theory Solutionsimports Base "Recipes/Timing"beginchapter {* Solutions to Most Exercises\label{ch:solutions} *}text {* \solution{fun:revsum} *}ML{*fun rev_sum ((p as Const (@{const_name plus}, _)) $ t $ u) = p $ u $ rev_sum t | rev_sum t = t *}text {* An alternative solution using the function @{ML_ind mk_binop in HOLogic} is: *}ML{*fun rev_sum t =let fun dest_sum (Const (@{const_name plus}, _) $ u $ u') = u' :: dest_sum u | dest_sum u = [u]in foldl1 (HOLogic.mk_binop @{const_name plus}) (dest_sum t)end *}text {* \solution{fun:makesum} *}ML{*fun make_sum t1 t2 = HOLogic.mk_nat (HOLogic.dest_nat t1 + HOLogic.dest_nat t2) *}text {* \solution{ex:debruijn} *}ML{*fun P n = @{term "P::nat \<Rightarrow> bool"} $ (HOLogic.mk_number @{typ "nat"} n) fun rhs 1 = P 1 | rhs n = HOLogic.mk_conj (P n, rhs (n - 1))fun lhs 1 n = HOLogic.mk_imp (HOLogic.mk_eq (P 1, P n), rhs n) | lhs m n = HOLogic.mk_conj (HOLogic.mk_imp (HOLogic.mk_eq (P (m - 1), P m), rhs n), lhs (m - 1) n)fun de_bruijn n = HOLogic.mk_Trueprop (HOLogic.mk_imp (lhs n n, rhs n))*}text {* \solution{ex:scancmts} *}ML{*val any = Scan.one (Symbol.not_eof)val scan_cmt =let val begin_cmt = Scan.this_string "(*" val end_cmt = Scan.this_string "*)"in begin_cmt |-- Scan.repeat (Scan.unless end_cmt any) --| end_cmt >> (enclose "(**" "**)" o implode)endval parser = Scan.repeat (scan_cmt || any)val scan_all = Scan.finite Symbol.stopper parser >> implode #> fst *}text {* By using @{text "#> fst"} in the last line, the function @{ML scan_all} retruns a string, instead of the pair a parser would normally return. For example: @{ML_response [display,gray]"let val input1 = (explode \"foo bar\") val input2 = (explode \"foo (*test*) bar (*test*)\")in (scan_all input1, scan_all input2)end""(\"foo bar\", \"foo (**test**) bar (**test**)\")"}*}text {* \solution{ex:dyckhoff} *}text {* The axiom rule can be implemented with the function @{ML atac}. The other rules correspond to the theorems: \begin{center} \begin{tabular}{cc} \begin{tabular}{rl} $\wedge_R$ & @{thm [source] conjI}\\ $\vee_{R_1}$ & @{thm [source] disjI1}\\ $\vee_{R_2}$ & @{thm [source] disjI2}\\ $\longrightarrow_R$ & @{thm [source] impI}\\ $=_R$ & @{thm [source] iffI}\\ \end{tabular} & \begin{tabular}{rl} $False$ & @{thm [source] FalseE}\\ $\wedge_L$ & @{thm [source] conjE}\\ $\vee_L$ & @{thm [source] disjE}\\ $=_L$ & @{thm [source] iffE} \end{tabular} \end{tabular} \end{center} For the other rules we need to prove the following lemmas.*}lemma impE1: shows "\<lbrakk>A \<longrightarrow> B; A; B \<Longrightarrow> R\<rbrakk> \<Longrightarrow> R" by iproverlemma impE2: shows "\<lbrakk>(C \<and> D) \<longrightarrow> B; C \<longrightarrow> (D \<longrightarrow>B) \<Longrightarrow> R\<rbrakk> \<Longrightarrow> R" by iproverlemma impE3: shows "\<lbrakk>(C \<or> D) \<longrightarrow> B; \<lbrakk>C \<longrightarrow> B; D \<longrightarrow> B\<rbrakk> \<Longrightarrow> R\<rbrakk> \<Longrightarrow> R" by iproverlemma impE4: shows "\<lbrakk>(C \<longrightarrow> D) \<longrightarrow> B; D \<longrightarrow> B \<Longrightarrow> C \<longrightarrow> D; B \<Longrightarrow> R\<rbrakk> \<Longrightarrow> R" by iproverlemma impE5: shows "\<lbrakk>(C = D) \<longrightarrow> B; (C \<longrightarrow> D) \<longrightarrow> ((D \<longrightarrow> C) \<longrightarrow> B) \<Longrightarrow> R\<rbrakk> \<Longrightarrow> R" by iprovertext {* Now the tactic which applies a single rule can be implemented as follows.