = "val _ = " ^ code_txt1

2

fun output_ml src ctxt code_txt =3

(ML_Context.eval_in (SOME ctxt) false Position.none (ml_val code_txt);4

ThyOutput.output_list (fn _ => fn s => Pretty.str s) src ctxt5

(space_explode "\n" code_txt))6

7

val _ = ThyOutput.add_commands8

[("ML_checked", ThyOutput.args (Scan.lift Args.name) output_ml)]9

Note that the parser (Scan.lift Args.name) in line 9 parses a string, in this case
the code given as argument. As mentioned before, this argument is sent to the ML-
compiler in the line 4 using the function ml_val, which constructs the appropriate
ML-expression. If the code is “approved” by the compiler, then the output func-
tion ThyOutput.output_list (fn _ => fn s => Pretty.str s) in the next line
pretty prints the code. This function expects that the code is a list of strings where
each string correspond to a line in the output. Therefore the use of (space_explode
"\n" txt) which produces this list according to linebreaks. There are a number
of options for antiquotations that are observed by ThyOutput.output_list when
printing the code (including [display], [quotes] and [source]).

For more information about options of antiquotations see [Isar Ref. Man., Sec. 5.2]). Read More

Since we used the argument Position.none, the compiler cannot give specific in-
formation about the line number, in case an error is detected. We can improve the
code above slightly by writing

fun output_ml src ctxt (code_txt,pos) =1

(ML_Context.eval_in (SOME ctxt) false pos (ml_val code_txt);2

ThyOutput.output_list (fn _ => fn s => Pretty.str s) src ctxt3

(space_explode "\n" code_txt))4

5

val _ = ThyOutput.add_commands6

[("ML_checked", ThyOutput.args7

(Scan.lift (OuterParse.position Args.name)) output_ml)]8

where in Lines 1 and 2 the positional information is properly treated.

(FIXME: say something about OuterParse.position)

We can now write in a document @{ML_checked "2 + 3"} in order to obtain 2 + 3

and be sure that this code compiles until somebody changes the definition of (op +) .

The second antiquotation we describe extends the first by allowing also to give a
pattern that specifies what the result of the ML-code should be and to check the
consistency of the actual result with the given pattern. For this we are going to
implement the antiquotation
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@{ML_resp "a_piece_of_code" "pattern"}

To add some convenience and also to deal with large outputs, the user can give a
partial specification by giving the abbreviation " . . . ". For example ( . . . , . . . ) for a
pair.

Whereas in the antiquotation @{ML_checked "piece_of_code"} above, we have
sent the expression "val _ = piece_of_code" to the compiler, in the second the
wildcard _ we will be replaced by a proper pattern. To do this we need to replace
the " . . . " by "_" before sending the code to the compiler. The following function
will do this:

fun ml_pat (code_txt, pat) =

let val pat’ =

implode (map (fn " . . . " => "_" | s => s) (Symbol.explode pat))

in

"val " ^ pat’ ^ " = " ^ code_txt

end

Next we like to add a response indicator to the result using:

fun add_resp_indicator pat =

map (fn s => "> " ^ s) (space_explode "\n" pat)

The rest of the code of the antiquotation is

fun output_ml_resp src ctxt ((code_txt,pat),pos) =

(ML_Context.eval_in (SOME ctxt) false pos (ml_pat (code_txt,pat));

let

val output = (space_explode "\n" code_txt) @ (add_resp_indicator pat)

in

ThyOutput.output_list (fn _ => fn s => Pretty.str s) src ctxt output

end)

val _ = ThyOutput.add_commands

[("ML_resp",

ThyOutput.args

(Scan.lift (OuterParse.position (Args.name -- Args.name)))

output_ml_resp)]

This extended antiquotation allows us to write

@{ML_resp [display] "true andalso false" "false"}

to obtain

true andalso false

> false
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or

@{ML_resp [display] "let val i = 3 in (i * i,"foo") end" "(9, . . . )"}

to obtain

let val i = 3 in (i * i,"foo") end

> (9, . . . )

In both cases, the check by the compiler ensures that code and result match. A limi-
tation of this antiquotation, however, is that the hints can only be given in case they
can be constructed as a pattern. This excludes values that are abstract datatypes,
like theorems or cterms.

