
The Isabelle Programmer’s Cookbook
(fragment)

with contributions by:

Alexander Krauss
Jeremy Dawson
Stefan Berghofer

October 1, 2008

Contents

1 Introduction 2

1.1 Intended Audience and Prior Knowledge 2

1.2 Existing Documentation . 2

2 First Steps 4

2.1 Inluding ML-Code . 4

2.2 Debugging and Printing . 5

2.3 Antiquotations . 6

2.4 Terms . 6

2.5 Constructing Terms Manually 7

2.6 Type Checking . 9

2.7 Theorems . 9

2.8 Tactical Reasoning . 10

2.9 Storing and Changing Theorems and so on 12

3 Parsing 13

3.1 Parsing Isar input . 13

3.2 The Scan structure . 14

3.3 The OuterLex structure . 17

3.4 The OuterParse structure . 17

3.5 The SpecParse structure . 19

3.6 The Args structure . 20

3.7 Attributes, and the Attrib structure 22

3.8 Methods, and the Method structure 24

A Recipes 26

A.1 Accumulate a List of Theorems under a Name 26

A.2 Ad-hoc Transformations of Theorems 27

1

Chapter 1

Introduction

The purpose of this cookbook is to guide the reader through the first steps of
Isabelle programming, and to provide recipes for solving common problems.

1.1 Intended Audience and Prior Knowledge

This cookbook targets an audience who already knows how to use Isabelle
for writing theories and proofs. We also assume that readers are familiar
with the Standard ML, the programming language in which most of Isabelle
is implemented. If you are unfamiliar with either of these two subjects, you
should first work through the Isabelle/HOL tutorial [1] and Paulson’s book
on Standard ML [2].

1.2 Existing Documentation

The following documentation about Isabelle programming already exist (they
are included in the distribution of Isabelle):

The Implementation Manual describes Isabelle from a programmer’s per-
spective, documenting both the underlying concepts and some of the
interfaces.

The Isabelle Reference Manual is an older document that used to be the
main reference at a time when all proof scripts were written on the ML
level. Many parts of this manual are outdated now, but some parts,
particularly the chapters on tactics, are still useful.

Then of course there is:

2

The code is of course the ultimate reference for how things really work.
Therefore you should not hesitate to look at the way things are actu-
ally implemented. More importantly, it is often good to look at code
that does similar things as you want to do, to learn from other people’s
code.

Since Isabelle is not a finished product, these manuals, just like the imple-
mentation itself, are always under construction. This can be difficult and
frustrating at times, especially when interfaces changes occur frequently.
But it is a reality that progress means changing things (FIXME: need some
short and convincing comment that this is a strategy, not a problem that
should be solved).

3

Chapter 2

First Steps

Isabelle programming is done in Standard ML. Just like lemmas and proofs,
code in Isabelle is part of a theory. If you want to follow the code written in
this chapter, we assume you are working inside the theory defined by

theory CookBook
imports Main
begin
. . .

2.1 Inluding ML-Code

The easiest and quickest way to include code in a theory is by using the ML
command. For example

ML {*

3 + 4

*}

The expression inside ML commands is immediately evaluated, like “nor-
mal” Isabelle proof scripts, by using the advance and undo buttons of your
Isabelle environment. The code inside the ML command can also contain
value- and function bindings. However on such ML-commands the undo
operation behaves slightly counter-intuitive, because if you define

ML {*

val foo = true

*}

then Isabelle’s undo operation has no effect on the definition of foo.

Once a portion of code is relatively stable, one usually wants to export it to
a separate ML-file. Such files can be included in a theory using uses in the
header of the theory.

4

theory CookBook
imports Main
uses "file_to_be_included.ML"

begin
. . .

2.2 Debugging and Printing

During developments you might find it necessary to quickly inspect some
data in your code. This can be done in a “quick-and-dirty” fashion using the
function warning. For example

ML {* warning "any string" *}

will print out "any string" inside the response buffer of Isabelle. PolyML
provides a convenient, though again “quick-and-dirty”, method for convert-
ing arbitrary values into strings, for example:

ML {* warning (makestring 1) *}

However this only works if the type of what is printed is monomorphic and
not a function.

The funtion warning should only be used for testing purposes, because the
problem with this function is that any output will be overwritten if an error
is raised. For anything more serious the function tracing, which writes all
output in a separate buffer, should be used.

ML {* tracing "foo" *}

(FIXME: complete the comment about redirecting the trace information)

In Isabelle it is possible to redirect the message channels to a separate file,
e.g. to prevent Proof General from choking on massive amounts of trace
output.

