
The Isabelle Programming Tutorial (fragment)

with contributions by:

Stefan Berghofer
Sascha Böhme
Jeremy Dawson

Alexander Krauss

February 13, 2009

Contents

1 Introduction 3

1.1 Intended Audience and Prior Knowledge 3

1.2 Existing Documentation . 3

1.3 Typographic Conventions . 4

2 First Steps 5

2.1 Including ML-Code . 5

2.2 Debugging and Printing . 6

2.3 Antiquotations . 7

2.4 Terms and Types . 8

2.5 Constructing Terms and Types Manually 9

2.6 Type-Checking . 12

2.7 Theorems . 12

2.8 Storing Theorems . 14

2.9 Theorem Attributes . 14

2.10 Printing Terms and Theorems . 14

2.11 Operations on Constants (Names) . 15

2.12 Combinators . 15

2.13 Misc . 18

3 Parsing 19

3.1 Building Generic Parsers . 19

3.2 Parsing Theory Syntax . 25

3.3 Positional Information . 28

3.4 Parsing Inner Syntax . 28

3.5 Parsing Specifications . 28

3.6 New Commands and Keyword Files . 30

4 Tactical Reasoning 35

4.1 Basics of Reasoning with Tactics . 35

4.2 Simple Tactics . 40

1

4.3 Tactic Combinators . 46

4.4 Rewriting and Simplifier Tactics . 50

4.5 Structured Proofs . 50

5 How to Write a Definitional Package 52

5.1 Examples of Inductive Definitions . 53

5.2 The General Construction Principle . 57

5.3 The Interface . 58

A Recipes 68

A.1 Accumulate a List of Theorems under a Name 68

A.2 Ad-hoc Transformations of Theorems 69

A.3 Useful Document Antiquotations . 69

A.4 Restricting the Runtime of a Function 72

A.5 Configuration Options . 73

A.6 Storing Data . 74

A.7 Executing an External Application . 75

A.8 Writing an Oracle . 76

B Solutions to Most Exercises 79

C Comments for Authors 81

2

Chapter 1

Introduction

If your next project requires you to program on the ML-level of Isabelle, then this
tutorial is for you. It will guide you through the first steps of Isabelle programming,
and also explain tricks of the trade. The best way to get to know the ML-level of
Isabelle is by experimenting with the many code examples included in the tutorial.
The code is as far as possible checked against recent versions of Isabelle. If something
does not work, then please let us know. If you have comments, criticism or like to
add to the tutorial, feel free—you are most welcome!

1.1 Intended Audience and Prior Knowledge

This tutorial targets readers who already know how to use Isabelle for writing the-
ories and proofs. We also assume that readers are familiar with the functional pro-
gramming language ML, the language in which most of Isabelle is implemented. If
you are unfamiliar with either of these two subjects, you should first work through
the Isabelle/HOL tutorial [4] or Paulson’s book on ML [5].

1.2 Existing Documentation

The following documentation about Isabelle programming already exists (and is part
of the distribution of Isabelle):

The Implementation Manual describes Isabelle from a high-level perspective, doc-
umenting both the underlying concepts and some of the interfaces.

The Isabelle Reference Manual is an older document that used to be the main ref-
erence of Isabelle at a time when all proof scripts were written on the ML-level.
Many parts of this manual are outdated now, but some parts, particularly the
chapters on tactics, are still useful.

The Isar Reference Manual is also an older document that provides material about
Isar and its implementation. Some material in it is still useful.

Then of course there is:

3

The code is of course the ultimate reference for how things really work. Therefore
you should not hesitate to look at the way things are actually implemented.
More importantly, it is often good to look at code that does similar things as
you want to do and to learn from other people’s code.

1.3 Typographic Conventions

All ML-code in this tutorial is typeset in highlighted boxes, like the following ML-
expression:

ML {*

3 + 4

*}

These boxes corresponds to how code can be processed inside the interactive en-
vironment of Isabelle. It is therefore easy to experiment with what is displayed.
However, for better readability we will drop the enclosing ML {* . . . *} and just
write:

3 + 4

Whenever appropriate we also show the response the code generates when evalu-
ated. This response is prefixed with a ">", like:

3 + 4

> 7

The usual user-level commands of Isabelle are written in bold, for example lemma,
foobar and so on. We use $ to indicate that a command needs to be run in a Unix-
shell, for example:

$ ls -la

Pointers to further information and Isabelle files are typeset in italic and highlighted
as follows:

Read More
Further information or pointers to files.

4

Chapter 2

First Steps

Isabelle programming is done in ML. Just like lemmas and proofs, ML-code in Isabelle
is part of a theory. If you want to follow the code given in this chapter, we assume
you are working inside the theory starting with

theory FirstSteps
imports Main
begin
. . .

2.1 Including ML-Code

The easiest and quickest way to include code in a theory is by using the ML-command.
For example:

ML {*

3 + 4

*}

> 7

Like normal Isabelle proof scripts, ML-commands can be evaluated by using the
advance and undo buttons of your Isabelle environment. The code inside the ML-
command can also contain value and function bindings, and even those can be un-
done when the proof script is retracted. As mentioned earlier, we will drop the ML {*

. . . *} scaffolding whenever we show code. The lines prefixed with ">" are not part
of the code, rather they indicate what the response is when the code is evaluated.

Once a portion of code is relatively stable, you usually want to export it to a separate
ML-file. Such files can then be included in a theory by using the uses-command in
the header of the theory, like:

theory FirstSteps
imports Main
uses "file_to_be_included.ML" . . .
begin
. . .

5

2.2 Debugging and Printing

During development you might find it necessary to inspect some data in your code.
This can be done in a “quick-and-dirty” fashion using the function warning. For
example

warning "any string"

> "any string"

will print out "any string" inside the response buffer of Isabelle. This function ex-
pects a string as argument. If you develop under PolyML, then there is a convenient,
though again “quick-and-dirty”, method for converting values into strings, namely
the function makestring :

warning (makestring 1)

> "1"

However makestring only works if the type of what is converted is monomorphic
and not a function.

The function warning should only be used for testing purposes, because any output
this function generates will be overwritten as soon as an error is raised. For printing
anything more serious and elaborate, the function tracing is more appropriate.
This function writes all output into a separate tracing buffer. For example:

tracing "foo"

> "foo"

It is also possible to redirect the “channel” where the string foo is printed to a
separate file, e.g. to prevent ProofGeneral from choking on massive amounts of trace
output. This redirection can be achieved with the code:

val strip_specials =

let

fun strip ("\^A" :: _ :: cs) = strip cs

| strip (c :: cs) = c :: strip cs

| strip [] = [];

in implode o strip o explode end;

fun redirect_tracing stream =

Output.tracing_fn := (fn s =>

(TextIO.output (stream, (strip_specials s));

TextIO.output (stream, "\n");

TextIO.flushOut stream))

Calling redirect_tracing with (TextIO.openOut "foo.bar") will cause that all
tracing information is printed into the file foo.bar.

You can print out error messages with the function error ; for example:

6

if 0=1 then 1 else (error "foo")

> "foo"

Section 2.10 will give more information about printing the main data structures of
Isabelle, namely term, cterm and thm.

2.3 Antiquotations

The main advantage of embedding all code in a theory is that the code can con-
tain references to entities defined on the logical level of Isabelle. By this we mean
definitions, theorems, terms and so on. This kind of reference is realised with an-
tiquotations. For example, one can print out the name of the current theory by
typing

Context.theory_name @{theory}

> "FirstSteps"

where @{theory} is an antiquotation that is substituted with the current theory
(remember that we assumed we are inside the theory FirstSteps). The name of
this theory can be extracted using the function Context.theory_name.

Note, however, that antiquotations are statically linked, that is their value is deter-
mined at “compile-time”, not “run-time”. For example the function

fun not_current_thyname () = Context.theory_name @{theory}

does not return the name of the current theory, if it is run in a different theory.
Instead, the code above defines the constant function that always returns the string
"FirstSteps", no matter where the function is called. Operationally speaking, the
antiquotation @{theory} is not replaced with code that will look up the current
theory in some data structure and return it. Instead, it is literally replaced with the
value representing the theory name.

In a similar way you can use antiquotations to refer to proved theorems:

@{thm allI}

> (
∧
x. ?P x) =⇒ ∀ x. ?P x

and simpsets:

let

val ({rules,...}, _) = MetaSimplifier.rep_ss @{simpset}

in

map #name (Net.entries rules)

end

> ["Nat.of_nat_eq_id", "Int.of_int_eq_id", "Nat.One_nat_def", . . .]

7

The code about simpsets extracts the theorem names stored in the current simpset.
You can get hold of the current simpset with the antiquotation @{simpset}. The
function rep_ss returns a record containing all information about the simpset. The
rules of a simpset are stored in a discrimination net (a data structure for fast index-
ing). From this net you can extract the entries using the function Net.entries.

Read More
The infrastructure for simpsets is implemented in Pure/meta_simplifier.ML and
Pure/simplifier.ML. Discrimination nets are implemented in Pure/net.ML.

While antiquotations have many applications, they were originally introduced in
order to avoid explicit bindings for theorems such as:

val allI = thm "allI"

These bindings are difficult to maintain and also can be accidentally overwritten
by the user. This often breakes Isabelle packages. Antiquotations solve this prob-
lem, since they are “linked” statically at compile-time. However, this static linkage
also limits their usefulness in cases where data needs to be build up dynamically.
In the course of this introduction, we will learn more about these antiquotations:
they greatly simplify Isabelle programming since one can directly access all kinds of
logical elements from th ML-level.

2.4 Terms and Types

One way to construct terms of Isabelle on the ML-level is by using the antiquotation
@{term . . . } . For example:

@{term "(a::nat) + b = c"}

> Const ("op =", . . .) $

> (Const ("HOL.plus_class.plus", . . .) $. . . $. . .) $. . .

This will show the term a + b = c, but printed using the internal representation of
this term. This internal representation corresponds to the datatype term.

The internal representation of terms uses the usual de Bruijn index mechanism
where bound variables are represented by the constructor Bound. The index in Bound

refers to the number of Abstractions (Abs) we have to skip until we hit the Abs that
binds the corresponding variable. However, in Isabelle the names of bound vari-
ables are kept at abstractions for printing purposes, and so should be treated only as
comments.

Read More
Terms are described in detail in [Impl. Man., Sec. 2.2]. Their definition and many useful
operations are implemented in Pure/term.ML.

Sometimes the internal representation of terms can be surprisingly different from
what you see at the user level, because the layers of parsing/type-checking/pretty
printing can be quite elaborate.

8

Exercise 2.4.1. Look at the internal term representation of the following terms, and
find out why they are represented like this:

• case x of 0 ⇒ 0 | Suc y ⇒ y

• λ(x, y). P y x

• {[x] |x. x ≤ -2}

Hint: The third term is already quite big, and the pretty printer may omit parts of it
by default. If you want to see all of it, you can use the following ML-function to set the
limit to a value high enough:

print_depth 50

The antiquotation @{prop . . . } constructs terms of propositional type, inserting the
invisible Trueprop -coercions whenever necessary. Consider for example the pairs

(@{term "P x"}, @{prop "P x"})

> (Free ("P", . . .) $ Free ("x", . . .),
> Const ("Trueprop", . . .) $ (Free ("P", . . .) $ Free ("x", . . .)))

where a coercion is inserted in the second component and

(@{term "P x =⇒ Q x"}, @{prop "P x =⇒ Q x"})

> (Const ("==>", . . .) $. . . $. . . , Const ("==>", . . .) $. . . $. . .)

where it is not (since it is already constructed by a meta-implication).

Types can be constructed using the antiquotation @{typ . . . }. For example:

@{typ "bool ⇒ nat"}

> bool ⇒ nat

Read More
Types are described in detail in [Impl. Man., Sec. 2.1]. Their definition and many useful
operations are implemented in Pure/type.ML.

2.5 Constructing Terms and Types Manually

While antiquotations are very convenient for constructing terms, they can only con-
struct fixed terms (remember they are “linked” at compile-time). However, you often
need to construct terms dynamically. For example, a function that returns the impli-
cation

∧
(x::τ). P x =⇒ Q x taking P, Q and the type τ as arguments can only

be written as:

9

fun make_imp P Q tau =

let

val x = Free ("x",tau)

in

Logic.all x (Logic.mk_implies (P $ x, Q $ x))

end

The reason is that you cannot pass the arguments P, Q and tau into an antiquotation.
For example the following does not work.

fun make_wrong_imp P Q tau = @{prop "
∧
x. P x =⇒ Q x"}

To see this apply @{term S}, @{term T} and @{typ nat} to both functions. With
make_imp we obtain the intended term involving the given arguments

make_imp @{term S} @{term T} @{typ nat}

> Const . . . $

> Abs ("x", Type ("nat",[]),

> Const . . . $ (Free ("S", . . .) $. . .) $

> (Free ("T", . . .) $. . .))

whereas with make_wrong_imp we obtain a term involving the P and Q from the
antiquotation.

make_wrong_imp @{term S} @{term T} @{typ nat}

> Const . . . $

> Abs ("x", . . . ,
> Const . . . $ (Const . . . $ (Free ("P", . . .) $. . .)) $

> (Const . . . $ (Free ("Q", . . .) $. . .)))

(FIXME: expand the following point)

One tricky point in constructing terms by hand is to obtain the fully qualified name
for constants. For example the names for zero and + are more complex than one
first expects, namely

HOL.zero_class.zero and HOL.plus_class.plus.

The extra prefixes zero_class and plus_class are present because these constants
are defined within type classes; the prefix HOL indicates in which theory they are
defined. Guessing such internal names can sometimes be quite hard. Therefore
Isabelle provides the antiquotation @{const_name . . . } which does the expansion
automatically, for example:

@{const_name "Nil"}

> List.list.Nil

10

(FIXME: Is it useful to explain @{const_syntax}?)

Although types of terms can often be inferred, there are many situations where you
need to construct types manually, especially when defining constants. For example
the function returning a function type is as follows:

fun make_fun_type tau1 tau2 = Type ("fun",[tau1,tau2])

This can be equally written as:

fun make_fun_type tau1 tau2 = tau1 --> tau2

Read More
There are many functions in Pure/term.ML, Pure/logic.ML and HOL/Tools/hologic.ML

that make such manual constructions of terms and types easier.

Have a look at these files and try to solve the following two exercises:

Exercise 2.5.1. Write a function rev_sum : term -> term that takes a term of the
form t1 + t2 + . . . + tn (whereby i might be zero) and returns the reversed sum
tn + . . . + t2 + t1. Assume the t i can be arbitrary expressions and also note that
+ associates to the left. Try your function on some examples.

Exercise 2.5.2. Write a function which takes two terms representing natural numbers
in unary notation (like Suc (Suc (Suc 0))), and produce the number representing
their sum.

A handy function for manipulating terms is map_types : it takes a function and ap-
plies it to every type in the term. You can, for example, change every nat in a term
into an int using the function

fun nat_to_int t =

(case t of

@{typ nat} => @{typ int}

| Type (s, ts) => Type (s, map nat_to_int ts)

| _ => t)

an then apply it as follows:

map_types nat_to_int @{term "a = (1::nat)"}

> Const ("op =", "int ⇒ int ⇒ bool")

> $ Free ("a", "int") $ Const ("HOL.one_class.one", "int")

11

2.6 Type-Checking

You can freely construct and manipulate terms, since they are just arbitrary unchecked
trees. However, you eventually want to see if a term is well-formed, or type-checks,
relative to a theory. Type-checking is done via the function cterm_of, which converts
a term into a cterm, a certified term. Unlike terms, which are just trees, cterms are
abstract objects that are guaranteed to be type-correct, and they can only be con-
structed via “official interfaces”.

Type-checking is always relative to a theory context. For now we use the @{theory}

antiquotation to get hold of the current theory. For example you can write:

cterm_of @{theory} @{term "a + b = c"}

> a + b = c

This can also be written with an antiquotation:

@{cterm "(a::nat) + b = c"}

> a + b = c

Attempting to obtain the certified term for

@{cterm "1 + True"}

> Type unification failed . . .

yields an error (since the term is not typable). A slightly more elaborate example
that type-checks is:

let

val natT = @{typ "nat"}

val zero = @{term "0::nat"}

in

cterm_of @{theory}

(Const (@{const_name plus}, natT --> natT --> natT) $ zero $ zero)

end

> 0 + 0

Exercise 2.6.1. Check that the function defined in Exercise 2.5.1 returns a result that
type-checks.

(FIXME: ctyp_of, fastype_of, dummyT)

2.7 Theorems

Just like cterms, theorems are abstract objects of type thm that can only be built
by going through interfaces. As a consequence, every proof in Isabelle is correct by
construction.