A.4 Restricting the Runtime of a Function

Problem: Your tool should run only a specified amount of time.

Solution: This can be achieved using the function timeLimit.

Assume you defined the Ackermann function:

fun ackermann (0, n) = n + 1

| ackermann (m, 0) = ackermann (m - 1, 1)

| ackermann (m, n) = ackermann (m - 1, ackermann (m, n - 1))

Now the call

ackermann (4, 12)

> . . .

takes a bit of time before it finishes. To avoid this, the call can be encapsulated in a
time limit of five seconds. For this you have to write:

TimeLimit.timeLimit (Time.fromSeconds 5) ackermann (4, 12)

handle TimeOut => ~1

> ~1

where TimeOut is the exception raised when the time limit is reached.

Note that timeLimit is only meaningful when you use PolyML, because PolyML has
a rich infrastructure for multithreading programming on which timeLimit relies.

The function timeLimit is defined in the structure TimeLimit which can be found in Read More
the file Pure/ML-Systems/multithreading_polyml.ML.
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A.5 Configuration Options

Problem: You would like to enhance your tool with options that can be changed by
the user without having to resort to the ML-level.

Solution: This can be achieved using configuration values.

Assume you want to control three values, namely bval containing a boolean, ival
containing an integer and sval containing a string. These values can be declared on
the ML-level with

val (bval, setup_bval) = Attrib.config_bool "bval" false

val (ival, setup_ival) = Attrib.config_int "ival" 0

val (sval, setup_sval) = Attrib.config_string "sval" "some string"

where each value needs to be given a default. To enable these values, they need to
be set up by

setup {* setup_bval *}

setup {* setup_ival *}

or on the ML-level

setup_sval @{theory}

The user can now manipulate the values from within Isabelle with the command

declare [[bval = true, ival = 3]]

On the ML-level these values can be retrieved using the function Config.get :

Config.get @{context} bval

> true

Config.get @{context} ival

> 3

The function Config.put manipulates the values. For example

Config.put sval "foo" @{context}; Config.get @{context} sval

> foo

The same can be achived using the command setup.

setup {* Config.put_thy sval "bar" *}

The retrival of this value yields now
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Config.get @{context} sval

> "bar"

We can apply a function to a value using Config.map. For example incrementing
ival can be done by

let

val ctxt = Config.map ival (fn i => i + 1) @{context}

in

Config.get ctxt ival

end

> 4

For more information see Pure/Isar/attrib.ML and Pure/config.ML. Read More

There are many good reasons to control parameters in this way. One is that it avoid
global references, which cause many headaches with the multithreaded execution of
Isabelle.

A.6 Storing Data

Problem: Your tool needs to manage data.

Solution: This can be achieved using a generic data slot.

Every generic data slot may keep data of any kind which is stored in the context.

local

structure Data = GenericDataFun

( type T = int Symtab.table

val empty = Symtab.empty

val extend = I

fun merge _ = Symtab.merge (K true)

)

in

val lookup = Symtab.lookup o Data.get

fun update k v = Data.map (Symtab.update (k, v))

end

setup {* Context.theory_map (update "foo" 1) *}

lookup (Context.Proof @{context}) "foo"

> SOME 1

alternatives: TheoryDataFun, ProofDataFun Code: Pure/context.ML
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A.7 Using an External Solver

Problem: You want to use an external solver, because the solver might be more
efficient for deciding a certain class of formulae than Isabelle tactics.

Solution: The easiest way to do this is by implementing an oracle. We will also
construct proofs inside Isabelle by using the results produced by the oracle.

A short introduction to oracles can be found in [isar-ref: no suitable label for section Read More
3.11]. A simple example is given in FOL/ex/IffOracle. (TODO: add more references
to the code)
For our explanation here, we will use the metis prover for proving propositional for-
mulae. The general method will be roughly as follows: Given a goal G, we transform
it into the syntactical respresentation of metis, build the CNF of the negated formula
and then let metis search for a refutation. Metis will either return the proved goal
or raise an exception meaning that it was unable to prove the goal (FIXME: is this
so?).

