diff -r 90189a97b3f8 -r ebbd0dd008c8 CookBook/Package/Ind_General_Scheme.thy --- a/CookBook/Package/Ind_General_Scheme.thy Wed Jan 28 06:43:51 2009 +0000 +++ b/CookBook/Package/Ind_General_Scheme.thy Thu Jan 29 09:46:17 2009 +0000 @@ -2,70 +2,81 @@ imports Main begin -section{* The general construction principle *} +section{* The General Construction Principle \label{sec:ind-general-method} *} text {* -\label{sec:ind-general-method} -Before we start with the implementation, it is useful to describe the general -form of inductive definitions that our package should accept. We closely follow -the notation for inductive definitions introduced by Schwichtenberg -\cite{Schwichtenberg-MLCF} for the Minlog system. -Let $R_1,\ldots,R_n$ be mutually inductive predicates and $\vec{p}$ be -parameters. Then the introduction rules for $R_1,\ldots,R_n$ may have -the form -\[ -\bigwedge\vec{x}_i.~\vec{A}_i \Longrightarrow \left(\bigwedge\vec{y}_{ij}.~\vec{B}_{ij} \Longrightarrow + + Before we start with the implementation, it is useful to describe the general + form of inductive definitions that our package should accept. We closely follow + the notation for inductive definitions introduced by Schwichtenberg + \cite{Schwichtenberg-MLCF} for the Minlog system. + Let $R_1,\ldots,R_n$ be mutually inductive predicates and $\vec{p}$ be + parameters. Then the introduction rules for $R_1,\ldots,R_n$ may have + the form + + \[ + \bigwedge\vec{x}_i.~\vec{A}_i \Longrightarrow \left(\bigwedge\vec{y}_{ij}.~\vec{B}_{ij} \Longrightarrow R_{k_{ij}}~\vec{p}~\vec{s}_{ij}\right)_{j=1,\ldots,m_i} \Longrightarrow R_{l_i}~\vec{p}~\vec{t}_i -\qquad \mbox{for\ } i=1,\ldots,r -\] -where $\vec{A}_i$ and $\vec{B}_{ij}$ are formulae not containing $R_1,\ldots,R_n$. -Note that by disallowing the inductive predicates to occur in $\vec{B}_{ij}$ we make sure -that all occurrences of the predicates in the premises of the introduction rules are -\emph{strictly positive}. This condition guarantees the existence of predicates -that are closed under the introduction rules shown above. The inductive predicates -$R_1,\ldots,R_n$ can then be defined as follows: -\[ -\begin{array}{l@ {\qquad}l} + \qquad \mbox{for\ } i=1,\ldots,r + \] + + where $\vec{A}_i$ and $\vec{B}_{ij}$ are formulae not containing $R_1,\ldots,R_n$. + Note that by disallowing the inductive predicates to occur in $\vec{B}_{ij}$ we make sure + that all occurrences of the predicates in the premises of the introduction rules are + \emph{strictly positive}. This condition guarantees the existence of predicates + that are closed under the introduction rules shown above. The inductive predicates + $R_1,\ldots,R_n$ can then be defined as follows: + + \[ + \begin{array}{l@ {\qquad}l} R_i \equiv \lambda\vec{p}~\vec{z}_i.~\forall P_1 \ldots P_n.~K_1 \longrightarrow \cdots \longrightarrow K_r \longrightarrow P_i~\vec{z}_i & \mbox{for\ } i=1,\ldots,n \\[1.5ex] \mbox{where} \\ K_i \equiv \forall\vec{x}_i.~\vec{A}_i \longrightarrow \left(\forall\vec{y}_{ij}.