theory Ind_Code+ −
imports "../Base" Simple_Inductive_Package Ind_Prelims+ −
begin+ −
+ −
section {* Code *}+ −
+ −
subsection {* Definitions *}+ −
+ −
text {*+ −
If we give it a term and a constant name, it will define the + −
constant as the term. + −
*}+ −
+ −
ML{*fun make_defs ((binding, syn), trm) lthy =+ −
let + −
val arg = ((binding, syn), (Attrib.empty_binding, trm))+ −
val ((_, (_ , thm)), lthy) = LocalTheory.define Thm.internalK arg lthy+ −
in + −
(thm, lthy) + −
end*}+ −
+ −
text {*+ −
Returns the definition and the local theory in which this definition has + −
been made. What is @{ML Thm.internalK}?+ −
*}+ −
+ −
ML {*let+ −
val lthy = TheoryTarget.init NONE @{theory}+ −
in+ −
make_defs ((Binding.name "MyTrue", NoSyn), @{term "True"}) lthy+ −
end*}+ −
+ −
text {*+ −
Why is the output of MyTrue blue?+ −
*}+ −
+ −
text {*+ −
Constructs the term for the definition: the main arguments are a predicate+ −
and the types of the arguments, it also expects orules which are the + −
intro rules in the object logic; preds which are all predicates. returns the+ −
term.+ −
*}+ −
+ −
ML %linenosgray{*fun defs_aux lthy orules preds (pred, arg_types) =+ −
let + −
fun mk_all x P = HOLogic.all_const (fastype_of x) $ lambda x P+ −
+ −
val fresh_args = + −
arg_types + −
|> map (pair "z")+ −
|> Variable.variant_frees lthy orules + −
|> map Free+ −
in+ −
list_comb (pred, fresh_args)+ −
|> fold_rev (curry HOLogic.mk_imp) orules+ −
|> fold_rev mk_all preds+ −
|> fold_rev lambda fresh_args + −
end*}+ −
+ −
text {*+ −
The lines 5-9 produce fresh arguments with which the predicate can be applied.+ −
For this it pairs every type with a string @{text [quotes] "z"} (Line 7); then + −
generates variants for all these strings (names) so that they are unique w.r.t.~to + −
the intro rules; in Line 9 it generates the corresponding variable terms for these + −
unique names.+ −
+ −
The unique free variables are applied to the predicate (Line 11); then+ −
the intro rules are attached as preconditions (Line 12); in Line 13 we+ −
quantify over all predicates; and in line 14 we just abstract over all+ −
the (fresh) arguments of the predicate.+ −
*}+ −
+ −
text {*+ −
The arguments of the main function for the definitions are + −
the intro rules; the predicates and their names, their syntax + −
annotations and the argument types of each predicate. It + −
returns a theorem list (the definitions) and a local+ −
theory where the definitions are made+ −
*}+ −
+ −
ML %linenosgray{*fun definitions rules preds prednames syns arg_typss lthy =+ −
let+ −
val thy = ProofContext.theory_of lthy+ −
val orules = map (ObjectLogic.atomize_term thy) rules+ −
val defs = map (defs_aux lthy orules preds) (preds ~~ arg_typss) + −
in+ −
fold_map make_defs (prednames ~~ syns ~~ defs) lthy+ −
end*}+ −
+ −
text {*+ −
In line 4 we generate the intro rules in the object logic; for this we have to + −
obtain the theory behind the local theory (Line 3); with this we can+ −
call @{ML defs_aux} to generate the terms for the left-hand sides.+ −
The actual definitions are made in Line 7. + −
*}+ −
+ −
+ −
subsection {* Induction Principles *}+ −
+ −
ML{*fun inst_spec ct = + −
Drule.instantiate' [SOME (ctyp_of_term ct)] [NONE, SOME ct] @{thm spec}*}+ −
+ −
text {*+ −
Instantiates the @{text "?x"} in @{thm spec} with a @{ML_type cterm}.+ −
