theory Ind_Code
imports "../Base" "../FirstSteps" Simple_Inductive_Package Ind_Prelims
begin
section {* Code *}
subsection {* Definitions *}
text {*
@{text [display] "rule ::= \<And>xs. As \<Longrightarrow> (\<And>ys. Bs \<Longrightarrow> pred ss)\<^isup>* \<Longrightarrow> pred ts"}
@{text [display] "orule ::= \<forall>xs. As \<longrightarrow> (\<forall>ys. Bs \<longrightarrow> pred ss)\<^isup>* \<longrightarrow> pred ts"}
@{text [display] "def ::= pred \<equiv> \<lambda>zs. \<forall>preds. orules \<longrightarrow> pred zs"}
@{text [display] "ind ::= \<And>zs. pred zs \<Longrightarrow> rules[preds::=Ps] \<Longrightarrow> P zs"}
@{text [display] "oind ::= \<forall>zs. pred zs \<longrightarrow> orules[preds::=Ps] \<longrightarrow> P zs"}
So we have @{text "pred zs"} and @{text "orules[preds::=Ps]"}; have to show
@{text "P zs"}. Expanding @{text "pred zs"} gives @{text "\<forall>preds. orules \<longrightarrow> pred zs"}.
Instantiating the @{text "preds"} with @{text "Ps"} gives
@{text "orules[preds::=Ps] \<longrightarrow> P zs"}. So we can conclude with @{text "P zs"}.
We have to show @{text "\<forall>xs. As \<longrightarrow> (\<forall>ys. Bs \<longrightarrow> pred ss)\<^isup>* \<longrightarrow> pred ts"};
expanding the defs
@{text [display]
"\<forall>xs. As \<longrightarrow> (\<forall>ys. Bs \<longrightarrow> (\<forall>preds. orules \<longrightarrow> pred ss))\<^isup>* \<longrightarrow> (\<forall>preds. orules \<longrightarrow> pred ts"}
so we have @{text "As"}, @{text "(\<forall>ys. Bs \<longrightarrow> (\<forall>preds. orules \<longrightarrow> pred ss))\<^isup>*"},
@{text "orules"}; and have to show @{text "pred ts"}
the @{text "orules"} are of the form @{text "\<forall>xs. As \<longrightarrow> (\<forall>ys. Bs \<longrightarrow> pred ss)\<^isup>* \<longrightarrow> pred ts"}.
using the @{text "As"} we ????
*}
text {*
First we have to produce for each predicate its definitions of the form
@{text [display] "pred \<equiv> \<lambda>zs. \<forall>preds. orules \<longrightarrow> pred zs"}
We use the following wrapper function to make the definition via
@{ML LocalTheory.define}. The function takes a predicate name, a syntax
annotation and a term representing the right-hand side of the definition.
*}
ML %linenosgray{*fun make_defs ((predname, syn), trm) lthy =
let
val arg = ((predname, syn), (Attrib.empty_binding, trm))
val ((_, (_ , thm)), lthy') = LocalTheory.define Thm.internalK arg lthy
in
(thm, lthy')
end*}
text {*
It returns the definition (as theorem) and the local theory in which this definition has
been made. In Line 4 @{ML internalK in Thm} is just a flag attached to the
theorem (others possibilities are @{ML definitionK in Thm} or @{ML axiomK in Thm}).
These flags just classify theorems and have no significant meaning, except
for tools such as finding theorems in the theorem database. We also
use @{ML empty_binding in Attrib} in Line 3, since the definition does
not need any theorem attributes. Note the definition has not yet been
stored in the theorem database. So at the moment we can only refer to it
via the return value. A testcase for this functions is
*}
local_setup %gray {* fn lthy =>
let
val arg = ((Binding.name "MyTrue", NoSyn), @{term True})
val (def, lthy') = make_defs arg lthy
in
warning (str_of_thm lthy' def); lthy'
end *}
text {*
which prints out the theorem @{prop "MyTrue \<equiv> True"}. Since we are
testing the function inside \isacommand{local\_setup} we have also
access to theorem associated with this definition.
\begin{isabelle}
\isacommand{thm}~@{text "MyTrue_def"}\\
@{text "> MyTrue \<equiv> True"}
\end{isabelle}
The next function constructs the term for the definition, namely
@{text [display] "\<lambda>\<^raw:$zs$>. \<forall>preds. orules \<longrightarrow> pred \<^raw:$zs$>"}
The variables @{text "\<^raw:$zs$>"} need to be chosen so to not occur
in the @{text orules} and also be distinct from @{text "pred"}. The function
constructs the term for one particular predicate @{text "pred"}; the number
of @{text "\<^raw:$zs$>"} is determined by the nunber of types.