~\vec{B}_{ij} \longrightarrow - P_{k_{ij}}~\vec{s}_{ij}\right)_{j=1,\ldots,m_i} \longrightarrow P_{l_i}~\vec{t}_i & + P_{k_{ij}}~\vec{s}_{ij}\right)_{j=1,\ldots,m_i} \longrightarrow P_{l_i}~\vec{t}_i & \mbox{for\ } i=1,\ldots,r -\end{array} -\] -The (weak) induction rules for the inductive predicates $R_1,\ldots,R_n$ are -\[ -\begin{array}{l@ {\qquad}l} + \end{array} + \] + + The (weak) induction rules for the inductive predicates $R_1,\ldots,R_n$ are + + \[ + \begin{array}{l@ {\qquad}l} R_i~\vec{p}~\vec{z}_i \Longrightarrow I_1 \Longrightarrow \cdots \Longrightarrow I_r \Longrightarrow P_i~\vec{z}_i & \mbox{for\ } i=1,\ldots,n \\[1.5ex] \mbox{where} \\ I_i \equiv \bigwedge\vec{x}_i.~\vec{A}_i \Longrightarrow \left(\bigwedge\vec{y}_{ij}.~\vec{B}_{ij} \Longrightarrow - P_{k_{ij}}~\vec{s}_{ij}\right)_{j=1,\ldots,m_i} \Longrightarrow P_{l_i}~\vec{t}_i & + P_{k_{ij}}~\vec{s}_{ij}\right)_{j=1,\ldots,m_i} \Longrightarrow P_{l_i}~\vec{t}_i & \mbox{for\ } i=1,\ldots,r -\end{array} -\] -Since $K_i$ and $I_i$ are equivalent modulo conversion between meta-level and object-level -connectives, it is clear that the proof of the induction theorem is straightforward. We will -therefore focus on the proof of the introduction rules. When proving the introduction rule -shown above, we start by unfolding the definition of $R_1,\ldots,R_n$, which yields -\[ -\bigwedge\vec{x}_i.~\vec{A}_i \Longrightarrow \left(\bigwedge\vec{y}_{ij}.~\vec{B}_{ij} \Longrightarrow + \end{array} + \] + + Since $K_i$ and $I_i$ are equivalent modulo conversion between meta-level and object-level + connectives, it is clear that the proof of the induction theorem is straightforward. We will + therefore focus on the proof of the introduction rules. When proving the introduction rule + shown above, we start by unfolding the definition of $R_1,\ldots,R_n$, which yields + + \[ + \bigwedge\vec{x}_i.~\vec{A}_i \Longrightarrow \left(\bigwedge\vec{y}_{ij}.~\vec{B}_{ij} \Longrightarrow \forall P_1 \ldots P_n.~\vec{K} \longrightarrow P_{k_{ij}}~\vec{s}_{ij}\right)_{j=1,\ldots,m_i} \Longrightarrow \forall P_1 \ldots P_n.~\vec{K} \longrightarrow P_{l_i}~\vec{t}_i -\] -where $\vec{K}$ abbreviates $K_1,\ldots,K_r$. Applying the introduction rules for -$\forall$ and $\longrightarrow$ yields a proof state in which we have to prove $P_{l_i}~\vec{t}_i$ -from the additional assumptions $\vec{K}$. When using $K_{l_i}$ (converted to meta-logic format) -to prove $P_{l_i}~\vec{t}_i$, we get subgoals $\vec{A}_i$ that are trivially solvable by assumption, -as well as subgoals of the form -\[ -\bigwedge\vec{y}_{ij}.~\vec{B}_{ij} \Longrightarrow P_{k_{ij}}~\vec{s}_{ij} \qquad \mbox{for\ } j=1,\ldots,m_i -\] -that can be solved using the assumptions -\[ -\bigwedge\vec{y}_{ij}.~\vec{B}_{ij} \Longrightarrow + \] + + where $\vec{K}$ abbreviates $K_1,\ldots,K_r$. Applying the introduction rules for + $\forall$ and $\longrightarrow$ yields a proof state in which we have to prove $P_{l_i}~\vec{t}_i$ + from the additional assumptions $\vec{K}$. When using $K_{l_i}$ (converted to meta-logic format) + to prove $P_{l_i}~\vec{t}_i$, we get subgoals $\vec{A}_i$ that are trivially solvable by assumption, + as well as subgoals of the form + + \[ + \bigwedge\vec{y}_{ij}.~\vec{B}_{ij} \Longrightarrow P_{k_{ij}}~\vec{s}_{ij} \qquad \mbox{for\ } j=1,\ldots,m_i + \] + + that can be solved using the assumptions + + \[ + \bigwedge\vec{y}_{ij}.~\vec{B}_{ij} \Longrightarrow \forall P_1 \ldots P_n.~\vec{K} \longrightarrow P_{k_{ij}}~\vec{s}_{ij} \qquad \mbox{and} \qquad \vec{K} -\] + \] *} end