12

(FIXME reference LCF-philosophy)

To see theorems in “action”, let us give a proof on the ML-level for the following
statement:

lemma
assumes assm1: "

∧
(x::nat). P x =⇒ Q x"

and assm2: "P t"

shows "Q t"

The corresponding ML-code is as follows:1

let

val thy = @{theory}

val assm1 = cterm_of thy @{prop "
∧
(x::nat). P x =⇒ Q x"}

val assm2 = cterm_of thy @{prop "(P::nat⇒bool) t"}

val Pt_implies_Qt =

assume assm1

|> forall_elim (cterm_of thy @{term "t::nat"});

val Qt = implies_elim Pt_implies_Qt (assume assm2);

in

Qt

|> implies_intr assm2

|> implies_intr assm1

end

> [[
∧
x. P x =⇒ Q x; P t]] =⇒ Q t

This code-snippet constructs the following proof:

∧
x. P x =⇒ Q x `

∧
x. P x =⇒ Q x

(assume)∧
x. P x =⇒ Q x ` P t =⇒ Q t

(
∧

-elim)
P t ` P t

(assume)∧
x. P x =⇒ Q x, P t ` Q t

(=⇒-elim)∧
x. P x =⇒ Q x ` P t =⇒ Q t

(=⇒-intro)

` [[
∧
x. P x =⇒ Q x; P t]] =⇒ Q t

(=⇒-intro)

However, while we obtained a theorem as result, this theorem is not yet stored in
Isabelle’s theorem database. So it cannot be referenced later on. How to store
theorems will be explained in the next section.

Read More
For the functions assume, forall_elim etc see [Impl. Man., Sec. 2.3]. The basic functions
for theorems are defined in Pure/thm.ML.

1Note that |> is reverse application. See Section 2.12.

13

2.8 Storing Theorems

PureThy.add_thms_dynamic

2.9 Theorem Attributes

2.10 Printing Terms and Theorems

During development, you often want to inspect date of type term, cterm or thm.
Isabelle contains elaborate pretty-printing functions for printing them, but for quick-
and-dirty solutions they are far too unwieldy. A simple way to transform a term into
a string is to use the function Syntax.string_of_term.

Syntax.string_of_term @{context} @{term "1::nat"}

> "\^E\^Fterm\^E\^E\^Fconst\^Fname=HOL.one_class.one\^E1\^E\^F\^E\^E\^F\^E"

This produces a string with some printing directions encoded in it. The string can be
properly printed by using the function warning.

warning (Syntax.string_of_term @{context} @{term "1::nat"})

> "1"

A cterm can be transformed into a string by the following function.

fun str_of_cterm ctxt t =

Syntax.string_of_term ctxt (term_of t)

If there are more than one cterms to be printed, you can use the function commas to
separate them.

fun str_of_cterms ctxt ts =

commas (map (str_of_cterm ctxt) ts)

The easiest way to get the string of a theorem is to transform it into a cterm using
the function crep_thm.

fun str_of_thm ctxt thm =

let

val {prop, ...} = crep_thm thm

in

str_of_cterm ctxt prop

end

Again the function commas helps with printing more than one theorem.

14

fun str_of_thms ctxt thms =

commas (map (str_of_thm ctxt) thms)

2.11 Operations on Constants (Names)

Sign.base_name "List.list.Nil"

> "Nil"

authentic syntax?

@{const_name lfp}

constants in case-patterns?

In the meantime, lfp has been moved to the Inductive theory, so it is no longer called
Lfp.lfp. If a @{const_name} antiquotation had been used, we would have gotten
an error for this. Another advantage of the antiquotation is that we can then just
write @{const_name lfp} rather than @{const_name Lfp.lfp} or whatever, and it
expands to the correct name.

2.12 Combinators

For beginners, perhaps the most puzzling parts in the existing code of Isabelle are
the combinators. At first they seem to greatly obstruct the comprehension of the
code, but after getting familiar with them, they actually ease the understanding and
also the programming.

Read More
The most frequently used combinator are defined in the files Pure/library.ML and
Pure/General/basics.ML. Also [Impl. Man., Sec. B.1] contains further information about
combinators.

The simplest combinator is I, which is just the identity function defined as

fun I x = x

Another simple combinator is K, defined as

fun K x = fn _ => x

K “wraps” a function around the argument x. However, this function ignores its
argument. As a result, K defines a constant function always returning x.

The next combinator is reverse application, |>, defined as:

15

fun x |> f = f x

While just syntactic sugar for the usual function application, the purpose of this
combinator is to implement functions in a “waterfall fashion”. Consider for example
the function

fun inc_by_five x =1

x |> (fn x => x + 1)2

|> (fn x => (x, x))3

|> fst4

|> (fn x => x + 4)5

which increments its argument x by 5. It does this by first incrementing the argu-
ment by 1 (Line 2); then storing the result in a pair (Line 3); taking the first compo-
nent of the pair (Line 4) and finally incrementing the first component by 4 (Line 5).
This kind of cascading manipulations of values is quite common when dealing with
theories (for example by adding a definition, followed by lemmas and so on). The
reverse application allows you to read what happens in a top-down manner. This
kind of coding should also be familiar, if you used Haskell’s do-notation. Writing the
function inc_by_five using the reverse application is much clearer than writing

fun inc_by_five x = fst ((fn x => (x, x)) (x + 1)) + 4

or

fun inc_by_five x =

((fn x => x + 4) o fst o (fn x => (x, x)) o (fn x => x + 1)) x

and typographically more economical than

fun inc_by_five x =

let val y1 = x + 1

val y2 = (y1, y1)

val y3 = fst y2

val y4 = y3 + 4

in y4 end

Another reason why the let-bindings in the code above are better to be avoided: it is
more than easy to get the intermediate values wrong, not to mention the nightmares
the maintenance of this code causes!

(FIXME: give a real world example involving theories)

Similarly, the combinator #> is the reverse function composition. It can be used to
define the following function

16

val inc_by_six =

(fn x => x + 1)

#> (fn x => x + 2)

#> (fn x => x + 3)

which is the function composed of first the increment-by-one function and then
increment-by-two, followed by increment-by-three. Again, the reverse function com-
position allows you to read the code top-down.

The remaining combinators described in this section add convenience for the “wa-
terfall method” of writing functions. The combinator tap allows you to get hold of
an intermediate result (to do some side-calculations for instance). The function

fun inc_by_three x =1

x |> (fn x => x + 1)2

|> tap (fn x => tracing (makestring x))3

|> (fn x => x + 2)4

increments the argument first by 1 and then by 2. In the middle (Line 3), however,
it uses tap for printing the “plus-one” intermediate result inside the tracing buffer.
The function tap can only be used for side-calculations, because any value that is
computed cannot be merged back into the “main waterfall”. To do this, you can use
the next combinator.

The combinator ‘ is similar to tap, but applies a function to the value and returns
the result together with the value (as a pair). For example the function

fun inc_as_pair x =

x |> ‘(fn x => x + 1)

|> (fn (x, y) => (x, y + 1))

takes x as argument, and then increments x, but also keeps x. The intermediate
result is therefore the pair (x + 1, x). After that, the function increments the right-
hand component of the pair. So finally the result will be (x + 1, x + 1).

The combinators |>> and ||> are defined for functions manipulating pairs. The first
applies the function to the first component of the pair, defined as

fun (x, y) |>> f = (f x, y)

and the second combinator to the second component, defined as

fun (x, y) ||> f = (x, f y)

With the combinator |-> you can re-combine the elements from a pair. This combi-
nator is defined as

17

fun (x, y) |-> f = f x y

and can be used to write the following roundabout version of the double function:

fun double x =

x |> (fn x => (x, x))

|-> (fn x => fn y => x + y)

Recall that |> is the reverse function applications. Recall also that the related reverse
function composition is #>. In fact all the combinators |->, |>> and ||> described
above have related combinators for function composition, namely #->, #>> and ##>.
Using #->, for example, the function double can also be written as:

val double =

(fn x => (x, x))

#-> (fn x => fn y => x + y)

(FIXME: find a good exercise for combinators)

2.13 Misc

DatatypePackage.get_datatype @{theory} "List.list"

18

Chapter 3

Parsing

Isabelle distinguishes between outer and inner syntax. Theory commands, such as
definition, inductive and so on, belong to the outer syntax, whereas items inside
double quotation marks, such as terms, types and so on, belong to the inner syntax.
For parsing inner syntax, Isabelle uses a rather general and sophisticated algorithm
due to Earley, which is driven by priority grammars. Parsers for outer syntax are built
up by functional parsing combinators. These combinators are a well-established
technique for parsing, which has, for example, been described in Paulson’s classic
ML-book [5]. Isabelle developers are usually concerned with writing these outer
syntax parsers, either for new definitional packages or for calling tactics with specific
arguments.

Read More
The library for writing parser combinators is split up, roughly, into two parts. The first
part consists of a collection of generic parser combinators defined in the structure Scan in
the file Pure/General/scan.ML. The second part of the library consists of combinators for
dealing with specific token types, which are defined in the structure OuterParse in the file
Pure/Isar/outer_parse.ML.

3.1 Building Generic Parsers

Let us first have a look at parsing strings using generic parsing combinators. The
function $$ takes a string as argument and will “consume” this string from a given
input list of strings. “Consume” in this context means that it will return a pair con-
sisting of this string and the rest of the input list. For example:

($$ "h") (explode "hello")

> ("h", ["e", "l", "l", "o"])

($$ "w") (explode "world")

> ("w", ["o", "r", "l", "d"])

This function will either succeed (as in the two examples above) or raise the excep-
tion FAIL if no string can be consumed. For example trying to parse

19

($$ "x") (explode "world")

> Exception FAIL raised

will raise the exception FAIL. There are three exceptions used in the parsing combi-
nators:

• FAIL is used to indicate that alternative routes of parsing might be explored.

• MORE indicates that there is not enough input for the parser. For example in
($$ "h") [].

• ABORT is the exception that is raised when a dead end is reached. It is used for
example in the function !! (see below).

However, note that these exceptions are private to the parser and cannot be accessed
by the programmer (for example to handle them).

Slightly more general than the parser $$ is the function Scan.one, in that it takes a
predicate as argument and then parses exactly one item from the input list satisfying
this predicate. For example the following parser either consumes an "h" or a "w" :

let

val hw = Scan.one (fn x => x = "h" orelse x = "w")

val input1 = (explode "hello")

val input2 = (explode "world")

in

(hw input1, hw input2)

end

> (("h", ["e", "l", "l", "o"]),("w", ["o", "r", "l", "d"]))

Two parser can be connected in sequence by using the function --. For example
parsing h, e and l in this sequence you can achieve by:

(($$ "h") -- ($$ "e") -- ($$ "l")) (explode "hello")

> ((("h", "e"), "l"), ["l", "o"])

Note how the result of consumed strings builds up on the left as nested pairs.

If, as in the previous example, you want to parse a particular string, then one should
use the function Scan.this_string :

Scan.this_string "hell" (explode "hello")

> ("hell", ["o"])

Parsers that explore alternatives can be constructed using the function ||. For ex-
ample, the parser (p || q) returns the result of p, in case it succeeds, otherwise it
returns the result of q. For example:

20

let

val hw = ($$ "h") || ($$ "w")

val input1 = (explode "hello")

val input2 = (explode "world")

in

(hw input1, hw input2)

end

> (("h", ["e", "l", "l", "o"]), ("w", ["o", "r", "l", "d"]))

The functions |-- and --| work like the sequencing function for parsers, except
that they discard the item being parsed by the first (respectively second) parser. For
example:

let

val just_e = ($$ "h") |-- ($$ "e")

val just_h = ($$ "h") --| ($$ "e")

val input = (explode "hello")

in

(just_e input, just_h input)

end

> (("e", ["l", "l", "o"]),("h", ["l", "l", "o"]))

The parser Scan.optional p x returns the result of the parser p, if it succeeds;
otherwise it returns the default value x. For example:

let

val p = Scan.optional ($$ "h") "x"

val input1 = (explode "hello")

val input2 = (explode "world")

in

(p input1, p input2)

end

> (("h", ["e", "l", "l", "o"]), ("x", ["w", "o", "r", "l", "d"]))

The function Scan.option works similarly, except no default value can be given.
Instead, the result is wrapped as an option -type. For example:

let

val p = Scan.option ($$ "h")

val input1 = (explode "hello")

val input2 = (explode "world")

in

(p input1, p input2)

end

> ((SOME "h", ["e", "l", "l", "o"]), (NONE, ["w", "o", "r", "l", "d"]))

The function !! helps to produce appropriate error messages during parsing. For ex-
ample if you want to parse that p is immediately followed by q, or start a completely
different parser r, you might write:

21

(p -- q) || r

However, this parser is problematic for producing an appropriate error message, in
case the parsing of (p -- q) fails. Because in that case you lose the information
that p should be followed by q. To see this consider the case in which p is present in
the input, but not q. That means (p -- q) will fail and the alternative parser r will
be tried. However in many circumstance this will be the wrong parser for the input
“p-followed-by-q” and therefore will also fail. The error message is then caused by
the failure of r, not by the absence of q in the input. This kind of situation can
be avoided when using the function !!. This function aborts the whole process of
parsing in case of a failure and prints an error message. For example if you invoke
the parser

(!! (fn _ => "foo") ($$ "h"))

on "hello", the parsing succeeds

(!! (fn _ => "foo") ($$ "h")) (explode "hello")

> ("h", ["e", "l", "l", "o"])

but if you invoke it on "world"

(!! (fn _ => "foo") ($$ "h")) (explode "world")

> Exception ABORT raised

then the parsing aborts and the error message foo is printed. In order to see the
error message properly, we need to prefix the parser with the function Scan.error.
For example:

Scan.error (!! (fn _ => "foo") ($$ "h"))

> Exception Error "foo" raised

This “prefixing” is usually done by wrappers such as OuterSyntax.command (see
Section 3.6 which explains this function in more detail).

Let us now return to our example of parsing (p -- q) || r. If you want to generate
the correct error message for p-followed-by-q, then you have to write:

fun p_followed_by_q p q r =

let

val err_msg = (fn _ => p ^ " is not followed by " ^ q)

in

($$ p -- (!! err_msg ($$ q))) || ($$ r -- $$ r)

end

Running this parser with the "h" and "e", and the input "holle"

22

Scan.error (p_followed_by_q "h" "e" "w") (explode "holle")

> Exception ERROR "h is not followed by e" raised

produces the correct error message. Running it with

Scan.error (p_followed_by_q "h" "e" "w") (explode "wworld")

> (("w", "w"), ["o", "r", "l", "d"])

yields the expected parsing.

The function Scan.repeat p will apply a parser p as often as it succeeds. For exam-
ple:

Scan.repeat ($$ "h") (explode "hhhhello")

> (["h", "h", "h", "h"], ["e", "l", "l", "o"])

Note that Scan.repeat stores the parsed items in a list. The function Scan.repeat1

is similar, but requires that the parser p succeeds at least once.

Also note that the parser would have aborted with the exception MORE, if you had
run it only on just "hhhh". This can be avoided by using the wrapper Scan.finite
and the “stopper-token” Symbol.stopper. With them you can write:

Scan.finite Symbol.stopper (Scan.repeat ($$ "h")) (explode "hhhh")

> (["h", "h", "h", "h"], [])

Symbol.stopper is the “end-of-input” indicator for parsing strings; other stoppers
need to be used when parsing tokens, for example. However, this kind of manually
wrapping is often already done by the surrounding infrastructure.

The function Scan.repeat can be used with Scan.one to read any string as in

let

val p = Scan.repeat (Scan.one Symbol.not_eof)

val input = (explode "foo bar foo")

in

Scan.finite Symbol.stopper p input

end

> (["f", "o", "o", " ", "b", "a", "r", " ", "f", "o", "o"], [])

where the function Symbol.not_eof ensures that we do not read beyond the end of
the input string (i.e. stopper symbol).

The function Scan.unless p q takes two parsers: if the first one can parse the
input, then the whole parser fails; if not, then the second is tried. Therefore

23

Scan.unless ($$ "h") ($$ "w") (explode "hello")

> Exception FAIL raised

fails, while

Scan.unless ($$ "h") ($$ "w") (explode "world")

> ("w",["o", "r", "l", "d"])

succeeds.

The functions Scan.repeat and Scan.unless can be combined to read any input
until a certain marker symbol is reached. In the example below the marker symbol
is a "*".

let

val p = Scan.repeat (Scan.unless ($$ "*") (Scan.one Symbol.not_eof))

val input1 = (explode "fooooo")

val input2 = (explode "foo*ooo")

in

(Scan.finite Symbol.stopper p input1,

Scan.finite Symbol.stopper p input2)

end

> ((["f", "o", "o", "o", "o", "o"], []),

> (["f", "o", "o"], ["*", "o", "o", "o"]))

After parsing is done, you nearly always want to apply a function on the parsed
items. One way to do this is the function (p >> f), which runs first the parser p and
upon successful completion applies the function f to the result. For example

let

fun double (x,y) = (x ^ x, y ^ y)

in

(($$ "h") -- ($$ "e") >> double) (explode "hello")

end

> (("hh", "ee"), ["l", "l", "o"])

doubles the two parsed input strings; or

let

val p = Scan.repeat (Scan.one Symbol.not_eof)

val input = (explode "foo bar foo")

in

Scan.finite Symbol.stopper (p >> implode) input

end

> ("foo bar foo",[])

where the single-character strings in the parsed output are transformed back into
one string.