ML {*

val strip_specials =

let

fun strip ("\^A" :: _ :: cs) = strip cs

| strip (c :: cs) = c :: strip cs

| strip [] = [];

in implode o strip o explode end;

fun redirect_tracing stream =

Output.tracing_fn := (fn s =>

(TextIO.output (stream, (strip_specials s));

TextIO.output (stream, "\n");

TextIO.flushOut stream));

*}

5

2.3 Antiquotations

The main advantage of embedding all code in a theory is that the code can
contain references to entities defined on the logical level of Isabelle. This is
done using antiquotations. For example, one can print out the name of the
current theory by typing

ML {* Context.theory_name @{theory} *}

where @{theory} is an antiquotation that is substituted with the current the-
ory (remember that we assumed we are inside the theory CookBook). The
name of this theory can be extracted using the function Context.theory_name.
So the code above returns the string "CookBook".

Note, however, that antiquotations are statically scoped, that is the value is
determined at “compile-time”, not “run-time”. For example the function

ML {*

fun current_thyname () = Context.theory_name @{theory}

*}

does not return the name of the current theory, if it is run in a different
theory. Instead, the code above defines the constant function that always
returns the string "CookBook", no matter where the function is called. Op-
erationally speaking, @{theory} is not replaced with code that will look up
the current theory in some data structure and return it. Instead, it is literally
replaced with the value representing the theory name.

In a similar way you can use antiquotations to refer to types and theorems:

ML {* @{typ "(int * nat) list"} *}

ML {* @{thm allI} *}

In the course of this introduction, we will learn more about these antiquo-
tations: they greatly simplify Isabelle programming since one can directly
access all kinds of logical elements from ML.

2.4 Terms

One way to construct terms of Isabelle on the ML-level is by using the an-
tiquotation @{term : : : } :

ML {* @{term "(a::nat) + b = c"} *}

This will show the term a + b = c, but printed out using the internal rep-
resentation of this term. This internal representation corresponds to the
datatype term.

The internal representation of terms uses the usual de-Bruijn index mecha-
nism where bound variables are represented by the constructor Bound. The

6

index in Bound refers to the number of Abstractions (Abs) we have to skip
until we hit the Abs that binds the corresponding variable. However, in
Isabelle the names of bound variables are kept at abstractions for printing
purposes, and so should be treated only as comments.

Terms are described in detail in [Impl. Man., Sec. 2.2]. Their definition and Read More
many useful operations can be found in Pure/term.ML.
Sometimes the internal representation of terms can be surprisingly differ-
ent from what you see at the user level, because the layers of parsing/type
checking/pretty printing can be quite elaborate.

Exercise 2.4.1. Look at the internal term representation of the following
terms, and find out why they are represented like this.

� case x of 0) 0 | Suc y) y

� �(x, y). P y x

� {[x] |x. x � -2}

Hint: The third term is already quite big, and the pretty printer may omit parts
of it by default. If you want to see all of it, you can use the following ML funtion
to set the limit to a value high enough:

ML {* print_depth 50 *}

The antiquotation @{prop : : : } constructs terms of propositional type, in-
serting the invisible Trueprop coercions whenever necessary. Consider for
example

ML {* @{term "P x"} ; @{prop "P x"} *}

which needs the coercion and

ML {* @{term "P x =) Q x"} ; @{prop "P x =) Q x"} *}

which does not.

2.5 Constructing Terms Manually

While antiquotations are very convenient for constructing terms, they can
only construct fixed terms. Unfortunately, one often needs to construct
terms dynamically. For example, a function that returns the implication
V
(x::nat). P x =) Q x taking P and Q as input terms can only be written

as

ML {*

7

fun make_imp P Q =

let

val x = @{term "x::nat"}

in Logic.all x (Logic.mk_implies (HOLogic.mk_Trueprop (P $ x),

HOLogic.mk_Trueprop (Q $ x)))

end

*}

The reason is that one cannot pass the arguments P and Q into an antiquo-
tation, like

ML {*

fun make_imp_wrong P Q = @{prop "
V
x. P x =) Q x"}

*}

To see the difference apply @{term S} and @{term T} to the functions.

One tricky point in constructing terms by hand is to obtain the fully qualified
names for constants. For example the names for zero or + are more complex
than one first expects, namely HOL.zero_class.zero and HOL.plus_class.plus.
The extra prefixes zero_class and plus_class are present because these
constants are defined within type classes; the prefix HOL indicates in which
theory they are defined. Guessing such internal names can sometimes be
quite hard. Therefore Isabellle provides the antiquotation @{const_name

: : : } does the expansion automatically, for example:

ML {* @{const_name HOL.zero}; @{const_name plus} *}

There are many functions in Pure/logic.ML and HOL/hologic.ML that make Read More
such manual constructions of terms easier.
Have a look at these files and try to solve the following two exercises:

Exercise 2.5.1. Write a function rev_sum : term -> term that takes a term
of the form t1 + t2 + : : : + tn (whereby i might be zero) and returns the
reversed sum tn + : : : + t2 + t1. Assume the t i can be arbitrary expressions
and also note that + associates to the left. Try your function on some examples.

