(* @chunk SIMPLE_INDUCTIVE_PACKAGE *)
signature SIMPLE_INDUCTIVE_PACKAGE =
sig
val add_inductive_i:
((Binding.binding * typ) * mixfix) list -> (*{predicates}*)
(Binding.binding * typ) list -> (*{parameters}*)
(Attrib.binding * term) list -> (*{rules}*)
local_theory -> local_theory
val add_inductive:
(Binding.binding * string option * mixfix) list -> (*{predicates}*)
(Binding.binding * string option * mixfix) list -> (*{parameters}*)
(Attrib.binding * string) list -> (*{rules}*)
local_theory -> local_theory
end;
(* @end *)
structure SimpleInductivePackage: SIMPLE_INDUCTIVE_PACKAGE =
struct
(* @chunk make_definitions *)
fun make_defs ((binding, syn), trm) lthy =
let
val arg = ((binding, syn), ((Binding.suffix_name "_def" binding, []), trm))
val ((_, (_ , thm)), lthy) = Local_Theory.define arg lthy
in
(thm, lthy)
end
(* @end *)
(* @chunk definitions_aux *)
fun defs_aux lthy orules preds params (pred, arg_types) =
let
fun mk_all x P = HOLogic.all_const (fastype_of x) $ lambda x P
val fresh_args =
arg_types
|> map (pair "z")
|> Variable.variant_frees lthy orules
|> map Free
in
list_comb (pred, fresh_args)
|> fold_rev (curry HOLogic.mk_imp) orules
|> fold_rev mk_all preds
|> fold_rev lambda (params @ fresh_args)
end
(* @end *)
(* @chunk definitions *)
fun definitions rules params preds prednames syns arg_typess lthy =
let
val thy = Proof_Context.theory_of lthy
val orules = map (Object_Logic.atomize_term thy) rules
val defs =
map (defs_aux lthy orules preds params) (preds ~~ arg_typess)
in
fold_map make_defs (prednames ~~ syns ~~ defs) lthy
end
(* @end *)
fun inst_spec ct =
Drule.instantiate' [SOME (ctyp_of_term ct)] [NONE, SOME ct] @{thm spec};
(* @chunk induction_tac *)
fun induction_tac defs prems insts =
EVERY1 [Object_Logic.full_atomize_tac,
cut_facts_tac prems,
rewrite_goal_tac defs,
EVERY' (map (dtac o inst_spec) insts),
assume_tac]
(* @end *)
(* @chunk induction_rules *)
fun inductions rules defs parnames preds Tss lthy1 =
let
val (_, lthy2) = Variable.add_fixes parnames lthy1
val Ps = replicate (length preds) "P"
val (newprednames, lthy3) = Variable.variant_fixes Ps lthy2
val thy = Proof_Context.theory_of lthy3
val Tss' = map (fn Ts => Ts ---> HOLogic.boolT) Tss
val newpreds = map Free (newprednames ~~ Tss')
val cnewpreds = map (cterm_of thy) newpreds
val rules' = map (subst_free (preds ~~ newpreds)) rules
fun prove_induction ((pred, newpred), Ts) =
let
val (newargnames, lthy4) =
Variable.variant_fixes (replicate (length Ts) "z") lthy3;
val newargs = map Free (newargnames ~~ Ts)
val prem = HOLogic.mk_Trueprop (list_comb (pred, newargs))
val goal = Logic.list_implies
(rules', HOLogic.mk_Trueprop (list_comb (newpred, newargs)))
in
Goal.prove lthy4 [] [prem] goal
(fn {prems, ...} => induction_tac defs prems cnewpreds)
|> singleton (Proof_Context.export lthy4 lthy1)
end
in
map prove_induction (preds ~~ newpreds ~~ Tss)
end
(* @end *)
val all_elims = fold (fn ct => fn th => th RS inst_spec ct);
val imp_elims = fold (fn th => fn th' => [th', th] MRS @{thm mp});
(* @chunk subproof1 *)
fun subproof2 prem params2 prems2 =
SUBPROOF (fn {prems, ...} =>
let
val prem' = prems MRS prem;
val prem'' =
case prop_of prem' of
_ $ (Const (@{const_name All}, _) $ _) =>
prem' |> all_elims params2
|> imp_elims prems2
| _ => prem';
in
rtac prem'' 1
end)
(* @end *)
(* @chunk subproof2 *)
fun subproof1 rules preds i =