24

Exercise 3.1.1. Write a parser that parses an input string so that any comment en-
closed inside (* . . . *) is replaced by a the same comment but enclosed inside (** . . . **)
in the output string. To enclose a string, you can use the function enclose s1 s2 s

which produces the string s1 ^ s ^ s2.

The function Scan.lift takes a parser and a pair as arguments. This function ap-
plies the given parser to the second component of the pair and leaves the first com-
ponent untouched. For example

Scan.lift (($$ "h") -- ($$ "e")) (1,(explode "hello"))

> (("h", "e"), (1, ["l", "l", "o"]))

(FIXME: In which situations is this useful? Give examples.)

3.2 Parsing Theory Syntax

Most of the time, however, Isabelle developers have to deal with parsing tokens,
not strings. This is because the parsers for the theory syntax, as well as the parsers
for the arguments of proof methods the type OuterLex.token (which is identical to
the type OuterParse.token). There are also handy parsers for ML-expressions and
ML-files.

Read More
The parser functions for the theory syntax are contained in the structure OuterParse

defined in the file Pure/Isar/outer_parse.ML. The definition for tokens is in the file
Pure/Isar/outer_lex.ML.

The structure OuterLex defines several kinds of tokens (for example Ident for iden-
tifiers, Keyword for keywords and Command for commands). Some token parsers take
into account the kind of tokens.

The first example shows how to generate a token list out of a string using the function
OuterSyntax.scan. It is given below Position.none as argument since, at the
moment, we are not interested in generating precise error messages. The following
code

OuterSyntax.scan Position.none "hello world"

> [Token (. . . ,(Ident, "hello"), . . .),
> Token (. . . ,(Space, " "), . . .),
> Token (. . . ,(Ident, "world"), . . .)]

produces three tokens where the first and the last are identifiers, since "hello" and
"world" do not match any other syntactic category.1 The second indicates a space.

Many parsing functions later on will require spaces, comments and the like to have
already been filtered out. So from now on we are going to use the functions filter
and OuterLex.is_proper do this. For example:

1Note that because of a possible a bug in the PolyML runtime system the result is printed as "?",
instead of the tokens.

25

let

val input = OuterSyntax.scan Position.none "hello world"

in

filter OuterLex.is_proper input

end

> [Token (. . . ,(Ident, "hello"), . . .), Token (. . . ,(Ident, "world"), . . .)]

For convenience we define the function:

fun filtered_input str =

filter OuterLex.is_proper (OuterSyntax.scan Position.none str)

If you now parse

filtered_input "inductive | for"

> [Token (. . . ,(Command, "inductive"), . . .),
> Token (. . . ,(Keyword, "|"), . . .),
> Token (. . . ,(Keyword, "for"), . . .)]

you obtain a list consisting of only a command and two keyword tokens. If you
want to see which keywords and commands are currently known to Isabelle, type in
the following code (you might have to adjust the print_depth in order to see the
complete list):

let

val (keywords, commands) = OuterKeyword.get_lexicons ()

in

(Scan.dest_lexicon commands, Scan.dest_lexicon keywords)

end

> (["}","{", . . .],["⇀↽","↽", . . .])

The parser OuterParse.$$$ parses a single keyword. For example:

let

val input1 = filtered_input "where for"

val input2 = filtered_input "| in"

in

(OuterParse.$$$ "where" input1, OuterParse.$$$ "|" input2)

end

> (("where", . . .),("|", . . .))

Like before, you can sequentially connect parsers with --. For example:

let

val input = filtered_input "| in"

in

(OuterParse.$$$ "|" -- OuterParse.$$$ "in") input

end

> (("|","in"),[])

26

The parser OuterParse.enum s p parses a possibly empty list of items recognised
by the parser p, where the items being parsed are separated by the string s. For
example:

let

val input = filtered_input "in | in | in foo"

in

(OuterParse.enum "|" (OuterParse.$$$ "in")) input

end

> (["in","in","in"],[. . .])

OuterParse.enum1 works similarly, except that the parsed list must be non-empty.
Note that we had to add a string "foo" at the end of the parsed string, otherwise the
parser would have consumed all tokens and then failed with the exception MORE. Like
in the previous section, we can avoid this exception using the wrapper Scan.finite.
This time, however, we have to use the “stopper-token” OuterLex.stopper. We can
write:

let

val input = filtered_input "in | in | in"

in

Scan.finite OuterLex.stopper

(OuterParse.enum "|" (OuterParse.$$$ "in")) input

end

> (["in","in","in"],[])

The following function will help to run examples.

fun parse p input = Scan.finite OuterLex.stopper (Scan.error p) input

The function OuterParse.!!! can be used to force termination of the parser in
case of a dead end, just like Scan.!! (see previous section), except that the error
message is fixed to be "Outer syntax error" with a relatively precise description
of the failure. For example:

let

val input = filtered_input "in |"

val parse_bar_then_in = OuterParse.$$$ "|" -- OuterParse.$$$ "in"

in

parse (OuterParse.!!! parse_bar_then_in) input

end

> Exception ERROR "Outer syntax error: keyword "|" expected,

> but keyword in was found" raised

Exercise 3.2.1. (FIXME) A type-identifier, for example ’a, is a token of kind Keyword.
It can be parsed using the function OuterParse.type_ident.

(FIXME: or give parser for numbers)

27

3.3 Positional Information

OuterParse.position

3.4 Parsing Inner Syntax

let

val input = OuterSyntax.scan Position.none "0"

in

OuterParse.prop input

end

(FIXME funny output for a proposition)

3.5 Parsing Specifications

There are a number of special purpose parsers that help with parsing specifications
of functions, inductive definitions and so on. For example the OuterParse.target

reads a target in order to indicate a locale.

let

val input = filtered_input "(in test)"

in

parse OuterParse.target input

end

> ("test",[])

The function OuterParse.opt_target makes this parser “optional”, that is wrap-
ping the result into an option type and returning NONE if no target is present.

The function OuterParse.fixes reads an and-separated list of constants that can
include type annotations and syntax translations. For example:2

let

val input = filtered_input

"foo::\"int ⇒ bool\" (\"FOO\" [100] 100) and bar::nat and blonk"

in

parse OuterParse.fixes input

end

> ([(foo, SOME . . . , Mixfix ("FOO",[100],100)),

> (bar, SOME . . . , NoSyn),

> (blonk, NONE, NoSyn)],[])

2Note that in the code we need to write \"int ⇒ bool\" in order to properly escape the double
quotes in the compound type.

28

Whenever types are given, then they are stored in the SOMEs. If a syntax translation
is present for a constant, then it is stored in the Mixfix data structure; no syntax
translation is indicated by NoSyn.

(FIXME: should for-fixes take any syntax annotation?)

OuterParse.for_fixes is an “optional” that prefixes OuterParse.fixes with the
command for. (FIXME give an example and explain more)

let

val input = filtered_input

"for foo::\"int ⇒ bool\" (\"FOO\" [100] 100) and bar::nat and

blonk"

in

parse OuterParse.for_fixes input

end

> ([(foo, SOME . . . , Mixfix ("FOO",[100],100)),

> (bar, SOME . . . , NoSyn),

> (blonk, NONE, NoSyn)],[])

let

val input = filtered_input "test_lemma[intro,foo,elim,dest!,bar]:"

in

parse (SpecParse.thm_name ":") input

|> fst |> snd |> (Attrib.pretty_attribs @{context}) |> (map

Pretty.string_of)

end

(FIXME: why is intro, elim and dest treated differently from bar?)

let

val input = filtered_input

("even and odd " ^

"where " ^

" even0[intro]: \"even 0\" " ^

"| evenS[intro]: \"odd n =⇒ even (Suc n)\" " ^

"| oddS[intro]: \"even n =⇒ odd (Suc n)\"")

val parser =

OuterParse.opt_target --

OuterParse.fixes --

OuterParse.for_fixes --

Scan.optional

(OuterParse.$$$ "where" |--

OuterParse.!!!

(OuterParse.enum1 "|"

(SpecParse.opt_thm_name ":" -- OuterParse.prop))) []

in

parse parser input

end

29

> ((((NONE, [(even, NONE, NoSyn), (odd, NONE, NoSyn)]), []),

> [((even0, . . .), "\^E\^Ftoken\^Eeven 0\^E\^F\^E"),

> ((evenS, . . .), "\^E\^Ftoken\^Eodd n =⇒ even (Suc n)\^E\^F\^E"),

> ((oddS, . . .), "\^E\^Ftoken\^Eeven n =⇒ odd (Suc n)\^E\^F\^E")]), [])

The (outer?) parser for the package: returns optionally a locale; a list of predicate
constants with optional type-annotation and optional syntax-annotation; a list of for-
fixes (fixed parameters); and a list of rules where each rule has optionally a name
and an attribute.

3.6 New Commands and Keyword Files

Often new commands, for example for providing new definitional principles, need to
be implemented. While this is not difficult on the ML-level, new commands, in order
to be useful, need to be recognised by ProofGeneral. This results in some subtle
configuration issues, which we will explain in this section.

To keep things simple, let us start with a “silly” command that does nothing at all.
We shall name this command foobar. On the ML-level it can be defined as:

let

val do_nothing = Scan.succeed (Toplevel.theory I)

val kind = OuterKeyword.thy_decl

in

OuterSyntax.command "foobar" "description of foobar" kind do_nothing

end

The crucial function OuterSyntax.command expects a name for the command, a
short description, a kind indicator (which we will explain later on more thoroughly)
and a parser producing a top-level transition function (its purpose will also explained
later).

While this is everything you have to do on the ML-level, you need a keyword file that
can be loaded by ProofGeneral. This is to enable ProofGeneral to recognise foobar
as a command. Such a keyword file can be generated with the command-line:

$ isabelle keywords -k foobar some_log_files

The option -k foobar indicates which postfix the name of the keyword file will be
assigned. In the case above the file will be named isar-keywords-foobar.el. This
command requires log files to be present (in order to extract the keywords from
them). To generate these log files, you first need to package the code above into a
separate theory file named Command.thy, say—see Figure 3.1 for the complete code.

For our purposes it is sufficient to use the log files of the theories Pure, HOL and
Pure-ProofGeneral, as well as the log file for the theory Command.thy, which con-
tains the new foobar-command. If you target other logics besides HOL, such as
Nominal or ZF, then you need to adapt the log files appropriately.

30

theory Command

imports Main
begin
ML {*

let

val do_nothing = Scan.succeed (Toplevel.theory I)

val kind = OuterKeyword.thy_decl

in

OuterSyntax.command "foobar" "description of foobar" kind do_nothing

end

*}

end

Figure 3.1: The file Command.thy is necessary for generating a log file. This log file enables
Isabelle to generate a keyword file containing the command foobar.

Pure and HOL are usually compiled during the installation of Isabelle. So log files
for them should be already available. If not, then they can be conveniently compiled
with the help of the build-script from the Isabelle distribution.

$./build -m "Pure"

$./build -m "HOL"

The Pure-ProofGeneral theory needs to be compiled with:

$./build -m "Pure-ProofGeneral" "Pure"

For the theory Command.thy, you first need to create a “managed” subdirectory with:

$ isabelle mkdir FoobarCommand

This generates a directory containing the files:

./IsaMakefile

./FoobarCommand/ROOT.ML

./FoobarCommand/document

./FoobarCommand/document/root.tex

You need to copy the file Command.thy into the directory FoobarCommand and add
the line

use_thy "Command";

to the file ./FoobarCommand/ROOT.ML. You can now compile the theory by just typ-
ing:

$ isabelle make

31

If the compilation succeeds, you have finally created all the necessary log files. They
are stored in the directory

~/.isabelle/heaps/Isabelle2008/polyml-5.2.1_x86-linux/log

or something similar depending on your Isabelle distribution and architecture. One
quick way to assign a shell variable to this directory is by typing

$ ISABELLE_LOGS="$(isabelle getenv -b ISABELLE_OUTPUT)"/log

on the Unix prompt. The directory should include the files:

Pure.gz

HOL.gz

Pure-ProofGeneral.gz

HOL-FoobarCommand.gz

From them you can create the keyword files. Assuming the name of the directory is
in $ISABELLE_LOGS, then the Unix command for creating the keyword file is:

$ isabelle keywords -k foobar

$ISABELLE_LOGS/{Pure.gz,HOL.gz,Pure-ProofGeneral.gz,HOL-FoobarCommand.gz}

The result is the file isar-keywords-foobar.el. It should contain the string foobar

twice.3 This keyword file needs to be copied into the directory ~/.isabelle/etc. To
make Isabelle aware of this keyword file, you have to start Isabelle with the option
-k foobar, that is:

$ isabelle emacs -k foobar a_theory_file

If you now build a theory on top of Command.thy, then the command foobar can be
used. Similarly with any other new command.

At the moment foobar is not very useful. Let us refine it a bit next by letting it take
a proposition as argument and printing this proposition inside the tracing buffer.

The crucial part of a command is the function that determines the behaviour of the
command. In the code above we used a “do-nothing”-function, which because of
Scan.succeed does not parse any argument, but immediately returns the simple
toplevel function Toplevel.theory I. We can replace this code by a function that
first parses a proposition (using the parser OuterParse.prop), then prints out the
tracing information (using a new top-level function trace_top_lvl) and finally does
nothing. For this you can write:

let

fun trace_top_lvl str =

Toplevel.theory (fn thy => (tracing str; thy))

3To see whether things are fine, check that grep foobar on this file returns something non-empty.

32

val trace_prop = OuterParse.prop >> trace_top_lvl

val kind = OuterKeyword.thy_decl

in

OuterSyntax.command "foobar" "traces a proposition" kind trace_prop

end

Now you can type

foobar "True ∧ False"

> "True ∧ False"

and see the proposition in the tracing buffer.

Note that so far we used thy_decl as the kind indicator for the command. This
means that the command finishes as soon as the arguments are processed. Examples
of this kind of commands are definition and declare. In other cases, commands are
expected to parse some arguments, for example a proposition, and then “open up”
a proof in order to prove the proposition (for example lemma) or prove some other
properties (for example function). To achieve this kind of behaviour, you have to
use the kind indicator thy_goal.

Below we change foobar so that it takes a proposition as argument and then starts
a proof in order to prove it. Therefore in Line 13, we set the kind indicator to
thy_goal.

let1

fun set_up_thm str ctxt =2

let3

val prop = Syntax.read_prop ctxt str4

in5

Proof.theorem_i NONE (K I) [[(prop,[])]] ctxt6

end;7

8

val prove_prop = OuterParse.prop >>9

(fn str => Toplevel.print o10

Toplevel.local_theory_to_proof NONE (set_up_thm str))11

12

val kind = OuterKeyword.thy_goal13

in14

OuterSyntax.command "foobar" "proving a proposition" kind prove_prop15

end16

The function set_up_thm in Lines 2 to 7 takes a string (the proposition to be proved)
and a context as argument. The context is necessary in order to be able to use
Syntax.read_prop, which converts a string into a proper proposition. In Line 6
the function Proof.theorem_i starts the proof for the proposition. Its argument
NONE stands for a locale (which we chose to omit); the argument (K I) stands for
a function that determines what should be done with the theorem once it is proved
(we chose to just forget about it). Lines 9 to 11 contain the parser for the proposition.

(FIXME: explain Toplevel.print etc)

If you now type foobar "True ∧ True", you obtain the following proof state:

33

foobar "True ∧ True"

goal (1 subgoal):

1. True ∧ True

and you can build the proof

foobar "True ∧ True"

apply(rule conjI)

apply(rule TrueI)+

done

(FIXME What do Toplevel.theory Toplevel.print Toplevel.local_theory?)

(FIXME read a name and show how to store theorems)

34

Chapter 4

Tactical Reasoning

The main reason for descending to the ML-level of Isabelle is to be able to implement
automatic proof procedures. Such proof procedures usually lessen considerably the
burden of manual reasoning, for example, when introducing new definitions. These
proof procedures are centred around refining a goal state using tactics. This is similar
to the apply-style reasoning at the user level, where goals are modified in a sequence
of proof steps until all of them are solved. However, there are also more structured
operations available on the ML-level that help with the handling of variables and
assumptions.