*}
ML %linenosgray{*fun defs_aux lthy orules preds (pred, arg_tys) =
let
fun mk_all x P = HOLogic.all_const (fastype_of x) $ lambda x P
val fresh_args =
arg_tys
|> map (pair "z")
|> Variable.variant_frees lthy (preds @ orules)
|> map Free
in
list_comb (pred, fresh_args)
|> fold_rev (curry HOLogic.mk_imp) orules
|> fold_rev mk_all preds
|> fold_rev lambda fresh_args
end*}
text {*
The code in Lines 5 to 9 produce the fresh @{text "\<^raw:$zs$>"} with which the
predicate is applied. For this it pairs every type with a string @{text [quotes] "z"}
(Line 7); then generates variants for all these strings (names) so that they are
unique w.r.t.~to the orules and predicates; in Line 9 it generates the corresponding
variable terms for the unique names.
The unique free variables are applied to the predicate (Line 11); then
the @{text orules} are prefixed (Line 12); in Line 13 we
quantify over all predicates; and in line 14 we just abstract over all
the (fresh) @{text "\<^raw:$zs$>"}, i.e.~the arguments of the predicate.
A testcase for this function is
*}
local_setup %gray{* fn lthy =>
let
val orules = [@{prop "even 0"},
@{prop "\<forall>n::nat. odd n \<longrightarrow> even (Suc n)"},
@{prop "\<forall>n::nat. even n \<longrightarrow> odd (Suc n)"}]
val preds = [@{term "even::nat\<Rightarrow>bool"}, @{term "odd::nat\<Rightarrow>bool"}]
val pred = @{term "even::nat\<Rightarrow>bool"}
val arg_tys = [@{typ "nat"}]
val def = defs_aux lthy orules preds (pred, arg_tys)
in
warning (Syntax.string_of_term lthy def); lthy
end *}
text {*
It constructs the term for the predicate @{term "even"}. So we obtain as printout
the term
@{text [display]
"\<lambda>z. \<forall>even odd. (even 0) \<longrightarrow> (\<forall>n. odd n \<longrightarrow> even (Suc n))
\<longrightarrow> (\<forall>n. even n \<longrightarrow> odd (Suc n)) \<longrightarrow> even z"}
The main function for the definitions now has to just iterate
the function @{ML defs_aux} over all predicates. THis is what the
next function does.
*}
ML %linenosgray{*fun definitions rules preds prednames syns arg_typss lthy =
let
val thy = ProofContext.theory_of lthy
val orules = map (ObjectLogic.atomize_term thy) rules
val defs = map (defs_aux lthy orules preds) (preds ~~ arg_typss)
in
fold_map make_defs (prednames ~~ syns ~~ defs) lthy
end*}
text {*
The argument @{text "preds"} is the list of predicates as @{ML_type term}s;
the argument @{text "prednames"} is the list of names of the predicates;
@{text "arg_tyss"} is the list of argument-type-lists.
In line 4 we generate the intro rules in the object logic; for this we have to
obtain the theory behind the local theory (Line 3); with this we can
call @{ML defs_aux} to generate the terms for the left-hand sides.
The actual definitions are made in Line 7.