ML {*

fun rev_sum t =

let

fun dest_sum (Const (@{const_name plus}, _) $ u $ u') =

u' :: dest_sum u

| dest_sum u = [u]

in

foldl1 (HOLogic.mk_binop @{const_name plus}) (dest_sum t)

end;

*}

8

Exercise 2.5.2. Write a function which takes two terms representing natural
numbers in unary (like Suc (Suc (Suc 0))), and produce the unary number
representing their sum.

ML {*

fun make_sum t1 t2 =

HOLogic.mk_nat (HOLogic.dest_nat t1 + HOLogic.dest_nat t2)

*}

2.6 Type Checking

(FIXME: Should we say something about types?)

We can freely construct and manipulate terms, since they are just arbitrary
unchecked trees. However, we eventually want to see if a term is well-
formed, or type checks, relative to a theory. Type checking is done via the
function cterm_of, which turns a term into a cterm, a certified term. Unlike
terms, which are just trees, cterms are abstract objects that are guaranteed
to be type-correct, and can only be constructed via the official interfaces.

Type checking is always relative to a theory context. For now we can use the
@{theory} antiquotation to get hold of the current theory. For example we
can write:

ML {* cterm_of @{theory} @{term "(a::nat) + b = c"} *}

ML {*

let

val natT = @{typ "nat"}

val zero = @{term "0::nat"}

in

cterm_of @{theory}

(Const (@{const_name plus}, natT --> natT --> natT)

$ zero $ zero)

end

*}

Exercise 2.6.1. Check that the function defined in Exercise 2.5.1 returns a
result that type checks.

2.7 Theorems

Just like cterms, theorems (of type thm) are abstract objects that can only
be built by going through the kernel interfaces, which means that all your
proofs will be checked.

To see theorems in “action”, let us give a proof for the following statement

9

lemma
assumes assm1: "

V
(x::nat). P x =) Q x"

and assm2: "P t"

shows "Q t"

on the ML level:1

ML {*

let

val thy = @{theory}

val assm1 = cterm_of thy @{prop "
V
(x::nat). P x =) Q x"}

val assm2 = cterm_of thy @{prop "((P::nat)bool) t)"}

val Pt_implies_Qt =

assume assm1

|> forall_elim (cterm_of thy @{term "t::nat"});

val Qt = implies_elim Pt_implies_Qt (assume assm2);

in

Qt

|> implies_intr assm2

|> implies_intr assm1

end

*}

For how the functions assume, forall_elim etc work see [Impl. Man., Sec. 2.3]. Read More
The basic functions for theorems are defined in Pure/thm.ML.

2.8 Tactical Reasoning

The goal-oriented tactical style reasoning of the ML level is similar to the
apply -style at the user level, i.e. the reasoning is centred around a goal,
which is modified in a sequence of proof steps until it is solved.

A goal (or goal state) is a special thm, which by convention is an implication
of the form:

A1 =) : : : =) An =) #(C)

where C is the goal to be proved and the A i are the open subgoals.

Since the goal C can potentially be an implication, there is a # wrapped
around it, which prevents that premises are misinterpreted as open sub-
goals. The protection # :: prop) prop is just the identity function and
used as a syntactic marker.

1Note that |> is just reverse application. This combinator, and several variants are de-
fined in Pure/General/basics.ML.

10

For more on goals see [Impl. Man., Sec. 3.1]. Read More

Tactics are functions that map a goal state to a (lazy) sequence of successor
states, hence the type of a tactic is

thm -> thm Seq.seq

See Pure/General/seq.ML for the implementation of lazy sequences. However Read More
in day-to-day Isabelle programming, one rarely constructs sequences explicitly,
but uses the predefined tactic combinators (tacticals) instead (see Pure/tctical.ML).
(FIXME: Pointer to the old reference manual)
While tatics can operate on the subgoals (the A i above), they are expected
to leave the conclusion C intact, with the exception of possibly instantiating
schematic variables.

To see how tactics work, let us transcribe a simple apply -style proof from
the tutorial [1] into ML:

lemma disj_swap: "P _ Q =) Q _ P"

apply (erule disjE)

apply (rule disjI2)

apply assumption

apply (rule disjI1)

apply assumption

done

To start the proof, the function Goal.prove ctxt params assms goal tac

sets up a goal state for proving goal under the assumptions assms with the
variables params that will be generalised once the goal is proved; tac is a
function that returns a tactic having some funny input parameters (FIXME
by possibly having an explanation in the implementation-manual).