4.1 Basics of Reasoning with Tactics

To see how tactics work, let us first transcribe a simple apply-style proof into ML.
Suppose the following proof.

lemma disj_swap: "P ∨ Q =⇒ Q ∨ P"

apply(erule disjE)

apply(rule disjI2)

apply(assumption)
apply(rule disjI1)

apply(assumption)
done

This proof translates to the following ML-code.

let

val ctxt = @{context}

val goal = @{prop "P ∨ Q =⇒ Q ∨ P"}

in

Goal.prove ctxt ["P", "Q"] [] goal

(fn _ =>

etac @{thm disjE} 1

THEN rtac @{thm disjI2} 1

THEN atac 1

THEN rtac @{thm disjI1} 1

THEN atac 1)

end

35

> ?P ∨ ?Q =⇒ ?Q ∨ ?P

To start the proof, the function Goal.prove ctxt xs As C tac sets up a goal state
for proving the goal C (that is P ∨ Q =⇒ Q ∨ P in the proof at hand) under the
assumptions As (happens to be empty) with the variables xs that will be generalised
once the goal is proved (in our case P and Q). The tac is the tactic that proves the
goal; it can make use of the local assumptions (there are none in this example).
The functions etac, rtac and atac correspond to erule, rule and assumption,
respectively. The operator THEN strings the tactics together.

Read More
To learn more about the function Goal.prove see [Impl. Man., Sec. 4.3] and the file
Pure/goal.ML. See Pure/tactic.ML and Pure/tctical.ML for the code of basic tactics
and tactic combinators; see also Chapters 3 and 4 in the old Isabelle Reference Manual.

Note that in the code above we used antiquotations for referencing the theorems.
Many theorems also have ML-bindings with the same name. Therefore, we could
also just have written etac disjE 1, or in case there are no ML-binding obtained the
theorem dynamically using the function thm ; for example etac (thm "disjE") 1 .
Both ways however are considered bad style! The reason is that the binding for
disjE can be re-assigned by the user and thus one does not have complete control
over which theorem is actually applied. This problem is nicely prevented by using
antiquotations, because then the theorems are fixed statically at compile-time.

During the development of automatic proof procedures, you will often find it neces-
sary to test a tactic on examples. This can be conveniently done with the command
apply(tactic {* . . . *}). Consider the following sequence of tactics

val foo_tac =

(etac @{thm disjE} 1

THEN rtac @{thm disjI2} 1

THEN atac 1

THEN rtac @{thm disjI1} 1

THEN atac 1)

and the Isabelle proof:

lemma "P ∨ Q =⇒ Q ∨ P"

apply(tactic {* foo_tac *})

done

By using tactic {* . . . *} you can call from the user level of Isabelle the tactic
foo_tac or any other function that returns a tactic.

The tactic foo_tac is just a sequence of simple tactics stringed together by THEN. As
can be seen, each simple tactic in foo_tac has a hard-coded number that stands for
the subgoal analysed by the tactic (1 stands for the first, or top-most, subgoal). This
hard-coding of goals is sometimes wanted, but usually it is not. To avoid the explicit
numbering, you can write

36

val foo_tac’ =

(etac @{thm disjE}

THEN’ rtac @{thm disjI2}

THEN’ atac

THEN’ rtac @{thm disjI1}

THEN’ atac)

and then give the number for the subgoal explicitly when the tactic is called. So in
the next proof you can first discharge the second subgoal, and subsequently the first.

lemma "P1 ∨ Q1 =⇒ Q1 ∨ P1"

and "P2 ∨ Q2 =⇒ Q2 ∨ P2"

apply(tactic {* foo_tac’ 2 *})

apply(tactic {* foo_tac’ 1 *})

done

This kind of addressing is more difficult to achieve when the goal is hard-coded
inside the tactic. For most operators that combine tactics (THEN is only one such
operator) a “primed” version exists.

The tactics foo_tac and foo_tac’ are very specific for analysing goals being only
of the form P ∨ Q =⇒ Q ∨ P. If the goal is not of this form, then they return the
error message:

*** empty result sequence -- proof command failed

*** At command "apply".

This means the tactics failed. The reason for this error message is that tactics are
functions mapping a goal state to a (lazy) sequence of successor states. Hence the
type of a tactic is:

type tactic = thm -> thm Seq.seq

By convention, if a tactic fails, then it should return the empty sequence. Therefore,
if you write your own tactics, they should not raise exceptions willy-nilly; only in
very grave failure situations should a tactic raise the exception THM.

The simplest tactics are no_tac and all_tac. The first returns the empty sequence
and is defined as

fun no_tac thm = Seq.empty

which means no_tac always fails. The second returns the given theorem wrapped
up in a single member sequence; it is defined as

fun all_tac thm = Seq.single thm

which means all_tac always succeeds, but also does not make any progress with
the proof.

37

The lazy list of possible successor goal states shows through at the user-level of
Isabelle when using the command back. For instance in the following proof there
are two possibilities for how to apply foo_tac’ : either using the first assumption or
the second.

lemma " [[P ∨ Q; P ∨ Q]] =⇒ Q ∨ P"

apply(tactic {* foo_tac’ 1 *})

back
done

By using back, we construct the proof that uses the second assumption. While in the
proof above, it does not really matter which assumption is used, in more interesting
cases provability might depend on exploring different possibilities.

Read More
See Pure/General/seq.ML for the implementation of lazy sequences. In day-to-day
Isabelle programming, however, one rarely constructs sequences explicitly, but uses the pre-
defined tactics and tactic combinators instead.

It might be surprising that tactics, which transform one goal state to the next, are
functions from theorems to theorem (sequences). The surprise resolves by knowing
that every goal state is indeed a theorem. To shed more light on this, let us modify
the code of all_tac to obtain the following tactic

fun my_print_tac ctxt thm =

let

val _ = warning (str_of_thm ctxt thm)

in

Seq.single thm

end

which prints out the given theorem (using the string-function defined in Section 2.10)
and then behaves like all_tac. With this tactic we are in the position to inspect ev-
ery goal state in a proof. Consider now the proof in Figure 4.1: as can be seen,
internally every goal state is an implication of the form

A1 =⇒ . . . =⇒ An =⇒ (C)

where C is the goal to be proved and the A i are the subgoals. So after setting up the
lemma, the goal state is always of the form C =⇒ (C) ; when the proof is finished
we are left with (C). Since the goal C can potentially be an implication, there is a
“protector” wrapped around it (in from of an outermost constant Const ("prop",

bool ⇒ bool) applied to each goal; however this constant is invisible in the fig-
ure). This prevents that premises of C are mis-interpreted as open subgoals. While
tactics can operate on the subgoals (the A i above), they are expected to leave the
conclusion C intact, with the exception of possibly instantiating schematic variables.
If you use the predefined tactics, which we describe in the next section, this will
always be the case.

38

lemma shows " [[A; B]] =⇒ A ∧ B"

apply(tactic {* my_print_tac @{context} *})

goal (1 subgoal):

1. [[A; B]] =⇒ A ∧ B

internal goal state:
([[A; B]] =⇒ A ∧ B) =⇒ ([[A; B]] =⇒ A ∧ B)

apply(rule conjI)

apply(tactic {* my_print_tac @{context} *})

goal (2 subgoals):

1. [[A; B]] =⇒ A

2. [[A; B]] =⇒ B

internal goal state:
([[A; B]] =⇒ A) =⇒ ([[A; B]] =⇒ B) =⇒ ([[A; B]] =⇒ A ∧ B)

apply(assumption)
apply(tactic {* my_print_tac @{context} *})

goal (1 subgoal):

1. [[A; B]] =⇒ B

internal goal state:
([[A; B]] =⇒ B) =⇒ ([[A; B]] =⇒ A ∧ B)

apply(assumption)
apply(tactic {* my_print_tac @{context} *})

No subgoals!

internal goal state:
[[A; B]] =⇒ A ∧ B

done

Figure 4.1: A proof where we show the goal state as printed by the Isabelle system
and as represented internally (highlighted boxes).

39

Read More
For more information about the internals of goals see [Impl. Man., Sec. 3.1].

4.2 Simple Tactics

Let us start with the tactic print_tac, which is quite useful for low-level debugging
of tactics. It just prints out a message and the current goal state. Processing the
proof

lemma shows "False =⇒ True"

apply(tactic {* print_tac "foo message" *})

gives:

foo message

False =⇒ True

1. False =⇒ True

Another simple tactic is the function atac, which, as shown in the previous section,
corresponds to the assumption command.

lemma shows "P =⇒ P"

apply(tactic {* atac 1 *})

No subgoals!

Similarly, rtac, dtac, etac and ftac correspond to rule, drule, erule and frule,
respectively. Each of them takes a theorem as argument and attempts to apply it to
a goal. Below are three self-explanatory examples.

lemma shows "P ∧ Q"

apply(tactic {* rtac @{thm conjI} 1 *})

goal (2 subgoals):

1. P

2. Q

lemma shows "P ∧ Q =⇒ False"

apply(tactic {* etac @{thm conjE} 1 *})

goal (1 subgoal):

1. [[P; Q]] =⇒ False

lemma shows "False ∧ True =⇒ False"

apply(tactic {* dtac @{thm conjunct2} 1 *})

goal (1 subgoal):

1. True =⇒ False

Note the number in each tactic call. Also as mentioned in the previous section, most
basic tactics take such an argument; it addresses the subgoal they are analysing. In
the proof below, we first split up the conjunction in the second subgoal by focusing
on this subgoal first.

40

lemma shows "Foo" and "P ∧ Q"

apply(tactic {* rtac @{thm conjI} 2 *})

goal (3 subgoals):

1. Foo

2. P

3. Q

(FIXME: is it important to get the number of subgoals?)

The function resolve_tac is similar to rtac, except that it expects a list of theorems
as arguments. From this list it will apply the first applicable theorem (later theorems
that are also applicable can be explored via the lazy sequences mechanism). Given
the code

val resolve_tac_xmp = resolve_tac [@{thm impI}, @{thm conjI}]

an example for resolve_tac is the following proof where first an outermost impli-
cation is analysed and then an outermost conjunction.

lemma shows "C −→ (A ∧ B)" and "(A −→ B) ∧ C"

apply(tactic {* resolve_tac_xmp 1 *})

apply(tactic {* resolve_tac_xmp 2 *})

goal (3 subgoals):

1. C =⇒ A ∧ B

2. A −→ B

3. C

Similarly versions taking a list of theorems exist for the tactics dtac (dresolve_tac),
etac (eresolve_tac) and so on.

Another simple tactic is cut_facts_tac. It inserts a list of theorems into the assump-
tions of the current goal state. For example

lemma shows "True 6= False"

apply(tactic {* cut_facts_tac [@{thm True_def}, @{thm False_def}] 1 *})

produces the goal state

goal (1 subgoal):

1. [[True ≡ (λx. x) = (λx. x); False ≡ ∀ P. P]] =⇒ True 6= False

Since rules are applied using higher-order unification, an automatic proof procedure
might become too fragile, if it just applies inference rules as shown above. The rea-
son is that a number of rules introduce meta-variables into the goal state. Consider
for example the proof

lemma shows "∀ x∈A. P x =⇒ Q x"

apply(drule bspec)

goal (2 subgoals):

1. ?x ∈ A

2. P ?x =⇒ Q x

where the application of Rule bspec generates two subgoals involving the meta-
variable ?x. Now, if you are not careful, tactics applied to the first subgoal might

41

instantiate this meta-variable in such a way that the second subgoal becomes un-
provable. If it is clear what the ?x should be, then this situation can be avoided by
introducing a more constraint version of the bspec -rule. Such constraints can be
given by pre-instantiating theorems with other theorems. One function to do this is
RS

@{thm disjI1} RS @{thm conjI}

> [[?P1; ?Q]] =⇒ (?P1 ∨ ?Q1) ∧ ?Q

which in the example instantiates the first premise of the conjI -rule with the rule
disjI1. If the instantiation is impossible, as in the case of

@{thm conjI} RS @{thm mp}

> *** Exception- THM ("RSN: no unifiers", 1,

> [" [[?P; ?Q]] =⇒ ?P ∧ ?Q", " [[?P −→ ?Q; ?P]] =⇒ ?Q"]) raised

then the function raises an exception. The function RSN is similar to RS, but takes
an additional number as argument that makes explicit which premise should be
instantiated.

To improve readability of the theorems we produce below, we shall use the following
function

fun no_vars ctxt thm =

let

val ((_, [thm’]), _) = Variable.import_thms true [thm] ctxt

in

thm’

end

that transform the schematic variables of a theorem into free variables. Using this
function for the first RS -expression above would produce the more readable result:

no_vars @{context} (@{thm disjI1} RS @{thm conjI})

> [[P; Q]] =⇒ (P ∨ Qa) ∧ Q

If you want to instantiate more than one premise of a theorem, you can use the
function MRS :

no_vars @{context} ([@{thm disjI1}, @{thm disjI2}] MRS @{thm conjI})

> [[P; Q]] =⇒ (P ∨ Qa) ∧ (Pa ∨ Q)

If you need to instantiate lists of theorems, you can use the functions RL and MRL.
For example in the code below, every theorem in the second list is instantiated with
every theorem in the first.

42

fun sp_tac {prems, params, asms, concl, context, schematics} =

let

val str_of_params = str_of_cterms context params

val str_of_asms = str_of_cterms context asms

val str_of_concl = str_of_cterm context concl

val str_of_prems = str_of_thms context prems

val str_of_schms = str_of_cterms context (snd schematics)

val _ = (warning ("params: " ^ str_of_params);

warning ("schematics: " ^ str_of_schms);

warning ("assumptions: " ^ str_of_asms);

warning ("conclusion: " ^ str_of_concl);

warning ("premises: " ^ str_of_prems))

in

no_tac

end

Figure 4.2: A function that prints out the various parameters provided by the tactic
SUBPROOF. It uses the functions defined in Section 2.10 for extracting strings from
cterms and thms.

[@{thm impI}, @{thm disjI2}] RL [@{thm conjI}, @{thm disjI1}]

> [[[P =⇒ Q; Qa]] =⇒ (P −→ Q) ∧ Qa,

> [[Q; Qa]] =⇒ (P ∨ Q) ∧ Qa,

> (P =⇒ Q) =⇒ (P −→ Q) ∨ Qa,

> Q =⇒ (P ∨ Q) ∨ Qa]

Read More
The combinators for instantiating theorems are defined in Pure/drule.ML.

Often proofs on the ML-level involve elaborate operations on assumptions and
∧

-
quantified variables. To do such operations using the basic tactics is very unwieldy
and brittle. Some convenience and safety is provided by the tactic SUBPROOF. This
tactic fixes the parameters and binds the various components of a goal state to a
record. To see what happens, assume the function defined in Figure 4.2, which takes
a record and just prints out the content of this record (using the string transformation
functions from in Section 2.10). Consider now the proof:

lemma shows "
∧
x y. A x y =⇒ B y x −→ C (?z y) x"

apply(tactic {* SUBPROOF sp_tac @{context} 1 *})?

The tactic produces the following printout:

params: x, y
schematics: z

assumptions: A x y

conclusion: B y x −→ C (z y) x

premises: A x y

43

Note in the actual output the brown colour of the variables x and y. Although they
are parameters in the original goal, they are fixed inside the subproof. By convention
these fixed variables are printed in brown colour. Similarly the schematic variable z.
The assumption, or premise, A x y is bound as cterm to the record-variable asms,
but also as thm to prems.

Notice also that we had to append "?" to the apply-command. The reason is that
SUBPROOF normally expects that the subgoal is solved completely. Since in the
function sp_tac we returned the tactic no_tac, the subproof obviously fails. The
question-mark allows us to recover from this failure in a graceful manner so that the
warning messages are not overwritten by an “empty sequence” error message.

If we continue the proof script by applying the impI -rule

apply(rule impI)

apply(tactic {* SUBPROOF sp_tac @{context} 1 *})?

then tactic prints out

params: x, y
schematics: z

assumptions: A x y, B y x

conclusion: C (z y) x

premises: A x y, B y x

Now also B y x is an assumption bound to asms and prems.

One convenience of SUBPROOF is that we can apply the assumptions using the usual
tactics, because the parameter prems contains them as theorems. With this you can
easily implement a tactic that behaves almost like atac :

val atac’ = SUBPROOF (fn {prems, ...} => resolve_tac prems 1)

If you apply atac’ to the next lemma

lemma shows " [[B x y; A x y; C x y]] =⇒ A x y"

apply(tactic {* atac’ @{context} 1 *})

it will produce

No subgoals!

The restriction in this tactic which is not present in atac is that it cannot instantiate
any schematic variable. This might be seen as a defect, but it is actually an advantage
in the situations for which SUBPROOF was designed: the reason is that, as mentioned
before, instantiation of schematic variables can affect several goals and can render
them unprovable. SUBPROOF is meant to avoid this.

Notice that atac’ inside SUBPROOF calls resolve_tac with the subgoal number 1

and also the outer call to SUBPROOF in the apply-step uses 1. This is another ad-
vantage of SUBPROOF : the addressing inside it is completely local to the tactic inside
the subproof. It is therefore possible to also apply atac’ to the second goal by just
writing:

44

lemma shows "True" and " [[B x y; A x y; C x y]] =⇒ A x y"

apply(tactic {* atac’ @{context} 2 *})

apply(rule TrueI)

done

Read More
The function SUBPROOF is defined in Pure/subgoal.ML and also described in [Impl. Man.,
Sec. 4.3].

