theory ExternalSolver+ −
imports "../Base"+ −
begin+ −
+ −
section {* Using an External Solver\label{rec:external} *} + −
+ −
text {*+ −
{\bf Problem:}+ −
You want to use an external solver, because the solver might be more efficient + −
for deciding a certain class of formulae than Isabelle tactics.+ −
\smallskip+ −
+ −
{\bf Solution:} The easiest way to do this is by implementing an oracle.+ −
We will also construct proofs inside Isabelle by using the results produced + −
by the oracle.+ −
\smallskip+ −
+ −
\begin{readmore}+ −
A short introduction to oracles can be found in [isar-ref: no suitable label+ −
for section 3.11]. A simple example is given in + −
@{ML_file "FOL/ex/IffOracle"}.+ −
(TODO: add more references to the code)+ −
\end{readmore}+ −
+ −
For our explanation here, we will use the @{text metis} prover for proving+ −
propositional formulae. The general method will be roughly as follows: + −
Given a goal @{text G}, we transform it into the syntactical respresentation + −
of @{text "metis"}, build the CNF of the negated formula and then let metis search + −
for a refutation. @{text Metis} will either return the proved goal or raise + −
an exception meaning + −
that it was unable to prove the goal (FIXME: is this so?).+ −
+ −
The translation function from Isabelle propositions into formulae of + −
@{text metis} is as follows:+ −
*}+ −
+ −
ML{*fun trans t =+ −
(case t of+ −
@{term Trueprop} $ t => trans t+ −
| @{term True} => Metis.Formula.True+ −
| @{term False} => Metis.Formula.False+ −
| @{term Not} $ t => Metis.Formula.Not (trans t)+ −
| @{term "op &"} $ t1 $ t2 => Metis.Formula.And (trans t1, trans t2)+ −
| @{term "op |"} $ t1 $ t2 => Metis.Formula.Or (trans t1, trans t2)+ −
| @{term "op -->"} $ t1 $ t2 => Metis.Formula.Imp (trans t1, trans t2)+ −
| @{term "op = :: bool => bool => bool"} $ t1 $ t2 => + −
Metis.Formula.Iff (trans t1, trans t2)+ −
| Free (n, @{typ bool}) => Metis.Formula.Atom (n, [])+ −
| _ => error "inacceptable term")*}+ −
+ −
+ −
text {* + −
An example is as follows:+ −
+ −
@{ML_response [display,gray] "trans @{prop \"A \<and> B\"}" + −
"Metis.Formula.And + −
(Metis.Formula.Atom (\"A\", []), Metis.Formula.Atom (\"B\", []))"}+ −
+ −
+ −
The next function computes the conjunctive-normal-form.+ −
*}+ −
+ −
+ −
ML %linenumbers{*fun make_cnfs fm =+ −
fm |> Metis.Formula.Not+ −
|> Metis.Normalize.cnf+ −
|> map Metis.Formula.stripConj+ −
|> map (map Metis.Formula.stripDisj)+ −
|> map (map (map Metis.Literal.fromFormula))+ −
|> map (map Metis.LiteralSet.fromList)+ −
|> map (map Metis.Thm.axiom)*}+ −
+ −
text {* + −
(FIXME: Is there a deep reason why Metis.Normalize.cnf returns a list?)+ −
+ −
(FIXME: What does Line 8 do?)+ −
+ −
(FIXME: Can this code be improved?)+ −
+ −
+ −
Setting up the resolution.+ −
*}+ −
+ −
ML{*fun refute cls =+ −
let val result = + −
Metis.Resolution.loop + −
(Metis.Resolution.new Metis.Resolution.default cls)+ −
in+ −
(case result of+ −
Metis.Resolution.Contradiction _ => true+ −
| Metis.Resolution.Satisfiable _ => false)+ −
end*}+ −
+ −
text {* + −
Stringing the functions together.+ −
*}+ −
+ −
ML{*fun solve f = List.all refute (make_cnfs f)*}+ −
+ −
text {* Setting up the oracle*}+ −
+ −
ML{*fun prop_dp (thy, t) = + −
if solve (trans t) then (Thm.cterm_of thy t) + −
else error "Proof failed."*}+ −
+ −
oracle prop_oracle = prop_dp+ −
+ −
text {* (FIXME: What does oracle do?) *}+ −
+ −
+ −
ML{*fun prop_oracle_tac ctxt = + −
SUBGOAL (fn (goal, i) => + −
(case (try prop_oracle (ProofContext.theory_of ctxt, goal)) of+ −
SOME thm => rtac thm i+ −
| NONE => no_tac))*}+ −
+ −
text {*+ −
(FIXME: The oracle returns a @{text cterm}. How is it possible+ −
that I can apply this cterm with @{ML rtac}?)+ −
*}+ −
+ −
method_setup prop_oracle = {*+ −
Method.ctxt_args (fn ctxt => Method.SIMPLE_METHOD' (prop_oracle_tac ctxt))+ −
*} "Oracle-based decision procedure for propositional logic"+ −
+ −
text {* (FIXME What does @{ML Method.SIMPLE_METHOD'} do?) *}+ −
+ −
lemma test: "p \<or> \<not>p"+ −
by prop_oracle+ −
+ −
text {* (FIXME: say something about what the proof of the oracle is)+ −
+ −
@{ML_response_fake [display,gray] "Thm.proof_of @{thm test}" "???"}+ −
+ −
*} + −
+ −
+ −
+ −
lemma "((p \<longrightarrow> q) \<longrightarrow> p) \<longrightarrow> p"+ −
by prop_oracle+ −
+ −
lemma "\<forall>x::nat. x \<ge> 0"+ −
sorry+ −
+ −
text {*+ −
(FIXME: proof reconstruction)+ −
*}+ −
+ −
+ −
+ −
text {*+ −
For communication with external programs, there are the primitives+ −
@{ML_text system} and @{ML_text system_out}, the latter of which captures+ −
the invoked program's output. For simplicity, here, we will use metis, an+ −
external solver included in the Isabelle destribution. Since it is written+ −
in ML, we can call it directly without the detour of invoking an external+ −
program.+ −
*}+ −
+ −
+ −
end+ −