The translation function from Isabelle propositions into formulae of metis is as fol-
lows:

fun trans t =

(case t of

@{term Trueprop} $ t => trans t

| @{term True} => Metis.Formula.True

| @{term False} => Metis.Formula.False

| @{term Not} $ t => Metis.Formula.Not (trans t)

| @{term "op &"} $ t1 $ t2 => Metis.Formula.And (trans t1, trans t2)

| @{term "op |"} $ t1 $ t2 => Metis.Formula.Or (trans t1, trans t2)

| @{term "op -->"} $ t1 $ t2 => Metis.Formula.Imp (trans t1, trans t2)

| @{term "op = :: bool => bool => bool"} $ t1 $ t2 =>

Metis.Formula.Iff (trans t1, trans t2)

| Free (n, @{typ bool}) => Metis.Formula.Atom (n, [])

| _ => error "inacceptable term")

An example is as follows:

trans @{prop "A ∧ B"}

> Metis.Formula.And

> (Metis.Formula.Atom ("A", []), Metis.Formula.Atom ("B", []))

The next function computes the conjunctive-normal-form.

fun make_cnfs fm =1

fm |> Metis.Formula.Not2

|> Metis.Normalize.cnf3

|> map Metis.Formula.stripConj4

|> map (map Metis.Formula.stripDisj)5

|> map (map (map Metis.Literal.fromFormula))6

|> map (map Metis.LiteralSet.fromList)7

|> map (map Metis.Thm.axiom)8
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(FIXME: Is there a deep reason why Metis.Normalize.cnf returns a list?)

(FIXME: What does Line 8 do?)

(FIXME: Can this code be improved?)

Setting up the resolution.

fun refute cls =

let val result =

Metis.Resolution.loop

(Metis.Resolution.new Metis.Resolution.default cls)

in

(case result of

Metis.Resolution.Contradiction _ => true

| Metis.Resolution.Satisfiable _ => false)

end

Stringing the functions together.

fun solve f = List.all refute (make_cnfs f)

Setting up the oracle

fun prop_dp (thy, t) =

if solve (trans t) then (Thm.cterm_of thy t)

else error "Proof failed."

oracle prop_oracle = prop_dp

(FIXME: What does oracle do?)

fun prop_oracle_tac ctxt =

SUBGOAL (fn (goal, i) =>

(case (try prop_oracle (ProofContext.theory_of ctxt, goal)) of

SOME thm => rtac thm i

| NONE => no_tac))

(FIXME: The oracle returns a cterm. How is it possible that I can apply this cterm
with rtac?)

method setup prop_oracle = {*

Method.ctxt_args (fn ctxt => Method.SIMPLE_METHOD’ (prop_oracle_tac ctxt))

*} "Oracle-based decision procedure for propositional logic"

(FIXME What does Method.SIMPLE_METHOD’ do?)

lemma test: "p ∨ ¬p"
by prop_oracle

(FIXME: say something about what the proof of the oracle is)
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Thm.proof_of @{thm test}

> ???

lemma "((p −→ q) −→ p) −→ p"

by prop_oracle

lemma "∀ x::nat. x ≥ 0"

sorry

(FIXME: proof reconstruction)

For communication with external programs, there are the primitives system and
system_out, the latter of which captures the invoked program’s output. For simplic-
ity, here, we will use metis, an external solver included in the Isabelle destribution.
Since it is written in ML, we can call it directly without the detour of invoking an
external program.
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Appendix B

Solutions to Most Exercises

Solution for Exercise 2.5.1.

fun rev_sum t =

let

fun dest_sum (Const (@{const_name plus}, _) $ u $ u’) = u’ :: dest_sum u

| dest_sum u = [u]

in

foldl1 (HOLogic.mk_binop @{const_name plus}) (dest_sum t)

end

Solution for Exercise 2.5.2.

fun make_sum t1 t2 =

HOLogic.mk_nat (HOLogic.dest_nat t1 + HOLogic.dest_nat t2)

Solution for Exercise 3.1.1.

val any = Scan.one (Symbol.not_eof);

val scan_cmt =

let

val begin_cmt = Scan.this_string "(*"

val end_cmt = Scan.this_string "*)"

in

begin_cmt |-- Scan.repeat (Scan.unless end_cmt any) --| end_cmt

>> (enclose "(**" "**)" o implode)

end

val scan_all =

Scan.finite Symbol.stopper (Scan.repeat (scan_cmt || any))

