theory Solutions
imports Base
begin
chapter {* Solutions to Most Exercises\label{ch:solutions} *}
text {* \solution{fun:revsum} *}
ML{*fun rev_sum t =
let
fun dest_sum (Const (@{const_name plus}, _) $ u $ u') = u' :: dest_sum u
| dest_sum u = [u]
in
foldl1 (HOLogic.mk_binop @{const_name plus}) (dest_sum t)
end *}
text {* \solution{fun:makesum} *}
ML{*fun make_sum t1 t2 =
HOLogic.mk_nat (HOLogic.dest_nat t1 + HOLogic.dest_nat t2) *}
text {* \solution{ex:scancmts} *}
ML{*val any = Scan.one (Symbol.not_eof)
val scan_cmt =
let
val begin_cmt = Scan.this_string "(*"
val end_cmt = Scan.this_string "*)"
in
begin_cmt |-- Scan.repeat (Scan.unless end_cmt any) --| end_cmt
>> (enclose "(**" "**)" o implode)
end
val parser = Scan.repeat (scan_cmt || any)
val scan_all =
Scan.finite Symbol.stopper parser >> implode #> fst *}
text {*
By using @{text "#> fst"} in the last line, the function
@{ML scan_all} retruns a string, instead of the pair a parser would
normally return. For example:
@{ML_response [display,gray]
"let
val input1 = (explode \"foo bar\")
val input2 = (explode \"foo (*test*) bar (*test*)\")
in
(scan_all input1, scan_all input2)
end"
"(\"foo bar\", \"foo (**test**) bar (**test**)\")"}
*}
text {* \solution{ex:addsimproc} *}
ML{*fun dest_sum term =
case term of
(@{term "(op +):: nat \<Rightarrow> nat \<Rightarrow> nat"} $ t1 $ t2) =>
(snd (HOLogic.dest_number t1), snd (HOLogic.dest_number t2))
| _ => raise TERM ("dest_sum", [term])
fun get_sum_thm ctxt t (n1, n2) =
let
val sum = HOLogic.mk_number @{typ "nat"} (n1 + n2)
val goal = Logic.mk_equals (t, sum)
in
Goal.prove ctxt [] [] goal (K (arith_tac ctxt 1))
end
fun add_sp_aux ss t =
let
val ctxt = Simplifier.the_context ss
val t' = term_of t
in
SOME (get_sum_thm ctxt t' (dest_sum t'))
handle TERM _ => NONE
end*}
text {* The setup for the simproc is *}
simproc_setup add_sp ("t1 + t2") = {* K add_sp_aux *}
text {* and a test case is the lemma *}
lemma "P (Suc (99 + 1)) ((0 + 0)::nat) (Suc (3 + 3 + 3)) (4 + 1)"
apply(tactic {* simp_tac (HOL_basic_ss addsimprocs [@{simproc add_sp}]) 1 *})
txt {*
where the simproc produces the goal state
\begin{minipage}{\textwidth}
@{subgoals [display]}
\end{minipage}\bigskip
*}(*<*)oops(*>*)
text {* \solution{ex:addconversion} *}
text {*
The following code assumes the function @{ML dest_sum} from the previous
exercise.
*}
ML{*fun add_simple_conv ctxt ctrm =
let
val trm = Thm.term_of ctrm
in
get_sum_thm ctxt trm (dest_sum trm)
end
fun add_conv ctxt ctrm =
(case Thm.term_of ctrm of
@{term "(op +)::nat \<Rightarrow> nat \<Rightarrow> nat"} $ _ $ _ =>
(Conv.binop_conv (add_conv ctxt)
then_conv (Conv.try_conv (add_simple_conv ctxt))) ctrm
| _ $ _ => Conv.combination_conv
(add_conv ctxt) (add_conv ctxt) ctrm
| Abs _ => Conv.abs_conv (fn (_, ctxt) => add_conv ctxt) ctxt ctrm
| _ => Conv.all_conv ctrm)
val add_tac = CSUBGOAL (fn (goal, i) =>
let
val ctxt = ProofContext.init (Thm.theory_of_cterm goal)
in
CONVERSION
(Conv.params_conv ~1 (fn ctxt =>
(Conv.prems_conv ~1 (add_conv ctxt) then_conv
Conv.concl_conv ~1 (add_conv ctxt))) ctxt) i
end)*}
text {*
A test case is as follows
*}
lemma "P (Suc (99 + 1)) ((0 + 0)::nat) (Suc (3 + 3 + 3)) (4 + 1)"
apply(tactic {* add_tac 1 *})?
txt {*
where the conversion produces the goal state
\begin{minipage}{\textwidth}
@{subgoals [display]}
\end{minipage}\bigskip
*}(*<*)oops(*>*)
subsection {* Tests start here *}
lemma cheat: "P" sorry
ML{*fun timing_wrapper tac st =
let
val t_start = start_timing ();
val res = tac st;
val t_end = end_timing t_start;
in
(warning (#message t_end); res)
end*}
ML{*
fun create_term1 0 = @{term "0::nat"}
| create_term1 n =
Const (@{const_name "plus"}, @{typ "nat\<Rightarrow>nat\<Rightarrow>nat"})
$ (HOLogic.mk_number @{typ "nat"} n) $ (create_term1 (n-1))
*}
ML{*
fun create_term2 0 = @{term "0::nat"}
| create_term2 n =
Const (@{const_name "plus"}, @{typ "nat\<Rightarrow>nat\<Rightarrow>nat"})
$ (create_term2 (n-1)) $ (HOLogic.mk_number @{typ nat} n)
*}
ML{*
fun create_term n =
HOLogic.mk_Trueprop
(@{term "P::nat\<Rightarrow> bool"} $
(Const (@{const_name "plus"}, @{typ "nat\<Rightarrow>nat\<Rightarrow>nat"})
$ (create_term1 n) $ (create_term2 n)))
*}
ML {*
warning (Syntax.string_of_term @{context} (create_term 4))
*}
ML {*
val _ = Goal.prove @{context} [] [] (create_term 100)
(fn _ => timing_wrapper (EVERY1 [add_tac, rtac @{thm cheat}]))
*}
ML {*
val _ = Goal.prove @{context} [] [] (create_term 100)
(fn _ => timing_wrapper (EVERY1 [simp_tac (HOL_basic_ss addsimprocs [@{simproc add_sp}]), rtac @{thm cheat}]))
*}
ML {*
val _ = Goal.prove @{context} [] [] (create_term 400)
(fn _ => timing_wrapper (EVERY1 [add_tac, rtac @{thm cheat}]))
*}
ML {*
val _ = Goal.prove @{context} [] [] (create_term 400)
(fn _ => timing_wrapper (EVERY1 [simp_tac (HOL_basic_ss addsimprocs [@{simproc add_sp}]), rtac @{thm cheat}]))
*}
end