ML {*

let

val ctxt = @{context}

val goal = @{prop "P _ Q =) Q _ P"}

in

Goal.prove ctxt ["P", "Q"] [] goal (fn _ =>

eresolve_tac [disjE] 1

THEN resolve_tac [disjI2] 1

THEN assume_tac 1

THEN resolve_tac [disjI1] 1

THEN assume_tac 1)

end

*}

An alternative way to transcribe this proof is as follows

ML {*

let

val ctxt = @{context}

11

val goal = @{prop "P _ Q =) Q _ P"}

in

Goal.prove ctxt ["P", "Q"] [] goal (fn _ =>

(eresolve_tac [disjE]

THEN' resolve_tac [disjI2]

THEN' assume_tac

THEN' resolve_tac [disjI1]

THEN' assume_tac) 1)

end

*}

2.9 Storing and Changing Theorems and so on

12

Chapter 3

Parsing

Lots of Standard ML code is given in this document, for various reasons,
including:

� direct quotation of code found in the Isabelle source files, or simplified
versions of such code

� identifiers found in the Isabelle source code, with their types (or spe-
cialisations of their types)

� code examples, which can be run by the reader, to help illustrate the
behaviour of functions found in the Isabelle source code

� ancillary functions, not from the Isabelle source code, which enable
the reader to run relevant code examples

� type abbreviations, which help explain the uses of certain functions

3.1 Parsing Isar input

The typical parsing function has the type 'src -> 'res * 'src, with input
of type 'src, returning a result of type 'res, which is (or is derived from)
the first part of the input, and also returning the remainder of the input.
(In the common case, when it is clear what the “remainder of the input”
means, we will just say that the functions “returns” the value of type 'res).
An exception is raised if an appropriate value cannot be produced from the
input. A range of exceptions can be used to identify different reasons for the
failure of a parse.

This contrasts the standard parsing function in Standard ML, which is of type
type ('res, 'src) reader = 'src -> ('res * 'src) option; (for ex-
ample, List.getItem and Substring.getc). However, much of the dis-

13

cussion at FIX file:/home/jeremy/html/ml/SMLBasis/string-cvt.html is rel-
evant.

Naturally one may convert between the two different sorts of parsing func-
tions as follows:

open StringCvt ;

type ('res, 'src) ex_reader = 'src -> 'res * 'src

(* ex_reader : ('res, 'src) reader -> ('res, 'src) ex_reader *)

fun ex_reader rdr src = Option.valOf (rdr src) ;

(* reader : ('res, 'src) ex_reader -> ('res, 'src) reader *)

fun reader exrdr src = SOME (exrdr src) handle _ => NONE ;

3.2 The Scan structure

The source file is src/General/scan.ML. This structure provides functions
for using and combining parsing functions of the type 'src -> 'res *

'src. Three exceptions are used:

exception MORE of string option; (*need more input (prompt)*)

exception FAIL of string option; (*try alternatives (reason of failure)*)

exception ABORT of string; (*dead end*)

Many functions in this structure (generally those with names composed of
symbols) are declared as infix.

Some functions from that structure are

|-- : ('src -> 'res1 * 'src') * ('src' -> 'res2 * 'src'') ->

'src -> 'res2 * 'src''

--| : ('src -> 'res1 * 'src') * ('src' -> 'res2 * 'src'') ->

'src -> 'res1 * 'src''

-- : ('src -> 'res1 * 'src') * ('src' -> 'res2 * 'src'') ->

'src -> ('res1 * 'res2) * 'src''

^^ : ('src -> string * 'src') * ('src' -> string * 'src'') ->

'src -> string * 'src''

These functions parse a result off the input source twice.

|-- and --| return the first result and the second result, respectively.

-- returns both.

^^ returns the result of concatenating the two results (which must be strings).

14

Note how, although the types 'src, 'src' and 'src'' will normally be the
same, the types as shown help suggest the behaviour of the functions.

:-- : ('src -> 'res1 * 'src') * ('res1 -> 'src' -> 'res2 * 'src'') ->

'src -> ('res1 * 'res2) * 'src''

:|-- : ('src -> 'res1 * 'src') * ('res1 -> 'src' -> 'res2 * 'src'') ->

'src -> 'res2 * 'src''

These are similar to |-- and --|, except that the second parsing function
can depend on the result of the first.

>> : ('src -> 'res1 * 'src') * ('res1 -> 'res2) -> 'src -> 'res2 * 'src'

|| : ('src -> 'res_src) * ('src -> 'res_src) -> 'src -> 'res_src

p >> f applies a function f to the result of a parse.

|| tries a second parsing function if the first one fails by raising an exception
of the form FAIL .

succeed : 'res -> ('src -> 'res * 'src) ;

fail : ('src -> 'res_src) ;

!! : ('src * string option -> string) ->

('src -> 'res_src) -> ('src -> 'res_src) ;

succeed r returns r, with the input unchanged. fail always fails, raising
exception FAIL NONE. !! f only affects the failure mode, turning a failure
that raises FAIL into a failure that raises ABORT This is used to pre-
vent recovery from the failure — thus, in !! parse1 || parse2, if parse1
fails, it won’t recover by trying parse2.

one : ('si -> bool) -> ('si list -> 'si * 'si list) ;

some : ('si -> 'res option) -> ('si list -> 'res * 'si list) ;

These require the input to be a list of items: they fail, raising MORE NONE if
the list is empty. On other failures they raise FAIL NONE

one p takes the first item from the list if it satisfies p, otherwise fails.