A similar but less powerful function than SUBPROOF is SUBGOAL. It allows you to
inspect a given subgoal. With this you can implement a tactic that applies a rule
according to the topmost logic connective in the subgoal (to illustrate this we only
analyse a few connectives). The code of the tactic is as follows.

fun select_tac (t,i) =1

case t of2

@{term "Trueprop"} $ t’ => select_tac (t’,i)3

| @{term "op =⇒"} $ _ $ t’ => select_tac (t’,i)4

| @{term "op ∧"} $ _ $ _ => rtac @{thm conjI} i5

| @{term "op −→"} $ _ $ _ => rtac @{thm impI} i6

| @{term "Not"} $ _ => rtac @{thm notI} i7

| Const (@{const_name "All"}, _) $ _ => rtac @{thm allI} i8

| _ => all_tac9

The input of the function is a term representing the subgoal and a number specifying
the subgoal of interest. In line 3 you need to descend under the outermost Trueprop
in order to get to the connective you like to analyse. Otherwise goals like A ∧ B are
not properly analysed. Similarly with meta-implications in the next line. While for
the first five patterns we can use the @term -antiquotation to construct the patterns,
the pattern in Line 8 cannot be constructed in this way. The reason is that an antiquo-
tation would fix the type of the quantified variable. So you really have to construct
the pattern using the basic term-constructors. This is not necessary in other cases,
because their type is always fixed to function types involving only the type bool.
The final pattern, we chose to just return all_tac. Consequently, select_tac never
fails.

Let us now see how to apply this tactic. Consider the four goals:

lemma shows "A ∧ B" and "A −→ B −→C" and "∀ x. D x" and "E =⇒ F"

apply(tactic {* SUBGOAL select_tac 4 *})

apply(tactic {* SUBGOAL select_tac 3 *})

apply(tactic {* SUBGOAL select_tac 2 *})

apply(tactic {* SUBGOAL select_tac 1 *})

goal (5 subgoals):

1. A

2. B

3. A =⇒ B −→ C

4.
∧
x. D x

5. E =⇒ F

where in all but the last the tactic applied an introduction rule. Note that we applied
the tactic to the goals in “reverse” order. This is a trick in order to be independent

45

from the subgoals that are produced by the rule. If we had applied it in the other
order

lemma shows "A ∧ B" and "A −→ B −→C" and "∀ x. D x" and "E =⇒ F"

apply(tactic {* SUBGOAL select_tac 1 *})

apply(tactic {* SUBGOAL select_tac 3 *})

apply(tactic {* SUBGOAL select_tac 4 *})

apply(tactic {* SUBGOAL select_tac 5 *})

then we have to be careful to not apply the tactic to the two subgoals produced by
the first goal. To do this can result in quite messy code. In contrast, the “reverse
application” is easy to implement.

Of course, this example is contrived: there are much simpler methods available
in Isabelle for implementing a proof procedure analysing a goal according to its
topmost connective. These simpler methods use tactic combinators, which we will
explain in the next section.

4.3 Tactic Combinators

The purpose of tactic combinators is to build compound tactics out of smaller tactics.
In the previous section we already used THEN, which just strings together two tactics
in a sequence. For example:

lemma shows "(Foo ∧ Bar) ∧ False"

apply(tactic {* rtac @{thm conjI} 1 THEN rtac @{thm conjI} 1 *})

goal (3 subgoals):

1. Foo

2. Bar

3. False

If you want to avoid the hard-coded subgoal addressing, then you can use the
“primed” version of THEN. For example:

lemma shows "(Foo ∧ Bar) ∧ False"

apply(tactic {* (rtac @{thm conjI} THEN’ rtac @{thm conjI}) 1 *})

goal (3 subgoals):

1. Foo

2. Bar

3. False

Here you only have to specify the subgoal of interest only once and it is consistently
applied to the component tactics. For most tactic combinators such a “primed” ver-
sion exists and in what follows we will usually prefer it over the “unprimed” one.

If there is a list of tactics that should all be tried out in sequence, you can use the
combinator EVERY’. For example the function foo_tac’ from page 36 can also be
written as:

val foo_tac’’ = EVERY’ [etac @{thm disjE}, rtac @{thm disjI2},

atac, rtac @{thm disjI1}, atac]

46

There is even another way of implementing this tactic: in automatic proof procedures
(in contrast to tactics that might be called by the user) there are often long lists of
tactics that are applied to the first subgoal. Instead of writing the code above and
then calling foo_tac’’ 1, you can also just write

val foo_tac1 = EVERY1 [etac @{thm disjE}, rtac @{thm disjI2},

atac, rtac @{thm disjI1}, atac]

and just call foo_tac1.

With the combinators THEN’, EVERY’ and EVERY1 it must be guaranteed that all
component tactics successfully apply; otherwise the whole tactic will fail. If you
rather want to try out a number of tactics, then you can use the combinator ORELSE’
for two tactics, and FIRST’ (or FIRST1) for a list of tactics. For example, the tactic

val orelse_xmp = (rtac @{thm disjI1} ORELSE’ rtac @{thm conjI})

will first try out whether rule disjI applies and after that conjI. To see this consider
the proof

lemma shows "True ∧ False" and "Foo ∨ Bar"

apply(tactic {* orelse_xmp 2 *})

apply(tactic {* orelse_xmp 1 *})

which results in the goal state
goal (3 subgoals):

1. True

2. False

3. Foo

Using FIRST’ we can simplify our select_tac from Page 45 as follows:

val select_tac’ = FIRST’ [rtac @{thm conjI}, rtac @{thm impI},

rtac @{thm notI}, rtac @{thm allI}, K all_tac]

Since we like to mimic the behaviour of select_tac as closely as possible, we must
include all_tac at the end of the list, otherwise the tactic will fail if no rule applies
(we laso have to wrap all_tac using the K -combinator, because it does not take a
subgoal number as argument). You can test the tactic on the same goals:

lemma shows "A ∧ B" and "A −→ B −→C" and "∀ x. D x" and "E =⇒ F"

apply(tactic {* select_tac’ 4 *})

apply(tactic {* select_tac’ 3 *})

apply(tactic {* select_tac’ 2 *})

apply(tactic {* select_tac’ 1 *})

goal (5 subgoals):

1. A

2. B

3. A =⇒ B −→ C

4.
∧
x. D x

5. E =⇒ F

47

Since such repeated applications of a tactic to the reverse order of all subgoals is
quite common, there is the tactic combinator ALLGOALS that simplifies this. Using
this combinator you can simply write:

lemma shows "A ∧ B" and "A −→ B −→C" and "∀ x. D x" and "E =⇒ F"

apply(tactic {* ALLGOALS select_tac’ *})

goal (5 subgoals):

1. A

2. B

3. A =⇒ B −→ C

4.
∧
x. D x

5. E =⇒ F

Remember that we chose to implement select_tac’ so that it always succeeds. This
can be potentially very confusing for the user, for example, in cases where the goal
is the form

lemma shows "E =⇒ F"

apply(tactic {* select_tac’ 1 *})

goal (1 subgoal):

1. E =⇒ F

In this case no rule applies. The problem for the user is that there is little chance to
see whether or not progress in the proof has been made. By convention therefore,
tactics visible to the user should either change something or fail.

To comply with this convention, we could simply delete the K all_tac from the end
of the theorem list. As a result select_tac’ would only succeed on goals where it
can make progress. But for the sake of argument, let us suppose that this deletion is
not an option. In such cases, you can use the combinator CHANGED to make sure the
subgoal has been changed by the tactic. Because now

lemma shows "E =⇒ F"

apply(tactic {* CHANGED (select_tac’ 1) *})

gives the error message:

*** empty result sequence -- proof command failed

*** At command "apply".

We can further extend select_tac’ so that it not just applies to the topmost connec-
tive, but also to the ones immediately “underneath”, i.e. analyse the goal completely.
For this you can use the tactic combinator REPEAT. As an example suppose the fol-
lowing tactic

val repeat_xmp = REPEAT (CHANGED (select_tac’ 1))

which applied to the proof

lemma shows "((¬A) ∧ (∀ x. B x)) ∧ (C −→ D)"

apply(tactic {* repeat_xmp *})

produces

48

goal (3 subgoals):

1. A =⇒ False

2. ∀ x. B x

3. C −→ D

Here it is crucial that select_tac’ is prefixed with CHANGED, because otherwise
REPEAT runs into an infinite loop (it applies the tactic as long as it succeeds). The
function REPEAT1 is similar, but runs the tactic at least once (failing if this is not
possible).

If you are after the “primed” version of repeat_xmp then you need to implement it
as

val repeat_xmp’ = REPEAT o CHANGED o select_tac’

since there are no “primed” versions of REPEAT and CHANGED.

If you look closely at the goal state above, the tactics repeat_xmp and repeat_xmp’

are not yet quite what we are after: the problem is that goals 2 and 3 are not anal-
ysed. This is because the tactic is applied repeatedly only to the first subgoal. To anal-
yse also all resulting subgoals, you can use the tactic combinator REPEAT_ALL_NEW.
Suppose the tactic

val repeat_all_new_xmp = REPEAT_ALL_NEW (CHANGED o select_tac’)

you see that the following goal

lemma shows "((¬A) ∧ (∀ x. B x)) ∧ (C −→ D)"

apply(tactic {* repeat_all_new_xmp 1 *})

goal (3 subgoals):

1. A =⇒ False

2.
∧
x. B x

3. C =⇒ D

is completely analysed according to the theorems we chose to include in select_tac.

Recall that tactics produce a lazy sequence of successor goal states. These states can
be explored using the command back. For example

lemma " [[P1 ∨ Q1; P2 ∨ Q2]] =⇒ R"

apply(tactic {* etac @{thm disjE} 1 *})

applies the rule to the first assumption yielding the goal state:
goal (2 subgoals):

1. [[P2 ∨ Q2; P1]] =⇒ R

2. [[P2 ∨ Q2; Q1]] =⇒ R

After typing

back

the rule now applies to the second assumption.
goal (2 subgoals):

1. [[P1 ∨ Q1; P2]] =⇒ R

2. [[P1 ∨ Q1; Q2]] =⇒ R

49

Sometimes this leads to confusing behaviour of tactics and also has the potential to
explode the search space for tactics. These problems can be avoided by prefixing the
tactic with the tactic combinator DETERM.

lemma " [[P1 ∨ Q1; P2 ∨ Q2]] =⇒ R"

apply(tactic {* DETERM (etac @{thm disjE} 1) *})

goal (2 subgoals):

1. [[P2 ∨ Q2; P1]] =⇒ R

2. [[P2 ∨ Q2; Q1]] =⇒ R

This will combinator prune the search space to just the first successful application.
Attempting to apply back in this goal states gives the error message:

*** back: no alternatives

*** At command "back".

Read More
Most tactic combinators described in this section are defined in Pure/tctical.ML.

4.4 Rewriting and Simplifier Tactics

rewrite_goals_tac ObjectLogic.full_atomize_tac ObjectLogic.rulify_tac

4.5 Structured Proofs

lemma True

proof

{
fix A B C

assume r: "A & B =⇒ C"

assume A B

then have "A & B" ..
then have C by (rule r)

}

{
fix A B C

assume r: "A & B =⇒ C"

assume A B

note conjI [OF this]

note r [OF this]

}
oops

fun prop ctxt s =

Thm.cterm_of (ProofContext.theory_of ctxt) (Syntax.read_prop ctxt s)

50

val ctxt0 = @{context};

val ctxt = ctxt0;

val (_, ctxt) = Variable.add_fixes ["A", "B", "C"] ctxt;

val ([r], ctxt) = Assumption.add_assumes [prop ctxt "A & B =⇒ C"] ctxt;

val (this, ctxt) = Assumption.add_assumes [prop ctxt "A", prop ctxt "B"]

ctxt;

val this = [@{thm conjI} OF this];

val this = r OF this;

val this = Assumption.export false ctxt ctxt0 this

val this = Variable.export ctxt ctxt0 [this]

51

Chapter 5

How to Write a Definitional
Package

“My thesis is that programming is not at the bottom of the intellectual
pyramid, but at the top. It’s creative design of the highest order. It
isn’t monkey or donkey work; rather, as Edsger Dijkstra famously

claimed, it’s amongst the hardest intellectual tasks ever attempted.”

Richard Bornat, In defence of programming [1]

HOL is based on just a few primitive constants, like equality and implication, whose
properties are described by a few axioms. All other concepts, such as inductive pred-
icates, datatypes, or recursive functions are defined in terms of those constants, and
the desired properties, for example induction theorems, or recursion equations are
derived from the definitions by a formal proof. Since it would be very tedious for
a user to define complex inductive predicates or datatypes “by hand” just using the
primitive operators of higher order logic, packages have been implemented automat-
ing such work. Thanks to those packages, the user can give a high-level specification,
like a list of introduction rules or constructors, and the package then does all the low-
level definitions and proofs behind the scenes. In this chapter we explain how such
a package can be implemented.

As a running example, we have chosen a rather simple package for defining induc-
tive predicates. To keep things simple, we will not use the general Knaster-Tarski
fixpoint theorem on complete lattices, which forms the basis of Isabelle’s standard
inductive definition package. Instead, we will use a simpler impredicative (i.e. involv-
ing quantification on predicate variables) encoding of inductive predicates suggested
by Melham [3]. Due to its simplicity, this package will necessarily have a reduced
functionality. It does neither support introduction rules involving arbitrary mono-
tone operators, nor does it prove case analysis (or inversion) rules. Moreover, it only
proves a weaker form of the rule induction theorem.

52

5.1 Examples of Inductive Definitions

Let us first give three examples showing how to define inductive predicates by hand
and prove characteristic properties such as introduction rules and an induction rule.
From these examples, we will then figure out a general method for defining inductive
predicates. The aim in this section is not to write proofs that are as beautiful as
possible, but as close as possible to the ML-code producing the proofs that we will
develop later.

As a first example, we consider the transitive closure of a relation R. It is an inductive
predicate characterized by the two introduction rules

trcl R x x
R x y trcl R y z

trcl R x z

(FIXME first rule should be an “axiom”)

Note that the trcl predicate has two different kinds of parameters: the first param-
eter R stays fixed throughout the definition, whereas the second and third parameter
changes in the “recursive call”.

Since an inductively defined predicate is the least predicate closed under a collection
of introduction rules, we define the predicate trcl R x y in such a way that it holds
if and only if P x y holds for every predicate P closed under the rules above. This
gives rise to the definition
definition "trcl R x y ≡

∀ P. (∀ x. P x x) −→ (∀ x y z. R x y −→ P y z −→ P x z) −→ P x y"

where we quantify over the predicate P. Note that we have to use the object impli-
cation −→ and object quantification ∀ for stating this definition.

With this definition of the transitive closure, the proof of the induction theorem is
almost immediate. It suffices to convert all the meta-level connectives in the induc-
tion rule to object-level connectives using the atomize proof method, expand the
definition of trcl, eliminate the universal quantifier contained in it, and then solve
the goal by assumption.