A testcase for this function is
*}
local_setup %gray {* fn lthy =>
let
val rules = [@{prop "even 0"},
@{prop "\<And>n::nat. odd n \<Longrightarrow> even (Suc n)"},
@{prop "\<And>n::nat. even n \<Longrightarrow> odd (Suc n)"}]
val preds = [@{term "even::nat\<Rightarrow>bool"}, @{term "odd::nat\<Rightarrow>bool"}]
val prednames = [Binding.name "even", Binding.name "odd"]
val syns = [NoSyn, NoSyn]
val arg_tyss = [[@{typ "nat"}], [@{typ "nat"}]]
val (defs, lthy') = definitions rules preds prednames syns arg_tyss lthy
in
warning (str_of_thms lthy' defs); lthy
end *}
text {*
It prints out the two definitions
@{text [display]
"even \<equiv> \<lambda>z. \<forall>even odd. (even 0) \<longrightarrow> (\<forall>n. odd n \<longrightarrow> even (Suc n))
\<longrightarrow> (\<forall>n. even n \<longrightarrow> odd (Suc n)) \<longrightarrow> even z,
odd \<equiv> \<lambda>z. \<forall>even odd. (even 0) \<longrightarrow> (\<forall>n. odd n \<longrightarrow> even (Suc n))
\<longrightarrow> (\<forall>n. even n \<longrightarrow> odd (Suc n)) \<longrightarrow> odd z"}
This completes the code concerning the definitions. Next comes the code for
the induction principles.
Recall the proof for the induction principle for @{term "even"}:
*}
lemma
assumes prems: "even n"
shows "P 0 \<Longrightarrow>
(\<And>m. Q m \<Longrightarrow> P (Suc m)) \<Longrightarrow> (\<And>m. P m \<Longrightarrow> Q (Suc m)) \<Longrightarrow> P n"
apply(atomize (full))
apply(cut_tac prems)
apply(unfold even_def)
apply(drule spec[where x=P])
apply(drule spec[where x=Q])
apply(assumption)
done
text {*
To automate this proof we need to be able to instantiate universal
quantifiers. For this we use the following helper function. It
instantiates the @{text "?x"} in @{thm spec} with a @{ML_type cterm}.
*}
ML{*fun inst_spec ctrm =
Drule.instantiate' [SOME (ctyp_of_term ctrm)] [NONE, SOME ctrm] @{thm spec}*}
text {*
For example we can use it to instantiate an assumption:
*}
lemma "\<forall>(x1::nat) (x2::nat) (x3::nat). P x1 x2 x3 \<Longrightarrow> True"
apply (tactic {*
let
val ctrms = [@{cterm "y1::nat"},@{cterm "y2::nat"},@{cterm "y3::nat"}]
in
EVERY1 (map (dtac o inst_spec) ctrms)
end *})
txt {*
where it produces the goal state
\begin{minipage}{\textwidth}
@{subgoals}
\end{minipage}*}
(*<*)oops(*>*)
text {*
Now the tactic for proving the induction rules can be implemented
as follows
*}
ML %linenosgray{*fun induction_tac defs prems insts =
EVERY1 [ObjectLogic.full_atomize_tac,
cut_facts_tac prems,
K (rewrite_goals_tac defs),
EVERY' (map (dtac o inst_spec) insts),
assume_tac]*}
text {*
We only have to give it as arguments the premises and the instantiations.
A testcase for the tactic is
*}
lemma
assumes prems: "even n"
shows "P 0 \<Longrightarrow>
(\<And>m. Q m \<Longrightarrow> P (Suc m)) \<Longrightarrow> (\<And>m. P m \<Longrightarrow> Q (Suc m)) \<Longrightarrow> P n"
apply(tactic {*
let
val defs = [@{thm even_def}, @{thm odd_def}]
val insts = [@{cterm "P::nat\<Rightarrow>bool"}, @{cterm "Q::nat\<Rightarrow>bool"}]
in
induction_tac defs @{thms prems} insts
end *})
done
text {*
which indeed proves the lemma.
While the generic proof for the induction principle is relatively simple,
it is a bit harder to set up the goals just from the given introduction
rules. For this we have to construct for each predicate @{text "pred"}
@{text [display]
"\<And>\<^raw:$zs$>. pred \<^raw:$zs$> \<Longrightarrow> rules[preds := \<^raw:$Ps$>] \<Longrightarrow> \<^raw:$P$>\<^raw:$zs$>"}
where the given predicates @{text preds} are replaced by new distinct
ones written as @{text "\<^raw:$Ps$>"}, and also need to be applied to
new variables @{text "\<^raw:$zs$>"}.
The function below expects that the rules are already appropriately
replaced. The argument @{text "mrules"} stands for these modified
introduction rules; @{text cnewpreds} are the certified terms coresponding
to the variables @{text "\<^raw:$Ps$>"}; @{text "pred"} is the predicate for
which we prove the introduction principle; @{text "newpred"} is its
replacement and @{text "tys"} are the types of its argument.
