(* @chunk SIMPLE_INDUCTIVE_PACKAGE *)
signature SIMPLE_INDUCTIVE_PACKAGE =
sig
val add_inductive_i:
((Binding.binding * typ) * mixfix) list -> (*{predicates}*)
(Binding.binding * typ) list -> (*{parameters}*)
(Attrib.binding * term) list -> (*{rules}*)
local_theory -> local_theory
val add_inductive:
(Binding.binding * string option * mixfix) list -> (*{predicates}*)
(Binding.binding * string option * mixfix) list -> (*{parameters}*)
(Attrib.binding * string) list -> (*{rules}*)
local_theory -> local_theory
end;
(* @end *)
structure SimpleInductivePackage: SIMPLE_INDUCTIVE_PACKAGE =
struct
fun mk_all x P = HOLogic.all_const (fastype_of x) $ lambda x P
(* @chunk definitions_aux *)
fun definitions_aux s ((binding, syn), (attr, trm)) lthy =
let
val ((_, (_, thm)), lthy) =
LocalTheory.define s ((binding, syn), (attr, trm)) lthy
in
(thm, lthy)
end
(* @end *)
(* @chunk definitions *)
fun definitions params rules preds preds' Tss lthy =
let
val thy = ProofContext.theory_of lthy
val rules' = map (ObjectLogic.atomize_term thy) rules
in
fold_map (fn ((((R, _), syn), pred), Ts) =>
let
val zs = map Free (Variable.variant_frees lthy rules' (map (pair "z") Ts))
val t0 = list_comb (pred, zs);
val t1 = fold_rev (curry HOLogic.mk_imp) rules' t0;
val t2 = fold_rev mk_all preds' t1;
val t3 = fold_rev lambda (params @ zs) t2;
in
definitions_aux Thm.internalK ((R, syn), (Attrib.empty_binding, t3))
end) (preds ~~ preds' ~~ Tss) lthy
end
(* @end *)
fun inst_spec ct =
Drule.instantiate' [SOME (ctyp_of_term ct)] [NONE, SOME ct] @{thm spec};
val all_elims = fold (fn ct => fn th => th RS inst_spec ct);
val imp_elims = fold (fn th => fn th' => [th', th] MRS @{thm mp});
(* @chunk induction_rules *)
fun INDUCTION rules preds' Tss defs lthy1 lthy2 =
let
val (Pnames, lthy3) = Variable.variant_fixes (replicate (length preds') "P") lthy2;
val Ps = map (fn (s, Ts) => Free (s, Ts ---> HOLogic.boolT)) (Pnames ~~ Tss);
val cPs = map (cterm_of (ProofContext.theory_of lthy3)) Ps;
val rules'' = map (subst_free (preds' ~~ Ps)) rules;
fun prove_indrule ((R, P), Ts) =
let
val (znames, lthy4) = Variable.variant_fixes (replicate (length Ts) "z") lthy3;
val zs = map Free (znames ~~ Ts)
val prem = HOLogic.mk_Trueprop (list_comb (R, zs))
val goal = Logic.list_implies (rules'', HOLogic.mk_Trueprop (list_comb (P, zs)))
in
Goal.prove lthy4 [] [prem] goal
(fn {prems, ...} => EVERY1
([ObjectLogic.full_atomize_tac,
cut_facts_tac prems,
K (rewrite_goals_tac defs)] @
map (fn ct => dtac (inst_spec ct)) cPs @
[assume_tac])) |>
singleton (ProofContext.export lthy4 lthy1)
end;
in
map prove_indrule (preds' ~~ Ps ~~ Tss)
end
(* @end *)
(* @chunk intro_rules *)
fun INTROS rules preds' defs lthy1 lthy2 =
let
fun prove_intro (i, r) =
Goal.prove lthy2 [] [] r
(fn {prems, context = ctxt} => EVERY
[ObjectLogic.rulify_tac 1,
rewrite_goals_tac defs,
REPEAT (resolve_tac [@{thm allI},@{thm impI}] 1),
SUBPROOF (fn {params, prems, context = ctxt', ...} =>
let
val (prems1, prems2) = chop (length prems - length rules) prems;