*}+ −
+ −
text {*+ −
Instantiates universal qantifications in the premises+ −
*}+ −
+ −
lemma "\<forall>x\<^isub>1 x\<^isub>2 x\<^isub>3. P (x\<^isub>1::nat) (x\<^isub>2::nat) (x\<^isub>3::nat) \<Longrightarrow> True"+ −
apply (tactic {* EVERY' (map (dtac o inst_spec) + −
[@{cterm "y\<^isub>1::nat"},@{cterm "y\<^isub>2::nat"},@{cterm "y\<^isub>3::nat"}]) 1*})+ −
txt {* \begin{minipage}{\textwidth}+ −
@{subgoals} + −
\end{minipage}*}+ −
(*<*)oops(*>*)+ −
+ −
+ −
lemma + −
assumes "even n"+ −
shows "P 0 \<Longrightarrow> + −
(\<And>m. Q m \<Longrightarrow> P (Suc m)) \<Longrightarrow> (\<And>m. P m \<Longrightarrow> Q (Suc m)) \<Longrightarrow> P n"+ −
apply(atomize (full))+ −
apply(cut_tac prems)+ −
apply(unfold even_def)+ −
apply(drule spec[where x=P])+ −
apply(drule spec[where x=Q])+ −
apply(assumption)+ −
done+ −
+ −
text {*+ −
The tactic for proving the induction rules: + −
*}+ −
+ −
ML{*fun induction_tac defs prems insts =+ −
EVERY1 [K (print_tac "start"),+ −
ObjectLogic.full_atomize_tac,+ −
cut_facts_tac prems,+ −
K (rewrite_goals_tac defs),+ −
EVERY' (map (dtac o inst_spec) insts),+ −
assume_tac]*}+ −
+ −
lemma + −
assumes "even n"+ −
shows "P 0 \<Longrightarrow> + −
(\<And>m. Q m \<Longrightarrow> P (Suc m)) \<Longrightarrow> (\<And>m. P m \<Longrightarrow> Q (Suc m)) \<Longrightarrow> P n"+ −
apply(tactic {* + −
let+ −
val defs = [@{thm even_def}, @{thm odd_def}]+ −
val insts = [@{cterm "P::nat\<Rightarrow>bool"}, @{cterm "Q::nat\<Rightarrow>bool"}]+ −
in + −
induction_tac defs @{thms prems} insts + −
end *})+ −
done+ −
+ −
text {*+ −
While the generic proof is relatively simple, it is a bit harder to+ −
set up the goals for the induction principles. + −
*}+ −
+ −
+ −
ML %linenosgray{*fun inductions rules defs preds tyss lthy1 =+ −
let+ −
val Ps = replicate (length preds) "P"+ −
val (newprednames, lthy2) = Variable.variant_fixes Ps lthy1+ −
+ −
val thy = ProofContext.theory_of lthy2+ −
+ −
val tyss' = map (fn tys => tys ---> HOLogic.boolT) tyss+ −
val newpreds = map Free (newprednames ~~ tyss')+ −
val cnewpreds = map (cterm_of thy) newpreds+ −
val rules' = map (subst_free (preds ~~ newpreds)) rules+ −
+ −
fun prove_induction ((pred, newpred), tys) =+ −
let+ −
val zs = replicate (length tys) "z"+ −
val (newargnames, lthy3) = Variable.variant_fixes zs lthy2;+ −
val newargs = map Free (newargnames ~~ tys)+ −
+ −
val prem = HOLogic.mk_Trueprop (list_comb (pred, newargs))+ −
val goal = Logic.list_implies + −
(rules', HOLogic.mk_Trueprop (list_comb (newpred, newargs)))+ −
in+ −
Goal.prove lthy3 [] [prem] goal+ −
(fn {prems, ...} => induction_tac defs prems cnewpreds)+ −
|> singleton (ProofContext.export lthy3 lthy1)+ −
end + −
in+ −
map prove_induction (preds ~~ newpreds ~~ tyss)+ −
end*}+ −
+ −
(*+ −
ML {*+ −
let + −
val rules = [@{term "even 0"},+ −
@{term "\<And>n::nat. odd n \<Longrightarrow> even (Suc n)"},+ −
@{term "\<And>n::nat. even n \<Longrightarrow> odd (Suc n)"}] + −
val defs = [@{thm even_def}, @{thm odd_def}]+ −
val preds = [@{term "even::nat\<Rightarrow>bool"}, @{term "odd::nat\<Rightarrow>bool"}]+ −
val tyss = [[@{typ "nat"}],[@{typ "nat"}]]+ −
in+ −
inductions rules defs preds tyss @{context}+ −
end+ −
*}+ −
*)+ −
+ −
subsection {* Introduction Rules *}+ −
+ −
ML{*val all_elims = fold (fn ct => fn th => th RS inst_spec ct)+ −