some f takes the first item from the list and applies f to it, failing if this
returns NONE.

many : ('si -> bool) -> 'si list -> 'si list * 'si list ;

15

many p takes items from the input until it encounters one which does not
satisfy p. If it reaches the end of the input it fails, raising MORE NONE.

many1 (with the same type) fails if the first item does not satisfy p.

option : ('src -> 'res * 'src) -> ('src -> 'res option * 'src)

optional : ('src -> 'res * 'src) -> 'res -> ('src -> 'res * 'src)

option: where the parser f succeeds with result r or raises FAIL , option
f gives the result SOME r or NONE.

optional: if parser f fails by raising FAIL , optional f default provides
the result default.

repeat : ('src -> 'res * 'src) -> 'src -> 'res list * 'src

repeat1 : ('src -> 'res * 'src) -> 'src -> 'res list * 'src

bulk : ('src -> 'res * 'src) -> 'src -> 'res list * 'src

repeat f repeatedly parses an item off the remaining input until f fails with
FAIL

repeat1 is as for repeat, but requires at least one successful parse.

lift : ('src -> 'res * 'src) -> ('ex * 'src -> 'res * ('ex * 'src))

lift changes the source type of a parser by putting in an extra component
'ex, which is ignored in the parsing.

The Scan structure also provides the type lexicon, HOW DO THEY WORK
?? TO BE COMPLETED

dest_lexicon: lexicon -> string list ;

make_lexicon: string list list -> lexicon ;

empty_lexicon: lexicon ;

extend_lexicon: string list list -> lexicon -> lexicon ;

merge_lexicons: lexicon -> lexicon -> lexicon ;

is_literal: lexicon -> string list -> bool ;

literal: lexicon -> string list -> string list * string list ;

Two lexicons, for the commands and keywords, are stored and can be re-
trieved by:

val (command_lexicon, keyword_lexicon) = OuterSyntax.get_lexicons () ;

val commands = Scan.dest_lexicon command_lexicon ;

val keywords = Scan.dest_lexicon keyword_lexicon ;

16

3.3 The OuterLex structure

The source file is src/Pure/Isar/outer_lex.ML. In some other source files its
name is abbreviated:

structure T = OuterLex;

This structure defines the type token. (The types OuterLex.token, OuterParse.token
and SpecParse.token are all the same).

Input text is split up into tokens, and the input source type for many parsing
functions is token list.

The datatype definition (which is not published in the signature) is

datatype token = Token of Position.T * (token_kind * string);

but here are some runnable examples for viewing tokens:

FIXME

begin{verbatim} type token = T.token ; val toks : token list = OuterSyntax.scan

``theory,imports;begin x.y.z apply ?v1 ?'a 'a -- || 44 simp (* xx *) {

* fff * }'' ; print_depth 20 ; List.map T.text_of toks ; val proper_toks

= List.filter T.is_proper toks ; List.map T.kind_of proper_toks ; List.map

T.unparse proper_toks ; List.map T.val_of proper_toks ; end{verbatim}

The function is proper : token -> bool identifies tokens which are not
white space or comments: many parsing functions assume require spaces or
comments to have been filtered out.

There is a special end-of-file token:

val (tok_eof : token, is_eof : token -> bool) = T.stopper ;

(* end of file token *)

3.4 The OuterParse structure

The source file is src/Pure/Isar/outer parse.ML. In some other source
files its name is abbreviated:

structure P = OuterParse;

17

Here the parsers use token list as the input source type.

Some of the parsers simply select the first token, provided that it is of
the right kind (as returned by T.kind of): these are command, keyword,

short ident, long ident, sym ident, term var, type ident, type var,

number, string, alt string, verbatim, sync, eof Others select the first
token, provided that it is one of several kinds, (eg, name, xname, text,

typ).

type 'a tlp = token list -> 'a * token list ; (* token list parser *)

$$$: string -> string tlp

nat : int tlp ;

maybe : 'a tlp -> 'a option tlp ;

$$$ s returns the first token, if it equals s and s is a keyword.

nat returns the first token, if it is a number, and evaluates it.

maybe: if p returns r, then maybe p returns SOME r ; if the first token is an
underscore, it returns NONE.