(FIXME: add linenumbers to the proof below and the text above)

trcl_induct:1

assumes asm: "trcl R x y"2

shows "(
∧
x. P x x) =⇒ (

∧
x y z. R x y =⇒ P y z =⇒ P x z) =⇒ P x y"3

(atomize (full))4

(cut_tac asm)5

(unfold trcl_def)6

(drule spec[where x=P])7

(assumption)8

9

We now turn to the proofs of the introduction rules, which are slightly more com-
plicated. In order to prove the first introduction rule, we again unfold the definition
and then apply the introdution rules for ∀ and −→ as often as possible. We then end
up in a proof state of the following form:

53

goal (1 subgoal):

1.
∧
P. [[∀ x. P x x; ∀ x y z. R x y −→ P y z −→ P x z]] =⇒ P x x

The two assumptions correspond to the introduction rules, where trcl R has been
replaced by P. Thus, all we have to do is to eliminate the universal quantifier in front
of the first assumption, and then solve the goal by assumption:

lemma trcl_base: "trcl R x x"

apply(unfold trcl_def)

apply(rule allI impI)+

apply(drule spec)

apply(assumption)
done

Since the second introduction rule has premises, its proof is not as easy as the pre-
vious one. After unfolding the definitions and applying the introduction rules for ∀
and −→, we get the proof state

goal (1 subgoal):

1.
∧
P. [[R x y;

∀ P. (∀ x. P x x) −→ (∀ x y z. R x y −→ P y z −→ P x z) −→ P y z;

∀ x. P x x; ∀ x y z. R x y −→ P y z −→ P x z]]
=⇒ P x z

The third and fourth assumption corresponds to the first and second introduction
rule, respectively, whereas the first and second assumption corresponds to the premises
of the introduction rule. Since we want to prove the second introduction rule, we
apply the fourth assumption to the goal P x z. In order for the assumption to be
applicable, we have to eliminate the universal quantifiers and turn the object-level
implications into meta-level ones. This can be accomplished using the rule_format

attribute. Applying the assumption produces two new subgoals, which can be solved
using the first and second assumption. The second assumption again involves a
quantifier and implications that have to be eliminated before it can be applied. To
avoid problems with higher order unification, it is advisable to provide an instantia-
tion for the universally quantified predicate variable in the assumption.

lemma trcl_step: "R x y =⇒ trcl R y z =⇒ trcl R x z"

apply (unfold trcl_def)

apply (rule allI impI)+

proof -

case (goal1 P)

have g1: "R x y" by fact

have g2: "∀ P. (∀ x. P x x) −→ (∀ x y z. R x y −→ P y z −→ P x z) −→ P

y z" by fact

have g3: "∀ x. P x x" by fact

have g4: "∀ x y z. R x y −→ P y z −→ P x z" by fact

show ?case

apply (rule g4 [rule_format])

apply (rule g1)

apply (rule g2 [THEN spec [where x=P], THEN mp, THEN mp, OF g3, OF g4])

done

54

qed

This method of defining inductive predicates easily generalizes to mutually inductive
predicates, like the predicates even and odd characterized by the following introduc-
tion rules:

even 0
odd m

even (Suc m)

even m

odd (Suc m)

Since the predicates are mutually inductive, each of the definitions contain two quan-
tifiers over the predicates P and Q.

definition "even n ≡
∀ P Q. P 0 −→ (∀ m. Q m −→ P (Suc m))

−→ (∀ m. P m −→ Q (Suc m)) −→ P n"

definition "odd n ≡
∀ P Q. P 0 −→ (∀ m. Q m −→ P (Suc m))

−→ (∀ m. P m −→ Q (Suc m)) −→ Q n"

For proving the induction rule, we use exactly the same technique as in the transitive
closure example:

lemma even_induct:

assumes even: "even n"

shows "P 0 =⇒
(
∧
m. Q m =⇒ P (Suc m)) =⇒ (

∧
m. P m =⇒ Q (Suc m)) =⇒ P n"

apply (atomize (full))

apply (cut_tac even)

apply (unfold even_def)

apply (drule spec [where x=P])

apply (drule spec [where x=Q])

apply assumption

done

A similar induction rule having Q n as a conclusion can be proved for the odd pred-
icate. The proofs of the introduction rules are also very similar to the ones in the
previous example. We only show the proof of the second introduction rule, since it
is almost the same as the one for the third introduction rule, and the proof of the
first rule is trivial.

lemma evenS: "odd m =⇒ even (Suc m)"

apply (unfold odd_def even_def)

apply (rule allI impI)+

proof -

case goal1

show ?case

apply (rule goal1(3) [rule_format])

apply (rule goal1(1) [THEN spec [where x=P], THEN spec [where x=Q],

THEN mp, THEN mp, THEN mp, OF goal1(2-4)])

done
qed

As a final example, we will consider the definition of the accessible part of a relation
R characterized by the introduction rule

55

∀ y. R y x −→ accpart R y

accpart R x

whose premise involves a universal quantifier and an implication. The definition of
accpart is as follows:

definition "accpart R x ≡ ∀ P. (∀ x. (∀ y. R y x −→ P y) −→ P x) −→ P x"

The proof of the induction theorem is again straightforward:

lemma accpart_induct:

assumes acc: "accpart R x"

shows "(
∧
x. (

∧
y. R y x =⇒ P y) =⇒ P x) =⇒ P x"

apply (atomize (full))

apply (cut_tac acc)

apply (unfold accpart_def)

apply (drule spec [where x=P])

apply assumption

done

Proving the introduction rule is a little more complicated, due to the quantifier and
the implication in the premise. We first convert the meta-level universal quanti-
fier and implication to their object-level counterparts. Unfolding the definition of
accpart and applying the introduction rules for ∀ and −→ yields the following
proof state:

goal (1 subgoal):

1.
∧
P. [[

∧
y. R y x =⇒ ∀ P. (∀ x. (∀ y. R y x −→ P y) −→ P x) −→ P y;

∀ x. (∀ y. R y x −→ P y) −→ P x]]
=⇒ P x

Applying the second assumption produces a proof state with the new local assump-
tion R y x, which will then be used to solve the goal P y using the first assumption.

lemma accpartI: "(
∧
y. R y x =⇒ accpart R y) =⇒ accpart R x"

apply (unfold accpart_def)

apply (rule allI impI)+

proof -

case goal1

note goal1’ = this

show ?case

apply (rule goal1’(2) [rule_format])

proof -

case goal1

show ?case

apply (rule goal1’(1) [OF goal1, THEN spec [where x=P],

THEN mp, OF goal1’(2)])

done
qed

qed

56

5.2 The General Construction Principle

Before we start with the implementation, it is useful to describe the general form of
inductive definitions that our package should accept. We closely follow the notation
for inductive definitions introduced by Schwichtenberg [6] for the Minlog system.
Let R1, . . . , Rn be mutually inductive predicates and ~p be parameters. Then the
introduction rules for R1, . . . , Rn may have the form

∧
~xi. ~Ai =⇒

(∧
~yij . ~Bij =⇒ Rkij

~p ~sij

)
j=1,...,mi

=⇒ Rli ~p ~ti for i = 1, . . . , r

where ~Ai and ~Bij are formulae not containing R1, . . . , Rn. Note that by disallow-
ing the inductive predicates to occur in ~Bij we make sure that all occurrences of
the predicates in the premises of the introduction rules are strictly positive. This
condition guarantees the existence of predicates that are closed under the introduc-
tion rules shown above. The inductive predicates R1, . . . , Rn can then be defined as
follows:

Ri ≡ λ~p ~zi. ∀P1 . . . Pn. K1 −→ · · · −→ Kr −→ Pi ~zi for i = 1, . . . , n

where

Ki ≡ ∀~xi. ~Ai −→
(
∀~yij . ~Bij −→ Pkij

~sij

)
j=1,...,mi

−→ Pli
~ti for i = 1, . . . , r

The (weak) induction rules for the inductive predicates R1, . . . , Rn are

Ri ~p ~zi =⇒ I1 =⇒ · · · =⇒ Ir =⇒ Pi ~zi for i = 1, . . . , n

where

Ii ≡
∧
~xi. ~Ai =⇒

(∧
~yij . ~Bij =⇒ Pkij

~sij

)
j=1,...,mi

=⇒ Pli
~ti for i = 1, . . . , r

Since Ki and Ii are equivalent modulo conversion between meta-level and object-
level connectives, it is clear that the proof of the induction theorem is straight-
forward. We will therefore focus on the proof of the introduction rules. When
proving the introduction rule shown above, we start by unfolding the definition of
R1, . . . , Rn, which yields

∧
~xi. ~Ai =⇒

(∧
~yij . ~Bij =⇒ ∀P1 . . . Pn. ~K −→ Pkij

~sij

)
j=1,...,mi

=⇒ ∀P1 . . . Pn. ~K −→ Pli
~ti

where ~K abbreviates K1, . . . ,Kr. Applying the introduction rules for ∀ and −→
yields a proof state in which we have to prove Pli

~ti from the additional assumptions
~K. When using Kli (converted to meta-logic format) to prove Pli

~ti, we get subgoals
~Ai that are trivially solvable by assumption, as well as subgoals of the form∧

~yij . ~Bij =⇒ Pkij
~sij for j = 1, . . . ,mi

57

that can be solved using the assumptions∧
~yij . ~Bij =⇒ ∀P1 . . . Pn. ~K −→ Pkij

~sij and ~K

5.3 The Interface

In order to add a new inductive predicate to a theory with the help of our package,
the user must invoke it. For every package, there are essentially two different ways of
invoking it, which we will refer to as external and internal. By external invocation we
mean that the package is called from within a theory document. In this case, the type
of the inductive predicate, as well as its introduction rules, are given as strings by the
user. Before the package can actually make the definition, the type and introduction
rules have to be parsed. In contrast, internal invocation means that the package is
called by some other package. For example, the function definition package [2] calls
the inductive definition package to define the graph of the function. However, it is
not a good idea for the function definition package to pass the introduction rules for
the function graph to the inductive definition package as strings. In this case, it is
better to directly pass the rules to the package as a list of terms, which is more robust
than handling strings that are lacking the additional structure of terms. These two
ways of invoking the package are reflected in its ML programming interface, which
consists of two functions:

signature SIMPLE_INDUCTIVE_PACKAGE =

sig

val add_inductive_i:

((Binding.binding * typ) * mixfix) list -> predicates
(Binding.binding * typ) list -> parameters
((Binding.binding * Attrib.src list) * term) list -> rules
local_theory -> local_theory

val add_inductive:

(Binding.binding * string option * mixfix) list -> predicates
(Binding.binding * string option * mixfix) list -> parameters
(Attrib.binding * string) list -> rules
local_theory -> local_theory

end;

The function for external invocation of the package is called add_inductive, whereas
the one for internal invocation is called add_inductive_i. Both of these functions
take as arguments the names and types of the inductive predicates, the names and
types of their parameters, the actual introduction rules and a local theory. They re-
turn a local theory containing the definition, together with a tuple containing the
introduction and induction rules, which are stored in the local theory, too. In con-
trast to an ordinary theory, which simply consists of a type signature, as well as
tables for constants, axioms and theorems, a local theory also contains additional

58

context information, such as locally fixed variables and local assumptions that may
be used by the package. The type local_theory is identical to the type of proof
contexts Proof.context, although not every proof context constitutes a valid local
theory. Note that add_inductive_i expects the types of the predicates and param-
eters to be specified using the datatype typ of Isabelle’s logical framework, whereas
add_inductive expects them to be given as optional strings. If no string is given
for a particular predicate or parameter, this means that the type should be inferred
by the package. Additional mixfix syntax may be associated with the predicates and
parameters as well. Note that add_inductive_i does not allow mixfix syntax to
be associated with parameters, since it can only be used for parsing. The names of
the predicates, parameters and rules are represented by the type Binding.binding.
Strings can be turned into elements of the type Binding.binding using the function

Binding.name : string ->

Binding.binding

Each introduction rule is given as a tuple containing its name, a list of attributes and a
logical formula. Note that the type Attrib.binding used in the list of introduction
rules is just a shorthand for the type Binding.binding * Attrib.src list. The
function add_inductive_i expects the formula to be specified using the datatype
term, whereas add_inductive expects it to be given as a string. An attribute speci-
fies additional actions and transformations that should be applied to a theorem, such
as storing it in the rule databases used by automatic tactics like the simplifier. The
code of the package, which will be described in the following section, will mostly
treat attributes as a black box and just forward them to other functions for stor-
ing theorems in local theories. The implementation of the function add_inductive

for external invocation of the package is quite simple. Essentially, it just parses the
introduction rules and then passes them on to add_inductive_i :

fun read_specification’ vars specs lthy =

let

val specs’ = map (fn (a, s) => [(a, [s])]) specs

val ((varst, specst), _) = Specification.read_specification vars specs’ lthy

val specst’ = map (apsnd the_single) specst

in

(varst, specst’)

end

fun add_inductive preds params specs lthy =

let

val (vars, specs’) = read_specification’ (preds @ params) specs lthy;

val (preds’, params’) = chop (length preds) vars;

val params’’ = map fst params’

in

add_inductive_i preds’ params’’ specs’ lthy

end;

For parsing and type checking the introduction rules, we use the function

Specification.read_specification:

59

(Binding.binding * string option * mixfix) list -> variables
(Attrib.binding * string list) list list -> rules
local_theory ->

(((Binding.binding * typ) * mixfix) list *

(Attrib.binding * term list) list) *

local_theory

During parsing, both predicates and parameters are treated as variables, so the lists
preds_syn and params_syn are just appended before being passed to read_specification.
Note that the format for rules supported by read_specification is more general
than what is required for our package. It allows several rules to be associated
with one name, and the list of rules can be partitioned into several sublists. In
order for the list intro_srcs of introduction rules to be acceptable as an input for
read_specification, we first have to turn it into a list of singleton lists. This trans-
formation has to be reversed later on by applying the function

the_single: ’a list -> ’a

to the list specs containing the parsed introduction rules. The function read_specification

also returns the list vars of predicates and parameters that contains the inferred
types as well. This list has to be chopped into the two lists preds_syn’ and params_syn’
for predicates and parameters, respectively. All variables occurring in a rule but not
in the list of variables passed to read_specification will be bound by a meta-level
universal quantifier.

Finally, read_specification also returns another local theory, but we can safely
discard it. As an example, let us look at how we can use this function to parse the
introduction rules of the trcl predicate:

Specification.read_specification

[(Binding.name "trcl", NONE, NoSyn),

(Binding.name "r", SOME "’a ⇒ ’a ⇒ bool", NoSyn)]

[[((Binding.name "base", []), ["trcl r x x"])],

[((Binding.name "step", []), ["trcl r x y =⇒ r y z =⇒ trcl r x z"])]]

@{context}

> ((. . . ,
> [(. . . ,
> [Const ("all", . . .) $ Abs ("x", TFree ("’a", . . .),
> Const ("Trueprop", . . .) $

> (Free ("trcl", . . .) $ Free ("r", . . .) $ Bound 0 $ Bound 0))]),

> (. . . ,
> [Const ("all", . . .) $ Abs ("x", TFree ("’a", . . .),
> Const ("all", . . .) $ Abs ("y", TFree ("’a", . . .),
> Const ("all", . . .) $ Abs ("z", TFree ("’a", . . .),
> Const ("==>", . . .) $

> (Const ("Trueprop", . . .) $

> (Free ("trcl", . . .) $ Free ("r", . . .) $ Bound 2 $ Bound 1)) $

> (Const ("==>", . . .) $. . . $. . .))))])]),
> . . .)
> : (((Binding.binding * typ) * mixfix) list *

> (Attrib.binding * term list) list) * local_theory

60

In the list of variables passed to read_specification, we have used the mixfix
annotation NoSyn to indicate that we do not want to associate any mixfix syntax
with the variable. Moreover, we have only specified the type of r, whereas the
type of trcl is computed using type inference. The local variables x, y and z of
the introduction rules are turned into bound variables with the de Bruijn indices,
whereas trcl and r remain free variables.

Parsers for theory syntax Although the function add_inductive parses terms and
types, it still cannot be used to invoke the package directly from within a theory
document. In order to do this, we have to write another parser. Before we describe
the process of writing parsers for theory syntax in more detail, we first show some
examples of how we would like to use the inductive definition package.

The definition of the transitive closure should look as follows:

simple inductive
trcl for r :: "’a ⇒ ’a ⇒ bool"

where
base: "trcl r x x"

| step: "trcl r x y =⇒ r y z =⇒ trcl r x z"

Even and odd numbers can be defined by

simple inductive
even and odd

where
even0: "even 0"

| evenS: "odd n =⇒ even (Suc n)"

| oddS: "even n =⇒ odd (Suc n)"

The accessible part of a relation can be introduced as follows:

simple inductive
accpart for r :: "’a ⇒ ’a ⇒ bool"

where
accpartI: "(

∧
y. r y x =⇒ accpart r y) =⇒ accpart r x"

Moreover, it should also be possible to define the accessible part inside a locale fixing
the relation r :

locale rel =

fixes r :: "’a ⇒ ’a ⇒ bool"

simple inductive (in rel) accpart’

where
accpartI’: "

∧
x. (

∧
y. r y x =⇒ accpart’ y) =⇒ accpart’ x"

In this context, it is important to note that Isabelle distinguishes between outer and
inner syntax. Theory commands such as simple inductive . . . for . . . where . . .
belong to the outer syntax, whereas items in quotation marks, in particular terms
such as "trcl r x x" and types such as "’a ⇒ ’a ⇒ bool" belong to the inner
syntax. Separating the two layers of outer and inner syntax greatly simplifies mat-
ters, because the parser for terms and types does not have to know anything about

61

|| : (’a -> ’b) * (’a -> ’b) -> ’a -> ’b

-- : (’a -> ’b * ’c) * (’c -> ’d * ’e) -> ’a -> (’b * ’d) * ’e

|-- : (’a -> ’b * ’c) * (’c -> ’d * ’e) -> ’a -> ’d * ’e

--| : (’a -> ’b * ’c) * (’c -> ’d * ’e) -> ’a -> ’b * ’e

optional: (’a -> ’b * ’a) -> ’b -> ’a -> ’b * ’a

repeat: (’a -> ’b * ’a) -> ’a -> ’b list * ’a

repeat1: (’a -> ’b * ’a) -> ’a -> ’b list * ’a

>> : (’a -> ’b * ’c) * (’b -> ’d) -> ’a -> ’d * ’c

!! : (’a * string option -> string) -> (’a -> ’b) -> ’a -> ’b

the possible syntax of theory commands, and the parser for theory commands need
not be concerned about the syntactic structure of terms and types.