*}
ML %linenosgray{* fun prove_induction lthy defs mrules cnewpreds ((pred, newpred), tys) =
let
val zs = replicate (length tys) "z"
val (newargnames, lthy') = Variable.variant_fixes zs lthy;
val newargs = map Free (newargnames ~~ tys)
val prem = HOLogic.mk_Trueprop (list_comb (pred, newargs))
val goal = Logic.list_implies
(mrules, HOLogic.mk_Trueprop (list_comb (newpred, newargs)))
in
Goal.prove lthy' [] [prem] goal
(fn {prems, ...} => induction_tac defs prems cnewpreds)
|> singleton (ProofContext.export lthy' lthy)
end *}
text {*
In Line 3 we produce a list of names @{text "\<^raw:$zs$>"} according to the type
list. Line 4 makes these names unique and declare them as \emph{free} (but fixed)
variables. These variables are free in the new theory @{text "lthy'"}. In Line 5
we just construct the terms corresponding to the variables. The term variables are
applied to the predicate in Line 7 (this is the first premise
@{text "pred \<^raw:$zs$>"} of the induction principle). In Line 8 and 9
we first the term @{text "\<^raw:$P$>\<^raw:$zs$>"} and then add
the (modified) introduction rules as premises.
In Line 11 we set up the goal to be proved; call the induction tactic in
Line 13. This returns a theorem. However, it is a theorem proved inside
the local theory @{text "lthy'"} where the variables @{text "\<^raw:$zs$>"} are
fixed, but free. By exporting this theorem from @{text "lthy'"} (which does contain
the @{text "\<^raw:$zs$>"} as free) to @{text "lthy"} (which does not), we
obtain the desired quantifications @{text "\<And>\<^raw:$zs$>"}.
So it is left to produce the modified rules and
*}
ML %linenosgray{*fun inductions rules defs preds tyss lthy1 =
let
val Ps = replicate (length preds) "P"
val (newprednames, lthy2) = Variable.variant_fixes Ps lthy1
val thy = ProofContext.theory_of lthy2
val tyss' = map (fn tys => tys ---> HOLogic.boolT) tyss
val newpreds = map Free (newprednames ~~ tyss')
val cnewpreds = map (cterm_of thy) newpreds
val rules' = map (subst_free (preds ~~ newpreds)) rules
in
map (prove_induction lthy2 defs rules' cnewpreds)
(preds ~~ newpreds ~~ tyss)
|> ProofContext.export lthy2 lthy1
end*}
ML {*
let
val rules = [@{prop "even (0::nat)"},
@{prop "\<And>n::nat. odd n \<Longrightarrow> even (Suc n)"},
@{prop "\<And>n::nat. even n \<Longrightarrow> odd (Suc n)"}]
val defs = [@{thm even_def}, @{thm odd_def}]
val preds = [@{term "even::nat\<Rightarrow>bool"}, @{term "odd::nat\<Rightarrow>bool"}]
val tyss = [[@{typ "nat"}], [@{typ "nat"}]]
in
inductions rules defs preds tyss @{context}
end
*}
subsection {* Introduction Rules *}
ML{*val all_elims = fold (fn ct => fn th => th RS inst_spec ct)
val imp_elims = fold (fn th => fn th' => [th', th] MRS @{thm mp})*}
ML{*fun subproof2 prem params2 prems2 =
SUBPROOF (fn {prems, ...} =>
let
val prem' = prems MRS prem;
val prem'' =
case prop_of prem' of
_ $ (Const (@{const_name All}, _) $ _) =>
prem' |> all_elims params2
|> imp_elims prems2
| _ => prem';
in
rtac prem'' 1
end)*}
ML{*fun subproof1 rules preds i =
SUBPROOF (fn {params, prems, context = ctxt', ...} =>
let
val (prems1, prems2) = chop (length prems - length rules) prems;
val (params1, params2) = chop (length params - length preds) params;
in
rtac (ObjectLogic.rulify (all_elims params1 (nth prems2 i))) 1
THEN
EVERY1 (map (fn prem => subproof2 prem params2 prems2 ctxt') prems1)
end)*}
ML{*
fun introductions_tac defs rules preds i ctxt =