A few examples:

P.list : 'a tlp -> 'a list tlp ; (* likewise P.list1 *)

P.and_list : 'a tlp -> 'a list tlp ; (* likewise P.and_list1 *)

val toks : token list = OuterSyntax.scan "44 ,_, 66,77" ;

val proper_toks = List.filter T.is_proper toks ;

P.list P.nat toks ; (* OK, doesn't recognize white space *)

P.list P.nat proper_toks ; (* fails, doesn't recognize what follows ',' *)

P.list (P.maybe P.nat) proper_toks ; (* fails, end of input *)

P.list (P.maybe P.nat) (proper_toks @ [tok_eof]) ; (* OK *)

val toks : token list = OuterSyntax.scan "44 and 55 and 66 and 77" ;

P.and_list P.nat (List.filter T.is_proper toks @ [tok_eof]) ; (* ??? *)

The following code helps run examples:

fun parse_str tlp str =

let val toks : token list = OuterSyntax.scan str ;

val proper_toks = List.filter T.is_proper toks @ [tok_eof] ;

val (res, rem_toks) = tlp proper_toks ;

val rem_str = String.concat

(Library.separate " " (List.map T.unparse rem_toks)) ;

in (res, rem_str) end ;

Some examples from src/Pure/Isar/outer parse.ML

18

val type_args =

type_ident >> Library.single ||

$$$ "(" |-- !!! (list1 type_ident --| $$$ ")") ||

Scan.succeed [];

There are three ways parsing a list of type arguments can succeed. The
first line reads a single type argument, and turns it into a singleton list.
The second line reads ”(”, and then the remainder, ignoring the ”(” ; the
remainder consists of a list of type identifiers (at least one), and then a ”)”
which is also ignored. The !!! ensures that if the parsing proceeds this far
and then fails, it won’t try the third line (see the description of Scan.!!).
The third line consumes no input and returns the empty list.

fun triple2 (x, (y, z)) = (x, y, z);

val arity = xname -- ($$$ "::" |-- !!! (

Scan.optional ($$$ "(" |-- !!! (list1 sort --| $$$ ")")) []

-- sort)) >> triple2;

The parser arity reads a typename t, then “::” (which is ignored), then
optionally a list ss of sorts and then another sort s. The result (t; (ss; s)) is
transformed by triple2 to (t; ss; s). The second line reads the optional list
of sorts: it reads first “(” and last “)”, which are both ignored, and between
them a comma-separated list of sorts. If this list is absent, the default []
provides the list of sorts.

parse_str P.type_args "('a, 'b) ntyp" ;

parse_str P.type_args "'a ntyp" ;

parse_str P.type_args "ntyp" ;

parse_str P.arity "ty :: tycl" ;

parse_str P.arity "ty :: (tycl1, tycl2) tycl" ;

3.5 The SpecParse structure

The source file is src/Pure/Isar/spec parse.ML. This structure contains
token list parsers for more complicated values. For example,

open SpecParse ;

attrib : Attrib.src tok_rdr ;

attribs : Attrib.src list tok_rdr ;

19

opt_attribs : Attrib.src list tok_rdr ;

xthm : (thmref * Attrib.src list) tok_rdr ;

xthms1 : (thmref * Attrib.src list) list tok_rdr ;

parse_str attrib "simp" ;

parse_str opt_attribs "hello" ;

val (ass, "") = parse_str attribs "[standard, xxxx, simp, intro, OF sym]" ;

map Args.dest_src ass ;

val (asrc, "") = parse_str attrib "THEN trans [THEN sym]" ;

parse_str xthm "mythm [attr]" ;

parse_str xthms1 "thm1 [attr] thms2" ;

As you can see, attributes are described using types of the Args structure,
described below.

3.6 The Args structure

The source file is src/Pure/Isar/args.ML. The primary type of this struc-
ture is the src datatype; the single constructors not published in the sig-
nature, but Args.src and Args.dest src are in fact the constructor and
destructor functions. Note that the types Attrib.src and Method.src are
in fact Args.src.

src : (string * Args.T list) * Position.T -> Args.src ;

dest_src : Args.src -> (string * Args.T list) * Position.T ;

Args.pretty_src : Proof.context -> Args.src -> Pretty.T ;

fun pr_src ctxt src = Pretty.string_of (Args.pretty_src ctxt src) ;

val thy = ML_Context.the_context () ;

val ctxt = ProofContext.init thy ;

map (pr_src ctxt) ass ;

So an Args.src consists of the first word, then a list of further “arguments”,
of type Args.T, with information about position in the input.

(* how an Args.src is parsed *)

P.position : 'a tlp -> ('a * Position.T) tlp ;

P.arguments : Args.T list tlp ;

val parse_src : Args.src tlp =

20

P.position (P.xname -- P.arguments) >> Args.src ;

val ((first_word, args), pos) = Args.dest_src asrc ;

map Args.string_of args ;

The Args structure contains more parsers and parser transformers for which
the input source type is Args.T list. For example,

type 'a atlp = Args.T list -> 'a * Args.T list ;

open Args ;

nat : int atlp ; (* also Args.int *)

thm_sel : PureThy.interval list atlp ;

list : 'a atlp -> 'a list atlp ;

attribs : (string -> string) -> Args.src list atlp ;

opt_attribs : (string -> string) -> Args.src list atlp ;

(* parse_atl_str : 'a atlp -> (string -> 'a * string) ;

given an Args.T list parser, to get a string parser *)

fun parse_atl_str atlp str =

let val (ats, rem_str) = parse_str P.arguments str ;

val (res, rem_ats) = atlp ats ;

in (res, String.concat (Library.separate " "

(List.map Args.string_of rem_ats @ [rem_str]))) end ;

parse_atl_str Args.int "-1-," ;

parse_atl_str (Scan.option Args.int) "x1-," ;

parse_atl_str Args.thm_sel "(1-,4,13-22)" ;

val (ats as atsrc :: _, "") = parse_atl_str (Args.attribs I)

"[THEN trans [THEN sym], simp, OF sym]" ;

From here, an attribute is interpreted using Attrib.attribute.