>> implode #> fst

By using #> fst in the last line, the function scan_all retruns a string, instead of
the pair a parser would normally return. For example:
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let

val input1 = (explode "foo bar")

val input2 = (explode "foo (*test*) bar (*test*)")

in

(scan_all input1, scan_all input2)

end

> ("foo bar","foo (**test**) bar (**test**)")
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Appendix C

Comments for Authors

• The Cookbook can be compiled on the command-line with:

$ isabelle make

You very likely need a recent snapshot of Isabelle in order to compile the Cook-
book. Some parts of the Cookbook also rely on compilation with PolyML.

• You can include references to other Isabelle manuals using the reference names
from those manuals. To do this the following four LATEX commands are defined:

Chapters Sections
Implementation Manual \ichcite{ . . . } \isccite{ . . . }
Isar Reference Manual \rchcite{ . . . } \rsccite{ . . . }

So \ichcite{ch:logic} yields a reference for the chapter about logic in the
implementation manual, namely [Impl. Man., Ch. 2].

• There are various document antiquotations defined for the Cookbook. They
allow to check the written text against the current Isabelle code and also allow
to show responses of the ML-compiler. Therefore authors are strongly encour-
aged to use antiquotations wherever appropriate.

The following antiquotations are defined:

• @{ML "expr" for vars in structs} should be used for displaying any
ML-expression, because the antiquotation checks whether the expression
is valid ML-code. The for - and in -arguments are optional. The former
is used for evaluating open expressions by giving a list of free variables.
The latter is used to indicate in which structure or structures the ML-
expression should be evaluated. Examples are:

@{ML "1 + 3"} 1 + 3

@{ML "a + b" for a b} produce a + b

@{ML Ident in OuterLex} Ident
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• @{ML_response "expr" "pat"} should be used to display ML-expressions
and their response. The first expression is checked like in the antiquota-
tion @{ML "expr"} ; the second is a pattern that specifies the result the
first expression produces. This pattern can contain " . . . " for parts that
you like to omit. The response of the first expression will be checked
against this pattern. Examples are:

@{ML_response "1+2" "3"}

@{ML_response "(1+2,3)" "(3, . . . )"}

which produce respectively

1+2

> 3

(1+2,3)

> (3, . . . )

Note that this antiquotation can only be used when the result can be
constructed: it does not work when the code produces an exception or
returns an abstract datatype (like thm or cterm).

• @{ML_response_fake "expr" "pat"} works just like the antiquotation
@{ML_response "expr" "pat"} above, except that the result-specification
is not checked. Use this antiquotation when the result cannot be con-
structed or the code generates an exception. Examples are:

@{ML_response_fake "cterm_of @{theory} @{term \"a + b = c\"}"}

"a + b = c"}

@{ML_response_fake "($$ \"x\") (explode \"world\")"

"Exception FAIL raised"}

which produce respectively

cterm_of @{theory} @{term "a + b = c"}

> a + b = c

($$ "x") (explode "world")

> Exception FAIL raised

This output mimics to some extend what the user sees when running the
code.

• @{ML_response_fake_both "expr" "pat"} can be used to show erro-
neous code. Neither the code nor the response will be checked. An exam-
ple is:

@{ML_response_fake_both "@{cterm \"1 + True\"}"

"Type unification failed . . . "}

• @{ML_file "name"} should be used when referring to a file. It checks
whether the file exists. An example is

@{ML_file "Pure/General/basics.ML"}

The listed antiquotations honour options including [display] and [quotes].
For example
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@{ML [quotes] "\"foo\" ^ \"bar\""} produces "foobar"

whereas

@{ML "\"foo\" ^ \"bar\""} produces only foobar

• Functions and value bindings cannot be defined inside antiquotations; they
need to be included inside ML {*...*} environments. In this way they are
also checked by the compiler. Some LATEX-hack in the Cookbook, however,
ensures that the environment markers are not printed.

• Line numbers can be printed using ML %linenumbers {*...*} for ML-code or
lemma %linenumbers ... for proofs.
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