val (params1, params2) = chop (length params - length preds') params;
in
rtac (ObjectLogic.rulify (all_elims params1 (nth prems2 i))) 1
THEN
EVERY1 (map (fn prem =>
SUBPROOF (fn {prems = prems', concl, ...} =>
let
val prem' = prems' MRS prem;
val prem'' = case prop_of prem' of
_ $ (Const (@{const_name All}, _) $ _) =>
prem' |> all_elims params2
|> imp_elims prems2
| _ => prem';
in rtac prem'' 1 end) ctxt') prems1)
end) ctxt 1]) |>
singleton (ProofContext.export lthy2 lthy1)
in
map_index prove_intro rules
end
(* @end *)
(* @chunk add_inductive_i *)
fun add_inductive_i preds params specs lthy =
let
val params' = map (fn (p, T) => Free (Binding.name_of p, T)) params;
val preds' = map (fn ((R, T), _) => list_comb (Free (Binding.name_of R, T), params')) preds;
val Tss = map (binder_types o fastype_of) preds';
val (ass,rules) = split_list specs;
val (defs, lthy1) = definitions params' rules preds preds' Tss lthy
val (_, lthy2) = Variable.add_fixes (map (Binding.name_of o fst) params) lthy1;
val inducts = INDUCTION rules preds' Tss defs lthy1 lthy2
val intros = INTROS rules preds' defs lthy1 lthy2
val mut_name = space_implode "_" (map (Binding.name_of o fst o fst) preds);
val case_names = map (Binding.name_of o fst o fst) specs
in
lthy1
|> LocalTheory.notes Thm.theoremK (map (fn (((a, atts), _), th) =>
((Binding.qualify false mut_name a, atts), [([th], [])])) (specs ~~ intros))
|-> (fn intross => LocalTheory.note Thm.theoremK
((Binding.qualify false mut_name (Binding.name "intros"), []), maps snd intross))
|>> snd
||>> (LocalTheory.notes Thm.theoremK (map (fn (((R, _), _), th) =>
((Binding.qualify false (Binding.name_of R) (Binding.name "induct"),
[Attrib.internal (K (RuleCases.case_names case_names)),
Attrib.internal (K (RuleCases.consumes 1)),
Attrib.internal (K (Induct.induct_pred ""))]), [([th], [])]))
(preds ~~ inducts)) #>> maps snd)
|> snd
end
(* @end *)
(* @chunk read_specification *)
fun read_specification' vars specs lthy =
let
val specs' = map (fn (a, s) => [(a, [s])]) specs
val ((varst, specst), _) =
Specification.read_specification vars specs' lthy
val specst' = map (apsnd the_single) specst
in
(varst, specst')
end
(* @end *)
(* @chunk add_inductive *)
fun add_inductive preds params specs lthy =
let
val (vars, specs') = read_specification' (preds @ params) specs lthy;
val (preds', params') = chop (length preds) vars;
val params'' = map fst params'
in
add_inductive_i preds' params'' specs' lthy
end;
(* @end *)
(* @chunk parser *)
val spec_parser =
OuterParse.opt_target --
OuterParse.fixes --
OuterParse.for_fixes --
Scan.optional
(OuterParse.$$$ "where" |--
OuterParse.!!!
(OuterParse.enum1 "|"
(SpecParse.opt_thm_name ":" -- OuterParse.prop))) []
(* @end *)
(* @chunk syntax *)
val specification =
spec_parser >>
(fn (((loc, preds), params), specs) =>
Toplevel.local_theory loc (add_inductive preds params specs))
val _ = OuterSyntax.command "simple_inductive" "define inductive predicates"
OuterKeyword.thy_decl specification
(* @end *)
end;