Args has a large number of functions which parse an Args.src and also
refer to a generic context. Note the use of Scan.lift for this. (as does
Attrib - RETHINK THIS)

(Args.syntax shown below has type specialised)

type ('res, 'src) parse_fn = 'src -> 'res * 'src ;

type 'a cgatlp = ('a, Context.generic * Args.T list) parse_fn ;

Scan.lift : 'a atlp -> 'a cgatlp ;

term : term cgatlp ;

21

typ : typ cgatlp ;

Args.syntax : string -> 'res cgatlp -> src -> ('res, Context.generic) parse_fn ;

Attrib.thm : thm cgatlp ;

Attrib.thms : thm list cgatlp ;

Attrib.multi_thm : thm list cgatlp ;

(* parse_cgatl_str : 'a cgatlp -> (string -> 'a * string) ;

given a (Context.generic * Args.T list) parser, to get a string parser *)

fun parse_cgatl_str cgatlp str =

let

(* use the current generic context *)

val generic = Context.Theory thy ;

val (ats, rem_str) = parse_str P.arguments str ;

(* ignore any change to the generic context *)

val (res, (_, rem_ats)) = cgatlp (generic, ats) ;

in (res, String.concat (Library.separate " "

(List.map Args.string_of rem_ats @ [rem_str]))) end ;

3.7 Attributes, and the Attrib structure

The type attribute is declared in src/Pure/thm.ML. The source file for
the Attrib structure is src/Pure/Isar/attrib.ML. Most attributes use a
theorem to change a generic context (for example, by declaring that the
theorem should be used, by default, in simplification), or change a theorem
(which most often involves referring to the current theory). The functions
Thm.rule attribute and Thm.declaration attribute create attributes of
these kinds.

type attribute = Context.generic * thm -> Context.generic * thm;

type 'a trf = 'a -> 'a ; (* transformer of a given type *)

Thm.rule_attribute : (Context.generic -> thm -> thm) -> attribute ;

Thm.declaration_attribute : (thm -> Context.generic trf) -> attribute ;

Attrib.print_attributes : theory -> unit ;

Attrib.pretty_attribs : Proof.context -> src list -> Pretty.T list ;

List.app Pretty.writeln (Attrib.pretty_attribs ctxt ass) ;

An attribute is stored in a theory as indicated by:

22

Attrib.add_attributes :

(bstring * (src -> attribute) * string) list -> theory trf ;

(*

Attrib.add_attributes [("THEN", THEN_att, "resolution with rule")] ;

*)

where the first and third arguments are name and description of the at-
tribute, and the second is a function which parses the attribute input text
(including the attribute name, which has necessarily already been parsed).
Here, THEN att is a function declared in the code for the structure Attrib,
but not published in its signature. The source file src/Pure/Isar/attrib.ML
shows the use of Attrib.add attributes to add a number of attributes.

FullAttrib.THEN_att : src -> attribute ;

FullAttrib.THEN_att atsrc (generic, ML_Context.thm "sym") ;

FullAttrib.THEN_att atsrc (generic, ML_Context.thm "all_comm") ;

Attrib.syntax : attribute cgatlp -> src -> attribute ;

Attrib.no_args : attribute -> src -> attribute ;

When this is called as syntax scan src (gc, th) the generic context gc
is used (and potentially changed to gc') by scan in parsing to obtain an
attribute attr which would then be applied to (gc', th). The source for
parsing the attribute is the arguments part of src, which must all be con-
sumed by the parse.

For example, for Attrib.no args attr src, the attribute parser simply re-
turns attr, requiring that the arguments part of src must be empty.

Some examples from src/Pure/Isar/attrib.ML, modified:

fun rot_att_n n (gc, th) = (gc, rotate_prems n th) ;

rot_att_n : int -> attribute ;

val rot_arg = Scan.lift (Scan.optional Args.int 1 : int atlp) : int cgatlp ;

val rotated_att : src -> attribute =

Attrib.syntax (rot_arg >> rot_att_n : attribute cgatlp) ;

val THEN_arg : int cgatlp = Scan.lift

(Scan.optional (Args.bracks Args.nat : int atlp) 1 : int atlp) ;

Attrib.thm : thm cgatlp ;

THEN_arg -- Attrib.thm : (int * thm) cgatlp ;

23

fun THEN_att_n (n, tht) (gc, th) = (gc, th RSN (n, tht)) ;

THEN_att_n : int * thm -> attribute ;

val THEN_att : src -> attribute = Attrib.syntax

(THEN_arg -- Attrib.thm >> THEN_att_n : attribute cgatlp);

The functions I’ve called rot arg and THEN arg read an optional argument,
which for rotated is an integer, and for THEN is a natural enclosed in square
brackets; the default, if the argument is absent, is 1 in each case. Functions
rot att n and THEN att n turn these into attributes, where THEN att n also
requires a theorem, which is parsed by Attrib.thm. Infix operators -- and
>> are in the structure Scan.