The syntax of the simple inductive command can be described by the following
railroad diagram:

simple inductive
�� ��

� target

�

fixes �
�for

�� �fixes

�

�
�

��
�where

�� � �
� thmdecl

�

prop�
� |

���

�

�

Functional parsers For parsing terms and types, Isabelle uses a rather general
and sophisticated algorithm due to Earley, which is driven by priority grammars. In
contrast, parsers for theory syntax are built up using a set of combinators. Functional
parsing using combinators is a well-established technique, which has been described
by many authors, including Paulson [?] and Wadler [7]. The central idea is that a
parser is a function of type ’a list -> ’b * ’a list, where ’a is a type of tokens,
and ’b is a type for encoding items that the parser has recognized. When a parser
is applied to a list of tokens whose prefix it can recognize, it returns an encoding
of the prefix as an element of type ’b, together with the suffix of the list containing
the remaining tokens. Otherwise, the parser raises an exception indicating a syntax
error. The library for writing functional parsers in Isabelle can roughly be split up
into two parts. The first part consists of a collection of generic parser combinators
that are contained in the structure Scan defined in the file Pure/General/scan.ML

in the Isabelle sources. While these combinators do not make any assumptions about
the concrete structure of the tokens used, the second part of the library consists of
combinators for dealing with specific token types. The following is an excerpt from
the signature of Scan :

62

one: (’a -> bool) -> ’a list -> ’a * ’a list

$$: string -> string list -> string * string list

Interestingly, the functions shown above are so generic that they do not even rely on
the input and output of the parser being a list of tokens. If p succeeds, i.e. does not
raise an exception, the parser p || q returns the result of p, otherwise it returns the
result of q. The parser p -- q first parses an item of type ’b using p, then passes
the remaining tokens of type ’c to q, which parses an item of type ’d and returns
the remaining tokens of type ’e, which are finally returned together with a pair of
type ’b * ’d containing the two parsed items. The parsers p |-- q and p --| q

work in a similar way as the previous one, with the difference that they discard the
item parsed by the first and the second parser, respectively. If p succeeds, the parser
optional p x returns the result of p, otherwise it returns the default value x. The
parser repeat p applies p as often as it can, returning a possibly empty list of parsed
items. The parser repeat1 p is similar, but requires p to succeed at least once. The
parser p >> f uses p to parse an item of type ’b, to which it applies the function f
yielding a value of type ’d, which is returned together with the remaining tokens of
type ’c. Finally, !! is used for transforming exceptions produced by parsers. If p
raises an exception indicating that it cannot parse a given input, then an enclosing
parser such as

q -- p || r

will try the alternative parser r. By writing

q -- !! err p || r

instead, one can achieve that a failure of p causes the whole parser to abort. The
!! operator is similar to the cut operator in Prolog, which prevents the interpreter
from backtracking. The err function supplied as an argument to !! can be used to
produce an error message depending on the current state of the parser, as well as
the optional error message returned by p.

So far, we have only looked at combinators that construct more complex parsers from
simpler parsers. In order for these combinators to be useful, we also need some basic
parsers. As an example, we consider the following two parsers defined in Scan :

The parser one pred parses exactly one token that satisfies the predicate pred,
whereas $$ s only accepts a token that equals the string s. Note that we can easily
express $$ s using one :

one (fn s’ => s’ = s)

As an example, let us look at how we can use $$ and -- to parse the prefix “hello”
of the character list “hello world”:

($$ "h" -- $$ "e" -- $$ "l" -- $$ "l" -- $$ "o")

["h", "e", "l", "l", "o", " ", "w", "o", "r", "l", "d"]

> ((((("h", "e"), "l"), "l"), "o"), [" ", "w", "o", "r", "l", "d"])

> : ((((string * string) * string) * string) * string) * string list

63

$$$: string -> token list -> string * token list

enum1: string -> (token list -> ’a * token list) -> token list ->

’a list * token list

prop: token list -> string * token list

opt_target: token list -> string option * token list

fixes: token list ->

(Binding.binding * string option * mixfix) list * token list

for_fixes: token list ->

(Binding.binding * string option * mixfix) list * token list

!!! : (token list -> ’a) -> token list -> ’a

opt_thm_name:

string -> token list -> Attrib.binding * token list

Most of the time, however, we will have to deal with tokens that are not just strings.
The parsers for the theory syntax, as well as the parsers for the argument syntax of
proof methods and attributes use the token type OuterParse.token, which is iden-
tical to OuterLex.token. The parser functions for the theory syntax are contained
in the structure OuterParse defined in the file Pure/Isar/outer_parse.ML. In our
parser, we will use the following functions:

The parsers $$$ and !!! are defined using the parsers one and !! from Scan.
The parser enum1 s p parses a non-emtpy list of items recognized by the parser p,
where the items are separated by s. A proposition can be parsed using the function
prop. Essentially, a proposition is just a string or an identifier, but using the specific
parser function prop leads to more instructive error messages, since the parser will
complain that a proposition was expected when something else than a string or
identifier is found. An optional locale target specification of the form (in . . .) can
be parsed using opt_target. The lists of names of the predicates and parameters,
together with optional types and syntax, are parsed using the functions fixes and
for_fixes, respectively. In addition, the following function from SpecParse for
parsing an optional theorem name and attribute, followed by a delimiter, will be
useful:

We now have all the necessary tools to write the parser for our simple inductive
command:

val parser =

OuterParse.opt_target --

OuterParse.fixes --

OuterParse.for_fixes --

Scan.optional

(OuterParse.$$$ "where" |--

OuterParse.!!!

(OuterParse.enum1 "|"

(SpecParse.opt_thm_name ":" -- OuterParse.prop))) []

val ind_decl =

parser >>

(fn (((loc, preds), params), specs) =>

Toplevel.local_theory loc (add_inductive preds params specs))

64

val _ = OuterSyntax.command "simple_inductive" "define inductive predicates"

OuterKeyword.thy_decl ind_decl;

The definition of the parser ind_decl closely follows the railroad diagram shown
above. In order to make the code more readable, the structures OuterParse and
OuterKeyword are abbreviated by P and K, respectively. Note how the parser com-
binator !!! is used: once the keyword where has been parsed, a non-empty list
of introduction rules must follow. Had we not used the combinator !!!, a where
not followed by a list of rules would have caused the parser to respond with the
somewhat misleading error message

Outer syntax error: end of input expected, but keyword where was found

rather than with the more instructive message

Outer syntax error: proposition expected, but terminator was found

Once all arguments of the command have been parsed, we apply the function add_inductive,
which yields a local theory transformer of type local_theory -> local_theory.
Commands in Isabelle/Isar are realized by transition transformers of type

Toplevel.transition -> Toplevel.transition

We can turn a local theory transformer into a transition transformer by using the
function

Toplevel.local_theory : string option ->

(local_theory -> local_theory) ->

Toplevel.transition -> Toplevel.transition

which, apart from the local theory transformer, takes an optional name of a locale to
be used as a basis for the local theory.

(FIXME : needs to be adjusted to new parser type)

The whole parser for our command has type

OuterLex.token list ->

(Toplevel.transition -> Toplevel.transition) * OuterLex.token list

which is abbreviated by OuterSyntax.parser_fn. The new command can be added to
the system via the function

OuterSyntax.command :

string -> string -> OuterKeyword.T -> OuterSyntax.parser_fn -> unit

65

which imperatively updates the parser table behind the scenes.
In addition to the parser, this function takes two strings representing the name of the
command and a short description, as well as an element of type OuterKeyword.T de-
scribing which kind of command we intend to add. Since we want to add a command
for declaring new concepts, we choose the kind OuterKeyword.thy_decl. Other
kinds include OuterKeyword.thy_goal, which is similar to thy_decl, but requires
the user to prove a goal before making the declaration, or OuterKeyword.diag,
which corresponds to a purely diagnostic command that does not change the con-
text. For example, the thy_goal kind is used by the function command [2], which
requires the user to prove that a given set of equations is non-overlapping and covers
all cases. The kind of the command should be chosen with care, since selecting the
wrong one can cause strange behaviour of the user interface, such as failure of the
undo mechanism.

fun INDUCTION rules preds’ Tss defs lthy1 lthy2 =

let

val (Pnames, lthy3) = Variable.variant_fixes (replicate (length preds’)

"P") lthy2;

val Ps = map (fn (s, Ts) => Free (s, Ts ---> HOLogic.boolT)) (Pnames ~~

Tss);

val cPs = map (cterm_of (ProofContext.theory_of lthy3)) Ps;

val rules’’ = map (subst_free (preds’ ~~ Ps)) rules;

fun prove_indrule ((R, P), Ts) =

let

val (znames, lthy4) = Variable.variant_fixes (replicate (length Ts)

"z") lthy3;

val zs = map Free (znames ~~ Ts)

val prem = HOLogic.mk_Trueprop (list_comb (R, zs))

val goal = Logic.list_implies (rules’’, HOLogic.mk_Trueprop

(list_comb (P, zs)))

in

Goal.prove lthy4 [] [prem] goal

(fn {prems, ...} => EVERY1

([ObjectLogic.full_atomize_tac,

cut_facts_tac prems,

K (rewrite_goals_tac defs)] @

map (fn ct => dtac (inst_spec ct)) cPs @

[assume_tac])) |>

singleton (ProofContext.export lthy4 lthy1)

end;

in

map prove_indrule (preds’ ~~ Ps ~~ Tss)

end

fun INTROS rules preds’ defs lthy1 lthy2 =

let

66

fun prove_intro (i, r) =

Goal.prove lthy2 [] [] r

(fn {prems, context = ctxt} => EVERY

[ObjectLogic.rulify_tac 1,

rewrite_goals_tac defs,

REPEAT (resolve_tac [@{thm allI},@{thm impI}] 1),

SUBPROOF (fn {params, prems, context = ctxt’, ...} =>

let

val (prems1, prems2) = chop (length prems - length rules)

prems;

val (params1, params2) = chop (length params - length

preds’) params;

in

rtac (ObjectLogic.rulify (all_elims params1 (nth prems2 i)))

1

THEN

EVERY1 (map (fn prem =>

SUBPROOF (fn {prems = prems’, concl, ...} =>

let

val prem’ = prems’ MRS prem;

val prem’’ = case prop_of prem’ of

_ $ (Const (@{const_name All}, _) $ _) =>

prem’ |> all_elims params2

|> imp_elims prems2

| _ => prem’;

in rtac prem’’ 1 end) ctxt’) prems1)

end) ctxt 1]) |>

singleton (ProofContext.export lthy2 lthy1)

in

map_index prove_intro rules

end

67

Appendix A

Recipes

A.1 Accumulate a List of Theorems under a Name

Problem: Your tool foo works with special rules, called foo -rules. Users should be
able to declare foo -rules in the theory, which are then used in a method.

Solution: This can be achieved using named theorem lists.

Named theorem lists can be set up using the code

structure FooRules = NamedThmsFun (

val name = "foo"

val description = "Rules for foo");

and the command

setup {* FooRules.setup *}

This code declares a context data slot where the theorems are stored, an attribute
foo (with the usual add and del options for adding and deleting theorems) and an
internal ML interface to retrieve and modify the theorems.

Furthermore, the facts are made available on the user level under the dynamic fact
name foo. For example we can declare three lemmas to be of the kind foo by:

lemma rule1[foo]: "A" sorry
lemma rule2[foo]: "B" sorry
lemma rule3[foo]: "C" sorry

and undeclare the first one by:

declare rule1[foo del]

and query the remaining ones with:

68

thm foo

> ?C

> ?B

On the ML-level the rules marked with foo an be retrieved using the function
FooRules.get :

FooRules.get @{context}

> ["?C","?B"]

Read More
For more information see Pure/Tools/named_thms.ML and also the recipe in Section A.6
about storing arbitrary data.

(FIXME: maybe add a comment about the case when the theorems to be added need
to satisfy certain properties)

A.2 Ad-hoc Transformations of Theorems

A.3 Useful Document Antiquotations

Problem: How to keep your ML-code inside a document synchronised with the ac-
tual code?

Solution: This can be achieved using document antiquotations.

Document antiquotations can be used for ensuring consistent type-setting of various
entities in a document. They can also be used for sophisticated LATEX-hacking. If
you type Ctrl-c Ctrl-a h A inside ProofGeneral, you obtain a list of all currently
available document antiquotations and their options.

Below we give the code for two additional antiquotations that can be used to typeset
ML-code and also to check whether the given code actually compiles. This provides
a sanity check for the code and also allows one to keep documents in sync with other
code, for example Isabelle.

We first describe the antiquotation ML_checked with the syntax:

69

@{ML_checked "a_piece_of_code"}

The code is checked by sending the ML-expression "val _ = a_piece_of_code"

to the ML-compiler (i.e. the function ML_Context.eval_in in Line 4 below). The
complete code of the antiquotation is as follows:

fun ml_val code_txt = "val _ = " ^ code_txt1

2

fun output_ml src ctxt code_txt =3

(ML_Context.eval_in (SOME ctxt) false Position.none (ml_val code_txt);4

ThyOutput.output_list (fn _ => fn s => Pretty.str s) src ctxt5

(space_explode "\n" code_txt))6

7

val _ = ThyOutput.add_commands8

[("ML_checked", ThyOutput.args (Scan.lift Args.name) output_ml)]9

Note that the parser (Scan.lift Args.name) in line 9 parses a string, in this case
the code given as argument. As mentioned before, this argument is sent to the ML-
compiler in the line 4 using the function ml_val, which constructs the appropriate
ML-expression. If the code is “approved” by the compiler, then the output func-
tion ThyOutput.output_list (fn _ => fn s => Pretty.str s) in the next line
pretty prints the code. This function expects that the code is a list of strings where
each string correspond to a line in the output. Therefore the use of (space_explode
"\n" txt) which produces this list according to linebreaks. There are a number
of options for antiquotations that are observed by ThyOutput.output_list when
printing the code (including [display], [quotes] and [source]).

Read More
For more information about options of antiquotations see [Isar Ref. Man., Sec. 5.2]).

Since we used the argument Position.none, the compiler cannot give specific in-
formation about the line number, in case an error is detected. We can improve the
code above slightly by writing

fun output_ml src ctxt (code_txt,pos) =1

(ML_Context.eval_in (SOME ctxt) false pos (ml_val code_txt);2

ThyOutput.output_list (fn _ => fn s => Pretty.str s) src ctxt3

(space_explode "\n" code_txt))4

5

val _ = ThyOutput.add_commands6

[("ML_checked", ThyOutput.args7

(Scan.lift (OuterParse.position Args.name)) output_ml)]8

where in Lines 1 and 2 the positional information is properly treated.

(FIXME: say something about OuterParse.position)

We can now write in a document @{ML_checked "2 + 3"} in order to obtain 2 + 3

and be sure that this code compiles until somebody changes the definition of (op +) .

70

The second antiquotation we describe extends the first by allowing also to give a
pattern that specifies what the result of the ML-code should be and to check the
consistency of the actual result with the given pattern. For this we are going to
implement the antiquotation

@{ML_resp "a_piece_of_code" "pattern"}

To add some convenience and also to deal with large outputs, the user can give a
partial specification by giving the abbreviation " . . . ". For example (. . . , . . .) for a
pair.

Whereas in the antiquotation @{ML_checked "piece_of_code"} above, we have
sent the expression "val _ = piece_of_code" to the compiler, in the second the
wildcard _ we will be replaced by a proper pattern. To do this we need to replace
the " . . . " by "_" before sending the code to the compiler. The following function
will do this:

fun ml_pat (code_txt, pat) =

let val pat’ =

implode (map (fn " . . . " => "_" | s => s) (Symbol.explode pat))

in

"val " ^ pat’ ^ " = " ^ code_txt

end

Next we like to add a response indicator to the result using:

fun add_resp_indicator pat =

map (fn s => "> " ^ s) (space_explode "\n" pat)

The rest of the code of the antiquotation is

fun output_ml_resp src ctxt ((code_txt,pat),pos) =

(ML_Context.eval_in (SOME ctxt) false pos (ml_pat (code_txt,pat));

let

val output = (space_explode "\n" code_txt) @ (add_resp_indicator pat)

in

ThyOutput.output_list (fn _ => fn s => Pretty.str s) src ctxt output

end)

val _ = ThyOutput.add_commands

[("ML_resp",

ThyOutput.args

(Scan.lift (OuterParse.position (Args.name -- Args.name)))

output_ml_resp)]

This extended antiquotation allows us to write

@{ML_resp [display] "true andalso false" "false"}

71

to obtain

true andalso false

> false

or

@{ML_resp [display] "let val i = 3 in (i * i,"foo") end" "(9, . . .)"}

to obtain

let val i = 3 in (i * i,"foo") end

> (9, . . .)

