diff -r d3fcc1a0272c -r 90bee31628dc CookBook/Package/Ind_Prelims.thy --- a/CookBook/Package/Ind_Prelims.thy Thu Feb 26 13:46:05 2009 +0100 +++ b/CookBook/Package/Ind_Prelims.thy Thu Mar 12 08:11:02 2009 +0100 @@ -75,10 +75,10 @@ *} lemma %linenos trcl_induct: - assumes asm: "trcl R x y" + assumes "trcl R x y" shows "(\x. P x x) \ (\x y z. R x y \ P y z \ P x z) \ P x y" apply(atomize (full)) -apply(cut_tac asm) +apply(cut_tac prems) apply(unfold trcl_def) apply(drule spec[where x=P]) apply(assumption) @@ -212,11 +212,11 @@ *} simple_inductive - even\ and odd\ + even and odd where - even0: "even\ 0" -| evenS: "odd\ n \ even\ (Suc n)" -| oddS: "even\ n \ odd\ (Suc n)" + even0: "even 0" +| evenS: "odd n \ even (Suc n)" +| oddS: "even n \ odd (Suc n)" text {* Since the predicates @{term even} and @{term odd} are mutually inductive, each @@ -224,11 +224,11 @@ below @{text "P"} and @{text "Q"}). *} -definition "even \ +definition "even\ \ \n. \P Q. P 0 \ (\m. Q m \ P (Suc m)) \ (\m. P m \ Q (Suc m)) \ P n" -definition "odd \ +definition "odd\ \ \n. \P Q. P 0 \ (\m. Q m \ P (Suc m)) \ (\m. P m \ Q (Suc m)) \ Q n" @@ -238,11 +238,11 @@ *} lemma even_induct: - assumes asm: "even n" + assumes "even n" shows "P 0 \ (\m. Q m \ P (Suc m)) \ (\m. P m \ Q (Suc m)) \ P n" apply(atomize (full)) -apply(cut_tac asm) +apply(cut_tac prems) apply(unfold even_def) apply(drule spec[where x=P]) apply(drule spec[where x=Q]) @@ -263,7 +263,7 @@ apply (unfold odd_def even_def) apply (rule allI impI)+ proof - - case (goal1 P) + case (goal1 P Q) have p1: "\P Q. P 0 \ (\m. Q m \ P (Suc m)) \ (\m. P m \ Q (Suc m)) \ Q m" by fact have r1: "P 0" by fact @@ -303,10 +303,10 @@ *} lemma accpart_induct: - assumes asm: "accpart R x" + assumes "accpart R x" shows "(\x. (\y. R y x \ P y) \ P x) \ P x" apply(atomize (full)) -apply(cut_tac asm) +apply(cut_tac prems) apply(unfold accpart_def) apply(drule spec[where x=P]) apply(assumption)