3.8 Methods, and the Method structure

The source file is src/Pure/Isar/method.ML. The type method is defined by
the datatype declaration

(* datatype method = Meth of thm list -> cases_tactic; *)

RuleCases.NO_CASES : tactic -> cases_tactic ;

In fact RAW METHOD CASES (below) is exactly the constructor Meth. A cases tactic

is an elaborated version of a tactic. NO CASES tac is a cases tactic which
consists of a cases tactic without any further case information. For fur-
ther details see the description of structure RuleCases below. The list of
theorems to be passed to a method consists of the current facts in the proof.

RAW_METHOD : (thm list -> tactic) -> method ;

METHOD : (thm list -> tactic) -> method ;

SIMPLE_METHOD : tactic -> method ;

SIMPLE_METHOD' : (int -> tactic) -> method ;

SIMPLE_METHOD'' : ((int -> tactic) -> tactic) -> (int -> tactic) -> method ;

RAW_METHOD_CASES : (thm list -> cases_tactic) -> method ;

METHOD_CASES : (thm list -> cases_tactic) -> method ;

A method is, in its simplest form, a tactic; applying the method is to apply
the tactic to the current goal state.

24

Applying RAW METHOD tacf creates a tactic by applying tacf to the current
facts, and applying that tactic to the goal state.

METHOD is similar but also first applies Goal.conjunction tac to all sub-
goals.

SIMPLE METHOD tac inserts the facts into all subgoals and then applies tacf.

SIMPLE METHOD' tacf inserts the facts and then applies tacf to subgoal 1.

SIMPLE METHOD'' quant tacf does this for subgoal(s) selected by quant,
which may be, for example, ALLGOALS (all subgoals), TRYALL (try all sub-
goals, failure is OK), FIRSTGOAL (try subgoals until it succeeds once), (fn
tacf => tacf 4) (subgoal 4), etc (see the Tactical structure, [?, Chapter
4]).

A method is stored in a theory as indicated by:

Method.add_method :

(bstring * (src -> Proof.context -> method) * string) -> theory trf ;

(*

*)

where the first and third arguments are name and description of the method,
and the second is a function which parses the method input text (including
the method name, which has necessarily already been parsed).

Here, xxx is a function declared in the code for the structure Method, but
not published in its signature. The source file src/Pure/Isar/method.ML

shows the use of Method.add method to add a number of methods.

25

Appendix A

Recipes

A.1 Accumulate a List of Theorems under a Name

Problem: Your tool foo works with special rules, called foo -rules.

Users should be able to declare foo -rules in the theory, which are then used
by some method.

ML {*

structure FooRules = NamedThmsFun(

val name = "foo"

val description = "Rules for foo"

);

*}

setup FooRules.setup

This declares a context data slot where the theorems are stored, an attribute
foo (with the usual add and del options to declare new rules) and the in-
ternal ML interface to retrieve and modify the facts.

Furthermore, the facts are made available under the dynamic fact name foo :

lemma rule1[foo]: "A" sorry
lemma rule2[foo]: "B" sorry

declare rule1[foo del]

26

thm foo

ML {*

FooRules.get @{context};

*}

For more information see Pure/Tools/named_thms.ML. Read More

A.2 Ad-hoc Transformations of Theorems

27

Bibliography

[1] T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL: A Proof Assistant
for Higher-Order Logic. Springer, 2002. LNCS Tutorial 2283.

[2] L. C. Paulson. ML for the Working Programmer. 2nd edition, 1996.

[3] M. Wenzel. The Isabelle/Isar Implementation. http://isabelle.in.tum.de/
doc/implementation.pdf.

28

http://isabelle.in.tum.de/doc/implementation.pdf
http://isabelle.in.tum.de/doc/implementation.pdf

	Introduction
	Intended Audience and Prior Knowledge
	Existing Documentation

	First Steps
	Inluding ML-Code
	Debugging and Printing
	Antiquotations
	Terms
	Constructing Terms Manually
	Type Checking
	Theorems
	Tactical Reasoning
	Storing and Changing Theorems and so on

	Parsing
	Parsing Isar input
	The Scan structure
	The OuterLex structure
	The OuterParse structure
	The SpecParse structure
	The Args structure
	Attributes, and the Attrib structure
	Methods, and the Method structure

	Recipes
	Accumulate a List of Theorems under a Name
	Ad-hoc Transformations of Theorems

