added a readme chapter for prospective authors; added commands for referring to the Isar Reference Manual
fun dest_relcomp (t as (Const (@{const_name "Collect"}, _) $ Abs (_, pT, ex_exp))) =
let
val (T1, T2) = HOLogic.dest_prodT pT
val qs = Term.strip_qnt_vars "Ex" ex_exp
val bod = Term.strip_qnt_body "Ex" ex_exp
val (l, r, cond) = case bod of
Const ("op &", _)
$ (Const ("op =", _) $ Bound idx
$ (Const ("Pair", _) $ l $ r))
$ cond
=> if idx = length qs then (l, r, cond)
else raise TERM ("dest_relcomp", [t])
| _ => raise TERM ("dest_relcomp", [t])
in
(T1, T2, qs, l, r, cond)
end
| dest_relcomp t = raise TERM ("dest_relcomp", [t])
fun mk_pair_compr (T1, T2, qs, l, r, cond) =
let
val pT = HOLogic.mk_prodT (T1, T2)
val peq = HOLogic.eq_const pT $ Bound (length qs) $ (HOLogic.pair_const T1 T2 $ l $ r)
val bod = HOLogic.mk_conj (peq, cond)
in
HOLogic.Collect_const pT $
Abs ("uu_", pT, fold_rev (fn (a,T) => fn b => HOLogic.exists_const T $ Abs(a, T, b)) qs bod)
end
fun join_compr c1 c2 : term =
let
val (T1, T2, qs1, l1, r1, cond1) = dest_relcomp c1
val (T2, T3, qs2, l2, r2, cond2) = dest_relcomp c2
val lift = incr_boundvars (length qs2)
val cond = HOLogic.mk_conj (HOLogic.eq_const T2 $ lift r1 $ l2,
HOLogic.mk_conj (lift cond1, cond2))
in
mk_pair_compr
(T1, T3, qs1 @ qs2, lift l1, r2, cond)
end
val compr_compose_tac'=
EVERY1 (map (curry op o DETERM)
[rtac @{thm set_ext},
rtac @{thm iffI},
etac @{thm rel_compE},
etac @{thm CollectE},
etac @{thm CollectE},
single_hyp_subst_tac 0,
(fn i => REPEAT_DETERM (etac @{thm exE} i)),
K (print_tac "A"),
etac @{thm conjE},
K (print_tac "B"),
etac @{thm conjE},
K (print_tac "B'"),
etac @{thm Pair_inject},
K (print_tac "C"),
rotate_tac 1,
K (print_tac "D"),
etac @{thm Pair_inject},
K (print_tac "E"),
single_hyp_subst_tac 2,
single_hyp_subst_tac 3,
single_hyp_subst_tac 3,
rtac @{thm CollectI},
(fn i => REPEAT_DETERM (rtac @{thm exI} i)),
rtac @{thm conjI},
rtac @{thm refl},
rtac @{thm conjI},
assume_tac,
rtac @{thm conjI},
assume_tac,
assume_tac,
etac @{thm CollectE},
(fn i => REPEAT (etac @{thm exE} i)),
etac @{thm conjE},
single_hyp_subst_tac 0,
etac @{thm conjE},
etac @{thm conjE},
rtac @{thm rel_compI},
rtac @{thm CollectI},
(fn i => REPEAT (rtac @{thm exI} i)),
rtac @{thm conjI},
rtac @{thm refl},
assume_tac,
rtac @{thm CollectI},
(fn i => REPEAT (rtac @{thm exI} i)),
rtac @{thm conjI},
stac @{thm Pair_eq},
rtac @{thm conjI},
assume_tac,
rtac @{thm refl},
assume_tac])
fun compose_simproc _ ss ct : thm option =
let
val thy = theory_of_cterm ct
val sCt as (_ $ s $ t) = term_of ct
val T = fastype_of sCt
val g : term = Logic.mk_equals (sCt, join_compr t s)
(* val _ = Output.tracing (Syntax.string_of_term (Simplifier.the_context ss) g)*)
in
SOME (Goal.prove_internal [] (cterm_of thy g)
(K (rtac @{thm eq_reflection} 1
THEN compr_compose_tac')))
end
handle TERM _ => NONE