SUBPROOF (fn {params, prems, context = ctxt', ...} =>
let
val (prems1, prems2) = chop (length prems - length rules) prems;
val (params1, params2) = chop (length params - length preds) (map snd params);
in
rtac (Object_Logic.rulify (all_elims params1 (nth prems2 i))) 1
THEN
EVERY1 (map (fn prem => subproof2 prem params2 prems2 ctxt') prems1)
end)
(* @end *)
fun introductions_tac defs rules preds i ctxt =
EVERY1 [Object_Logic.rulify_tac,
rewrite_goal_tac defs,
REPEAT o (resolve_tac [@{thm allI},@{thm impI}]),
subproof1 rules preds i ctxt]
(* @chunk intro_rules *)
fun introductions rules parnames preds defs lthy1 =
let
val (_, lthy2) = Variable.add_fixes parnames lthy1
fun prove_intro (i, goal) =
Goal.prove lthy2 [] [] goal
(fn {context, ...} => introductions_tac defs rules preds i context)
|> singleton (Proof_Context.export lthy2 lthy1)
in
map_index prove_intro rules
end
(* @end *)
(* @chunk add_inductive_i *)
fun add_inductive_i preds params specs lthy =
let
val params' = map (fn (p, T) => Free (Binding.name_of p, T)) params;
val preds' = map (fn ((R, T), _) => list_comb (Free (Binding.name_of R, T), params')) preds;
val Tss = map (binder_types o fastype_of) preds';
val (ass, rules) = split_list specs; (* FIXME: ass not used? *)
val prednames = map (fst o fst) preds
val syns = map snd preds
val parnames = map (Binding.name_of o fst) params
val (defs, lthy1) = definitions rules params' preds' prednames syns Tss lthy;
val inducts = inductions rules defs parnames preds' Tss lthy1
val intros = introductions rules parnames preds' defs lthy1
val mut_name = space_implode "_" (map (Binding.name_of o fst o fst) preds);
val case_names = map (Binding.name_of o fst o fst) specs
in
lthy1
|> Local_Theory.notes (map (fn (((a, atts), _), th) =>
((Binding.qualify false mut_name a, atts), [([th], [])])) (specs ~~ intros))
|-> (fn intross => Local_Theory.note
((Binding.qualify false mut_name (Binding.name "intros"), []), maps snd intross))
|>> snd
||>> (Local_Theory.notes (map (fn (((R, _), _), th) =>
((Binding.qualify false (Binding.name_of R) (Binding.name "induct"),
[Attrib.internal (K (Rule_Cases.case_names case_names)),
Attrib.internal (K (Rule_Cases.consumes 1)),
Attrib.internal (K (Induct.induct_pred ""))]), [([th], [])]))
(preds ~~ inducts)) #>> maps snd)
|> snd
end
(* @end *)
(* @chunk read_specification *)
fun read_specification' vars specs lthy =
let
val specs' = map (fn (a, s) => (a, [s])) specs
val ((varst, specst), _) =
Specification.read_specification vars specs' lthy
val specst' = map (apsnd the_single) specst
in
(varst, specst')
end
(* @end *)
(* @chunk add_inductive *)
fun add_inductive preds params specs lthy =
let
val (vars, specs') = read_specification' (preds @ params) specs lthy;
val (preds', params') = chop (length preds) vars;
val params'' = map fst params'
in
add_inductive_i preds' params'' specs' lthy
end;
(* @end *)
(* @chunk parser *)
val spec_parser =
Parse.opt_target --
Parse.fixes --
Parse.for_fixes --
Scan.optional
(Parse.$$$ "where" |--
Parse.!!!
(Parse.enum1 "|"
(Parse_Spec.opt_thm_name ":" -- Parse.prop))) []
(* @end *)
(* @chunk syntax *)
val specification =
spec_parser >>
(fn (((loc, preds), params), specs) =>
Toplevel.local_theory loc (add_inductive preds params specs))
val _ = Outer_Syntax.command @{command_spec "simple_inductive"} "define inductive predicates"
specification
(* @end *)
end;