*}ML %linenosgray{*val apply_tac =let val intros = [@{thm conjI}, @{thm disjI1}, @{thm disjI2}, @{thm impI}, @{thm iffI}] val elims = [@{thm FalseE}, @{thm conjE}, @{thm disjE}, @{thm iffE}, @{thm impE2}, @{thm impE3}, @{thm impE4}, @{thm impE5}]in atac ORELSE' resolve_tac intros ORELSE' eresolve_tac elims ORELSE' (etac @{thm impE1} THEN' atac)end*}text {* In Line 11 we apply the rule @{thm [source] impE1} in concjunction with @{ML atac} in order to reduce the number of possibilities that need to be explored. You can use the tactic as follows.*}lemma shows "((((P \<longrightarrow> Q) \<longrightarrow> P) \<longrightarrow> P) \<longrightarrow> Q) \<longrightarrow> Q"apply(tactic {* (DEPTH_SOLVE o apply_tac) 1 *})donetext {* We can use the tactic to prove or disprove automatically the de Bruijn formulae from Exercise \ref{ex:debruijn}.*}ML{*fun de_bruijn_prove ctxt n =let val goal = HOLogic.mk_Trueprop (HOLogic.mk_imp (lhs n n, rhs n))in Goal.prove ctxt ["P"] [] goal (fn _ => (DEPTH_SOLVE o apply_tac) 1)end*}text {* You can use this function to prove de Bruijn formulae.*}ML{*de_bruijn_prove @{context} 3 *}text {* \solution{ex:addsimproc} *}ML{*fun dest_sum term = case term of (@{term "(op +):: nat \<Rightarrow> nat \<Rightarrow> nat"} $ t1 $ t2) => (snd (HOLogic.dest_number t1), snd (HOLogic.dest_number t2)) | _ => raise TERM ("dest_sum", [term])fun get_sum_thm ctxt t (n1, n2) = let val sum = HOLogic.mk_number @{typ "nat"} (n1 + n2) val goal = Logic.mk_equals (t, sum)in Goal.prove ctxt [] [] goal (K (Arith_Data.arith_tac ctxt 1))endfun add_sp_aux ss t =let val ctxt = Simplifier.the_context ss val t' = term_of tin SOME (get_sum_thm ctxt t' (dest_sum t')) handle TERM _ => NONEend*}text {* The setup for the simproc is *}simproc_setup %gray add_sp ("t1 + t2") = {* K add_sp_aux *}text {* and a test case is the lemma *}lemma "P (Suc (99 + 1)) ((0 + 0)::nat) (Suc (3 + 3 + 3)) (4 + 1)" apply(tactic {* simp_tac (HOL_basic_ss addsimprocs [@{simproc add_sp}]) 1 *})txt {* where the simproc produces the goal state \begin{minipage}{\textwidth} @{subgoals [display]} \end{minipage}\bigskip*}(*<*)oops(*>*)text {* \solution{ex:addconversion} *}text {* The following code assumes the function @{ML dest_sum} from the previous exercise.*}ML{*fun add_simple_conv ctxt ctrm =let val trm = Thm.term_of ctrmin get_sum_thm ctxt trm (dest_sum trm)endfun add_conv ctxt ctrm = (case Thm.term_of ctrm of @{term "(op +)::nat \<Rightarrow> nat \<Rightarrow> nat"} $ _ $ _ => (Conv.binop_conv (add_conv ctxt) then_conv (Conv.try_conv (add_simple_conv ctxt))) ctrm | _ $ _ => Conv.combination_conv (add_conv ctxt) (add_conv ctxt) ctrm | Abs _ => Conv.abs_conv (fn (_, ctxt) => add_conv ctxt) ctxt ctrm | _ => Conv.all_conv ctrm)fun add_tac ctxt = CSUBGOAL (fn (goal, i) => CONVERSION (Conv.params_conv ~1 (fn ctxt => (Conv.prems_conv ~1 (add_conv ctxt) then_conv Conv.concl_conv ~1 (add_conv ctxt))) ctxt) i)*}text {* A test case for this conversion is as follows*}lemma "P (Suc (99 + 1)) ((0 + 0)::nat) (Suc (3 + 3 + 3)) (4 + 1)" apply(tactic {* add_tac @{context} 1 *})?txt {* where it produces the goal state \begin{minipage}{\textwidth} @{subgoals [display]} \end{minipage}\bigskip*}(*<*)oops(*>*)text {* \solution{ex:addconversion} *}text {* We use the timing function @{ML timing_wrapper} from Recipe~\ref{rec:timing}. To measure any difference between the simproc and conversion, we will create mechanically terms involving additions and then set up a goal to be simplified. We have to be careful to set up the goal so that other parts of the simplifier do not interfere. For this we construct an unprovable goal which, after simplification, we are going to ``prove'' with the help of ``\isacommand{sorry}'', that is the method @{ML SkipProof.cheat_tac} For constructing test cases, we first define a function that returns a complete binary tree whose leaves are numbers and the nodes are additions.*}ML{*fun term_tree n =let val count = ref 0; fun term_tree_aux n = case n of 0 => (count := !count + 1; HOLogic.mk_number @{typ nat} (!count)) | _ => Const (@{const_name "plus"}, @{typ "nat\<Rightarrow>nat\<Rightarrow>nat"}) $ (term_tree_aux (n - 1)) $ (term_tree_aux (n - 1))in term_tree_aux nend*}text {* This function generates for example: @{ML_response_fake [display,gray] "writeln (Syntax.string_of_term @{context} (term_tree 2))" "(1 + 2) + (3 + 4)"} The next function constructs a goal of the form @{text "P \<dots>"} with a term produced by @{ML term_tree} filled in.*}ML{*fun goal n = HOLogic.mk_Trueprop (@{term "P::nat\<Rightarrow> bool"} $ (term_tree n))*}text {* Note that the goal needs to be wrapped in a @{term "Trueprop"}. Next we define two tactics, @{text "c_tac"} and @{text "s_tac"}, for the conversion and simproc, respectively. The idea is to first apply the conversion (respectively simproc) and then prove the remaining goal using @{ML "cheat_tac" in SkipProof}.*}ML{*local fun mk_tac tac = timing_wrapper (EVERY1 [tac, K (SkipProof.cheat_tac @{theory})])inval c_tac = mk_tac (add_tac @{context}) val s_tac = mk_tac (simp_tac (HOL_basic_ss addsimprocs [@{simproc add_sp}]))end*}text {* This is all we need to let the conversion run against the simproc:*}ML{*val _ = Goal.prove @{context} [] [] (goal 8) (K c_tac)val _ = Goal.prove @{context} [] [] (goal 8) (K s_tac)*}text {* If you do the exercise, you can see that both ways of simplifying additions perform relatively similar with perhaps some advantages for the simproc. That means the simplifier, even if much more complicated than conversions, is quite efficient for tasks it is designed for. It usually does not make sense to implement general-purpose rewriting using conversions. Conversions only have clear advantages in special situations: for example if you need to have control over innermost or outermost rewriting, or when rewriting rules are lead to non-termination.*}end