diff -r d7d55a5030b5 -r 7675427e311f ProgTutorial/Essential.thy --- a/ProgTutorial/Essential.thy Sat Nov 21 00:29:43 2009 +0100 +++ b/ProgTutorial/Essential.thy Sun Nov 22 03:13:29 2009 +0100 @@ -1169,7 +1169,8 @@ complete typing annotations, especially in cases where the typing information is redundant. A short-cut is to use the ``place-holder'' type @{ML_ind dummyT in Term} and then let type-inference figure out the - complete type. An example is as follows: + complete type. The type inference can be invoked with the function + @{ML_ind check_term in Syntax}. An example is as follows: @{ML_response_fake [display,gray] "let @@ -1325,7 +1326,7 @@ |> implies_intr assm1 end*} -text {* +text {* If we print out the value of @{ML my_thm} then we see only the final statement of the theorem. @@ -1424,8 +1425,6 @@ fun update thm = Context.theory_map (MyThmList.map (Thm.add_thm thm))*} text {* - \footnote{\bf explain @{ML_ind add_thm in Thm} and @{ML_ind eq_thm_prop in Thm}.} - The function @{ML update} allows us to update the theorem list, for example by adding the theorem @{thm [source] TrueI}. *} @@ -1466,10 +1465,18 @@ @{text "> True"} \end{isabelle} - There is a multitude of functions in the structures @{ML_struct Thm} and @{ML_struct Drule} - for managing or manipulating theorems. For example - we can test theorems for alpha equality. Suppose you proved the following three - theorems. + Note that if we add the theorem @{thm [source] FalseE} again to the list +*} + +setup %gray {* update @{thm FalseE} *} + +text {* + we still obtain the same list. The reason is that we used the function @{ML_ind + add_thm in Thm} in our update function. This is a dedicated function which + tests whether the theorem is already in the list. This test is done + according to alpha-equivalence of the proposition behind the theorem. The + corresponding testing function is @{ML_ind eq_thm_prop in Thm}. + Suppose you proved the following three theorems. *} lemma @@ -1478,11 +1485,11 @@ and thm3: "\y. Q y" sorry text {* - Testing them for alpha equality using the function @{ML_ind eq_thm in Thm} produces: + Testing them for alpha equality produces: @{ML_response [display,gray] -"(Thm.eq_thm (@{thm thm1}, @{thm thm2}), - Thm.eq_thm (@{thm thm2}, @{thm thm3}))" +"(Thm.eq_thm_prop (@{thm thm1}, @{thm thm2}), + Thm.eq_thm_prop (@{thm thm2}, @{thm thm3}))" "(true, false)"} Many functions destruct theorems into @{ML_type cterm}s. For example @@ -1746,7 +1753,7 @@ install this function as the theorem style named @{text "my_strip_allq"}. *} -setup %gray {* +setup %gray{* Term_Style.setup "my_strip_allq" (Scan.succeed (K strip_allq)) *} @@ -1771,7 +1778,7 @@ \begin{isabelle} @{text "@{thm (my_strip_allq) style_test}"}\\ - @{text ">"}~@{thm (my_strip_allq) style_test}\\ + @{text ">"}~@{thm (my_strip_allq) style_test} \end{isabelle} without the leading quantifiers. We can improve this theorem style by explicitly