EVERY1 [ObjectLogic.rulify_tac,
K (rewrite_goals_tac defs),
REPEAT o (resolve_tac [@{thm allI},@{thm impI}]),
subproof1 rules preds i ctxt]*}
lemma evenS:
shows "odd m \<Longrightarrow> even (Suc m)"
apply(tactic {*
let
val rules = [@{prop "even (0::nat)"},
@{prop "\<And>n::nat. odd n \<Longrightarrow> even (Suc n)"},
@{prop "\<And>n::nat. even n \<Longrightarrow> odd (Suc n)"}]
val defs = [@{thm even_def}, @{thm odd_def}]
val preds = [@{term "even::nat\<Rightarrow>bool"}, @{term "odd::nat\<Rightarrow>bool"}]
in
introductions_tac defs rules preds 1 @{context}
end *})
done
ML{*fun introductions rules preds defs lthy =
let
fun prove_intro (i, goal) =
Goal.prove lthy [] [] goal
(fn {context, ...} => introductions_tac defs rules preds i context)
in
map_index prove_intro rules
end*}
text {* main internal function *}
ML %linenosgray{*fun add_inductive_i pred_specs rule_specs lthy =
let
val syns = map snd pred_specs
val pred_specs' = map fst pred_specs
val prednames = map fst pred_specs'
val preds = map (fn (p, ty) => Free (Binding.name_of p, ty)) pred_specs'
val tyss = map (binder_types o fastype_of) preds
val (attrs, rules) = split_list rule_specs
val (defs, lthy') = definitions rules preds prednames syns tyss lthy
val ind_rules = inductions rules defs preds tyss lthy'
val intro_rules = introductions rules preds defs lthy'
val mut_name = space_implode "_" (map Binding.name_of prednames)
val case_names = map (Binding.name_of o fst) attrs
in
lthy'
|> LocalTheory.notes Thm.theoremK (map (fn (((a, atts), _), th) =>
((Binding.qualify false mut_name a, atts), [([th], [])])) (rule_specs ~~ intro_rules))
|-> (fn intross => LocalTheory.note Thm.theoremK
((Binding.qualify false mut_name (Binding.name "intros"), []), maps snd intross))
|>> snd
||>> (LocalTheory.notes Thm.theoremK (map (fn (((R, _), _), th) =>
((Binding.qualify false (Binding.name_of R) (Binding.name "induct"),
[Attrib.internal (K (RuleCases.case_names case_names)),
Attrib.internal (K (RuleCases.consumes 1)),
Attrib.internal (K (Induct.induct_pred ""))]), [([th], [])]))
(pred_specs ~~ ind_rules)) #>> maps snd)
|> snd
end*}
ML{*fun read_specification' vars specs lthy =
let
val specs' = map (fn (a, s) => (a, [s])) specs
val ((varst, specst), _) =
Specification.read_specification vars specs' lthy
val specst' = map (apsnd the_single) specst
in
(varst, specst')
end*}
ML{*fun add_inductive pred_specs rule_specs lthy =
let
val (pred_specs', rule_specs') =
read_specification' pred_specs rule_specs lthy
in
add_inductive_i pred_specs' rule_specs' lthy
end*}
ML{*val spec_parser =
OuterParse.opt_target --
OuterParse.fixes --
Scan.optional
(OuterParse.$$$ "where" |--
OuterParse.!!!
(OuterParse.enum1 "|"
(SpecParse.opt_thm_name ":" -- OuterParse.prop))) []*}
ML{*val specification =
spec_parser >>
(fn ((loc, pred_specs), rule_specs) =>
Toplevel.local_theory loc (add_inductive pred_specs rule_specs))*}
ML{*val _ = OuterSyntax.command "simple_inductive" "define inductive predicates"
OuterKeyword.thy_decl specification*}
text {*
Things to include at the end:
\begin{itemize}
\item say something about add-inductive-i to return
the rules
\item say that the induction principle is weaker (weaker than
what the standard inductive package generates)
\end{itemize}
*}
simple_inductive
Even and Odd
where
Even0: "Even 0"
| EvenS: "Odd n \<Longrightarrow> Even (Suc n)"
| OddS: "Even n \<Longrightarrow> Odd (Suc n)"
end