In both cases, the check by the compiler ensures that code and result match. A limi-
tation of this antiquotation, however, is that the hints can only be given in case they
can be constructed as a pattern. This excludes values that are abstract datatypes,
like theorems or cterms.

A.4 Restricting the Runtime of a Function

Problem: Your tool should run only a specified amount of time.

Solution: This can be achieved using the function timeLimit.

Assume you defined the Ackermann function:

fun ackermann (0, n) = n + 1

| ackermann (m, 0) = ackermann (m - 1, 1)

| ackermann (m, n) = ackermann (m - 1, ackermann (m, n - 1))

Now the call

ackermann (4, 12)

> . . .

takes a bit of time before it finishes. To avoid this, the call can be encapsulated in a
time limit of five seconds. For this you have to write:

TimeLimit.timeLimit (Time.fromSeconds 5) ackermann (4, 12)

handle TimeLimit.TimeOut => ~1

> ~1

72

where TimeOut is the exception raised when the time limit is reached.

Note that timeLimit is only meaningful when you use PolyML, because PolyML has
a rich infrastructure for multithreading programming on which timeLimit relies.

Read More
The function timeLimit is defined in the structure TimeLimit which can be found in the
file Pure/ML-Systems/multithreading_polyml.ML.

A.5 Configuration Options

Problem: You would like to enhance your tool with options that can be changed by
the user without having to resort to the ML-level.

Solution: This can be achieved using configuration values.

Assume you want to control three values, namely bval containing a boolean, ival
containing an integer and sval containing a string. These values can be declared on
the ML-level with

val (bval, setup_bval) = Attrib.config_bool "bval" false

val (ival, setup_ival) = Attrib.config_int "ival" 0

val (sval, setup_sval) = Attrib.config_string "sval" "some string"

where each value needs to be given a default. To enable these values, they need to
be set up by

setup {* setup_bval *}

setup {* setup_ival *}

or on the ML-level

setup_sval @{theory}

The user can now manipulate the values from within Isabelle with the command

declare [[bval = true, ival = 3]]

On the ML-level these values can be retrieved using the function Config.get :

Config.get @{context} bval

> true

Config.get @{context} ival

> 3

The function Config.put manipulates the values. For example

73

Config.put sval "foo" @{context}; Config.get @{context} sval

> foo

The same can be achived using the command setup.

setup {* Config.put_thy sval "bar" *}

The retrival of this value yields now

Config.get @{context} sval

> "bar"

We can apply a function to a value using Config.map. For example incrementing
ival can be done by

let

val ctxt = Config.map ival (fn i => i + 1) @{context}

in

Config.get ctxt ival

end

> 4

Read More
For more information see Pure/Isar/attrib.ML and Pure/config.ML.

There are many good reasons to control parameters in this way. One is that it avoid
global references, which cause many headaches with the multithreaded execution of
Isabelle.

A.6 Storing Data

Problem: Your tool needs to manage data.

Solution: This can be achieved using a generic data slot.

Every generic data slot may keep data of any kind which is stored in the context.

local

structure Data = GenericDataFun

(type T = int Symtab.table

val empty = Symtab.empty

val extend = I

fun merge _ = Symtab.merge (K true)

)

in

val lookup = Symtab.lookup o Data.get

fun update k v = Data.map (Symtab.update (k, v))

end

74

setup {* Context.theory_map (update "foo" 1) *}

lookup (Context.Proof @{context}) "foo"

> SOME 1

alternatives: TheoryDataFun, ProofDataFun Code: Pure/context.ML

A.7 Executing an External Application

Problem: You want to use an external application.

Solution: The function system_out might be the right thing for you.

This function executes an external command as if printed in a shell. It returns the
output of the program and its return value.

For example, consider running an ordinary shell commands:

system_out "echo Hello world!"

> ("Hello world!\n", 0)

Note that it works also fine with timeouts (see Recipe A.4 on Page 72), i.e. external
applications are killed properly. For example, the following expression takes only
approximately one second:

TimeLimit.timeLimit (Time.fromSeconds 1) system_out "sleep 30"

handle TimeLimit.TimeOut => ("timeout", ~1)

> ("timeout", ~1)

The function system_out can also be used for more reasonable applications, e.g.
coupling external solvers with Isabelle. In that case, one has to make sure that
Isabelle can find the particular executable. One way to ensure this is by adding a
Bash-like variable binding into one of Isabelle’s settings file (prefer the user settings
file usually to be found at $HOME/.isabelle/etc/settings).

For example, assume you want to use the application foo which is here supposed
to be located at /usr/local/bin/. The following line has to be added to one of
Isabelle’s settings file:

FOO=/usr/local/bin/foo

In Isabelle, this application may now be executed by

system_out "$FOO"

> . . .

75

A.8 Writing an Oracle

Problem: You want to use a fast, new decision procedure not based one Isabelle’s
tactics, and you do not care whether it is sound.

Solution: Isabelle provides the oracle mechanisms to bypass the inference kernel.
Note that theorems proven by an oracle carry a special mark to inform the user of
their potential incorrectness.

Read More
A short introduction to oracles can be found in [isar-ref: no suitable label for section 3.11].
A simple example, which we will slightly extend here, is given in FOL/ex/IffOracle.thy.
The raw interface for adding oracles is add_oracle in Pure/thm.ML.

For our explanation here, we restrict ourselves to decide propositional formulae
which consist only of equivalences between propositional variables, i.e. we want
to decide whether (P = (Q = P)) = Q is a tautology.

Assume, that we have a decision procedure for such formulae, implemented in ML.
Since we do not care how it works, we will use it here as an “external solver”:

use "external_solver.ML"

We do, however, know that the solver provides a function IffSolver.decide. It
takes a string representation of a formula and returns either true if the formula is a
tautology or false otherwise. The input syntax is specified as follows:

formula ::= atom | (formula <=> formula)

and all token are separated by at least one space.

(FIXME: is there a better way for describing the syntax?)

We will proceed in the following way. We start by translating a HOL formula into the
string representation expected by the solver. The solver’s result is then used to build
an oracle, which we will subsequently use as a core for an Isar method to be able to
apply the oracle in proving theorems.

Let us start with the translation function from Isabelle propositions into the solver’s
string representation. To increase efficiency while building the string, we use func-
tions from the Buffer module.

fun translate t =

let

fun trans t =

(case t of

@{term "op = :: bool ⇒ bool ⇒ bool"} $ t $ u =>

Buffer.add " (" #>

trans t #>

Buffer.add "<=>" #>

trans u #>

Buffer.add ") "

| Free (n, @{typ bool}) =>

Buffer.add " " #>

Buffer.add n #>

76

Buffer.add " "

| _ => error "inacceptable term")

in Buffer.content (trans t Buffer.empty) end

Here is the string representation of the term p = (q = p) :

translate @{term "p = (q = p)"}

> " (p <=> (q <=> p)) "

Let us check, what the solver returns when given a tautology:

IffSolver.decide (translate @{term "p = (q = p) = q"})

> true

And here is what it returns for a formula which is not valid:

IffSolver.decide (translate @{term "p = (q = p)"})

> false

Now, we combine these functions into an oracle. In general, an oracle may be given
any input, but it has to return a certified proposition (a special term which is type-
checked), out of which Isabelle’s inference kernel “magically” makes a theorem.

Here, we take the proposition to be show as input. Note that we have to first extract
the term which is then passed to the translation and decision procedure. If the solver
finds this term to be valid, we return the given proposition unchanged to be turned
then into a theorem:

oracle iff_oracle = {* fn ct =>

if IffSolver.decide (translate (HOLogic.dest_Trueprop (Thm.term_of ct)))

then ct

else error "Proof failed."*}

Here is what we get when applying the oracle:

iff_oracle @{cprop "p = (p::bool)"}

> p = p

(FIXME: is there a better way to present the theorem?)

To be able to use our oracle for Isar proofs, we wrap it into a tactic:

val iff_oracle_tac =

CSUBGOAL (fn (goal, i) =>

(case try iff_oracle goal of

NONE => no_tac

| SOME thm => rtac thm i))

and create a new method solely based on this tactic:

method setup iff_oracle = {*

Method.no_args (Method.SIMPLE_METHOD’ iff_oracle_tac)

*} "Oracle-based decision procedure for chains of equivalences"

(FIXME: what does Method.SIMPLE_METHOD’ do? ... what do you mean?)

Finally, we can test our oracle to prove some theorems:

77

lemma "p = (p::bool)"

by iff_oracle

lemma "p = (q = p) = q"

by iff_oracle

(FIXME: say something about what the proof of the oracle is ... what do you mean?)

78

Appendix B

Solutions to Most Exercises

Solution for Exercise 2.5.1.

fun rev_sum t =

let

fun dest_sum (Const (@{const_name plus}, _) $ u $ u’) = u’ :: dest_sum u

| dest_sum u = [u]

in

foldl1 (HOLogic.mk_binop @{const_name plus}) (dest_sum t)

end

Solution for Exercise 2.5.2.

fun make_sum t1 t2 =

HOLogic.mk_nat (HOLogic.dest_nat t1 + HOLogic.dest_nat t2)

Solution for Exercise 3.1.1.

val any = Scan.one (Symbol.not_eof);

val scan_cmt =

let

val begin_cmt = Scan.this_string "(*"

val end_cmt = Scan.this_string "*)"

in

begin_cmt |-- Scan.repeat (Scan.unless end_cmt any) --| end_cmt

>> (enclose "(**" "**)" o implode)

end

val scan_all =

Scan.finite Symbol.stopper (Scan.repeat (scan_cmt || any))

>> implode #> fst

By using #> fst in the last line, the function scan_all retruns a string, instead of
the pair a parser would normally return. For example:

79

let

val input1 = (explode "foo bar")

val input2 = (explode "foo (*test*) bar (*test*)")

in

(scan_all input1, scan_all input2)

end

> ("foo bar","foo (**test**) bar (**test**)")

80

Appendix C

Comments for Authors

• This tutorial can be compiled on the command-line with:

$ isabelle make

You very likely need a recent snapshot of Isabelle in order to compile the tuto-
rial. Some parts of the tutorial also rely on compilation with PolyML.

• You can include references to other Isabelle manuals using the reference names
from those manuals. To do this the following four LATEX commands are defined:

Chapters Sections
Implementation Manual \ichcite{ . . . } \isccite{ . . . }
Isar Reference Manual \rchcite{ . . . } \rsccite{ . . . }

So \ichcite{ch:logic} yields a reference for the chapter about logic in the
implementation manual, namely [Impl. Man., Ch. 2].

• There are various document antiquotations defined for the tutorial. They allow
to check the written text against the current Isabelle code and also allow to
show responses of the ML-compiler. Therefore authors are strongly encouraged
to use antiquotations wherever appropriate.

The following antiquotations are defined:

• @{ML "expr" for vars in structs} should be used for displaying any
ML-expression, because the antiquotation checks whether the expression
is valid ML-code. The for - and in -arguments are optional. The former
is used for evaluating open expressions by giving a list of free variables.
The latter is used to indicate in which structure or structures the ML-
expression should be evaluated. Examples are:

@{ML "1 + 3"} 1 + 3

@{ML "a + b" for a b} produce a + b

@{ML Ident in OuterLex} Ident

81

• @{ML_response "expr" "pat"} should be used to display ML-expressions
and their response. The first expression is checked like in the antiquota-
tion @{ML "expr"} ; the second is a pattern that specifies the result the
first expression produces. This pattern can contain " . . . " for parts that
you like to omit. The response of the first expression will be checked
against this pattern. Examples are:

@{ML_response "1+2" "3"}

@{ML_response "(1+2,3)" "(3, . . .)"}

which produce respectively

1+2

> 3

(1+2,3)

> (3, . . .)

Note that this antiquotation can only be used when the result can be
constructed: it does not work when the code produces an exception or
returns an abstract datatype (like thm or cterm).

• @{ML_response_fake "expr" "pat"} works just like the antiquotation
@{ML_response "expr" "pat"} above, except that the result-specification
is not checked. Use this antiquotation when the result cannot be con-
structed or the code generates an exception. Examples are:

@{ML_response_fake "cterm_of @{theory} @{term \"a + b = c\"}"}

"a + b = c"}

@{ML_response_fake "($$ \"x\") (explode \"world\")"

"Exception FAIL raised"}

which produce respectively

cterm_of @{theory} @{term "a + b = c"}

> a + b = c

($$ "x") (explode "world")

> Exception FAIL raised

This output mimics to some extend what the user sees when running the
code.

• @{ML_response_fake_both "expr" "pat"} can be used to show erro-
neous code. Neither the code nor the response will be checked. An exam-
ple is:

@{ML_response_fake_both "@{cterm \"1 + True\"}"

"Type unification failed . . . "}

• @{ML_file "name"} should be used when referring to a file. It checks
whether the file exists. An example is

@{ML_file "Pure/General/basics.ML"}

The listed antiquotations honour options including [display] and [quotes].
For example

82

@{ML [quotes] "\"foo\" ^ \"bar\""} produces "foobar"

whereas

@{ML "\"foo\" ^ \"bar\""} produces only foobar

• Functions and value bindings cannot be defined inside antiquotations; they
need to be included inside ML {* . . . *} environments. In this way they are
also checked by the compiler. Some LATEX-hack in the tutorial, however, ensures
that the environment markers are not printed.

• Line numbers can be printed using ML %linenos {* . . . *} for ML-code or
lemma %linenos ... for proofs. The tag is %linenosgray when the num-
bered text should be gray.

83

Bibliography

[1] R. Bornat. In defence of programming. Available online via http://www.cs.mdx.
ac.uk/staffpages/r bornat/lectures/revisedinauguraltext.pdf, April 2005. Cor-
rected and revised version of inaugural lecture, delivered on 22nd January 2004
at the School of Computing Science, Middlesex University.

[2] A. Krauss. Partial Recursive Functions in Higher-Order Logic. In U. Furbach and
N. Shankar, editors, Automated Reasoning, Third International Joint Conference,
IJCAR 2006, Seattle, WA, USA, August 17-20, 2006, Proceedings, volume 4130 of
Lecture Notes in Computer Science, pages 589–603. Springer-Verlag, 2006.

[3] T. F. Melham. A Package for Inductive Relation Definitions in HOL. In M. Archer,
J. J. Joyce, K. N. Levitt, and P. J. Windley, editors, Proceedings of the 1991 In-
ternational Workshop on the HOL Theorem Proving System and its Applications,
Davis, California, August 28–30, 1991, pages 350–357. IEEE Computer Society
Press, 1992.

[4] T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL: A Proof Assistant for
Higher-Order Logic. Springer, 2002. LNCS Tutorial 2283.

[5] L. C. Paulson. ML for the Working Programmer. Cambridge University Press, 2nd
edition, 1996.

[6] H. Schwichtenberg. Minimal Logic for Computable Functionals. Technical re-
port, Mathematisches Institut, Ludwig-Maximilians-Universität München, De-
cember 2005. Available online at http://www.mathematik.uni-muenchen.de/
∼minlog/minlog/mlcf.pdf.

[7] P. Wadler. Monads for functional programming. In J. Jeuring and E. Meijer,
editors, Advanced Functional Programming, First International Spring School on
Advanced Functional Programming Techniques, Båstad, Sweden, May 24-30, 1995,
Tutorial Text, volume 925 of Lecture Notes in Computer Science, pages 24–52.
Springer-Verlag, 1995.

84

http://www.cs.mdx.ac.uk/staffpages/r_bornat/lectures/ revisedinauguraltext.pdf
http://www.cs.mdx.ac.uk/staffpages/r_bornat/lectures/ revisedinauguraltext.pdf
http://www.mathematik.uni-muenchen.de/~minlog/minlog/mlcf.pdf
http://www.mathematik.uni-muenchen.de/~minlog/minlog/mlcf.pdf

	Introduction
	Intended Audience and Prior Knowledge
	Existing Documentation
	Typographic Conventions

	First Steps
	Including ML-Code
	Debugging and Printing
	Antiquotations
	Terms and Types
	Constructing Terms and Types Manually
	Type-Checking
	Theorems
	Storing Theorems
	Theorem Attributes
	Printing Terms and Theorems
	Operations on Constants (Names)
	Combinators
	Misc

	Parsing
	Building Generic Parsers
	Parsing Theory Syntax
	Positional Information
	Parsing Inner Syntax
	Parsing Specifications
	New Commands and Keyword Files

	Tactical Reasoning
	Basics of Reasoning with Tactics
	Simple Tactics
	Tactic Combinators
	Rewriting and Simplifier Tactics
	Structured Proofs

	How to Write a Definitional Package
	Examples of Inductive Definitions
	The General Construction Principle
	The Interface

	Recipes
	Accumulate a List of Theorems under a Name
	Ad-hoc Transformations of Theorems
	Useful Document Antiquotations
	Restricting the Runtime of a Function
	Configuration Options
	Storing Data
	Executing an External Application
	Writing an Oracle

	Solutions to Most Exercises
	Comments for Authors