val imp_elims = fold (fn th => fn th' => [th', th] MRS @{thm mp})*}+ −
+ −
ML{*fun subproof2 prem params2 prems2 = + −
SUBPROOF (fn {prems, ...} =>+ −
let+ −
val prem' = prems MRS prem;+ −
val prem'' = + −
case prop_of prem' of+ −
_ $ (Const (@{const_name All}, _) $ _) =>+ −
prem' |> all_elims params2 + −
|> imp_elims prems2+ −
| _ => prem';+ −
in + −
rtac prem'' 1 + −
end)*}+ −
+ −
ML{*fun subproof1 rules preds i = + −
SUBPROOF (fn {params, prems, context = ctxt', ...} =>+ −
let+ −
val (prems1, prems2) = chop (length prems - length rules) prems;+ −
val (params1, params2) = chop (length params - length preds) params;+ −
in+ −
rtac (ObjectLogic.rulify (all_elims params1 (nth prems2 i))) 1 + −
THEN+ −
EVERY1 (map (fn prem => subproof2 prem params2 prems2 ctxt') prems1)+ −
end)*}+ −
+ −
ML{*+ −
fun introductions_tac defs rules preds i ctxt =+ −
EVERY1 [ObjectLogic.rulify_tac,+ −
K (rewrite_goals_tac defs),+ −
REPEAT o (resolve_tac [@{thm allI},@{thm impI}]),+ −
subproof1 rules preds i ctxt]*}+ −
+ −
ML{*fun introductions rules preds defs lthy = + −
let+ −
fun prove_intro (i, goal) =+ −
Goal.prove lthy [] [] goal+ −
(fn {context, ...} => introductions_tac defs rules preds i context)+ −
in+ −
map_index prove_intro rules+ −
end*}+ −
+ −
ML %linenosgray{*fun add_inductive_i pred_specs rule_specs lthy =+ −
let+ −
val syns = map snd pred_specs+ −
val pred_specs' = map fst pred_specs+ −
val prednames = map fst pred_specs'+ −
val preds = map (fn (p, ty) => Free (Binding.name_of p, ty)) pred_specs'+ −
+ −
val tyss = map (binder_types o fastype_of) preds + −
val (attrs, rules) = split_list rule_specs + −
+ −
val (defs, lthy') = definitions rules preds prednames syns tyss lthy + −
val ind_rules = inductions rules defs preds tyss lthy' + −
val intro_rules = introductions rules preds defs lthy'+ −
+ −
val mut_name = space_implode "_" (map Binding.name_of prednames)+ −
val case_names = map (Binding.name_of o fst) attrs+ −
in+ −
lthy' + −
|> LocalTheory.notes Thm.theoremK (map (fn (((a, atts), _), th) =>+ −
((Binding.qualify false mut_name a, atts), [([th], [])])) (rule_specs ~~ intro_rules)) + −
|-> (fn intross => LocalTheory.note Thm.theoremK+ −
((Binding.qualify false mut_name (Binding.name "intros"), []), maps snd intross)) + −
|>> snd + −
||>> (LocalTheory.notes Thm.theoremK (map (fn (((R, _), _), th) =>+ −
((Binding.qualify false (Binding.name_of R) (Binding.name "induct"),+ −
[Attrib.internal (K (RuleCases.case_names case_names)),+ −
Attrib.internal (K (RuleCases.consumes 1)),+ −
Attrib.internal (K (Induct.induct_pred ""))]), [([th], [])]))+ −
(pred_specs ~~ ind_rules)) #>> maps snd) + −
|> snd+ −
end*}+ −
+ −
+ −
ML{*fun read_specification' vars specs lthy =+ −
let + −
val specs' = map (fn (a, s) => [(a, [s])]) specs+ −
val ((varst, specst), _) = + −
Specification.read_specification vars specs' lthy+ −
val specst' = map (apsnd the_single) specst+ −
in + −
(varst, specst')+ −
end*}+ −
+ −
ML{*fun add_inductive pred_specs rule_specs lthy =+ −
let+ −
val (pred_specs', rule_specs') = + −
read_specification' pred_specs rule_specs lthy+ −
in+ −
add_inductive_i pred_specs' rule_specs' lthy+ −
end*} + −
+ −
ML{*val spec_parser = + −
OuterParse.opt_target --+ −
OuterParse.fixes -- + −
Scan.optional + −
(OuterParse.$$$ "where" |--+ −
OuterParse.!!! + −
(OuterParse.enum1 "|" + −
(SpecParse.opt_thm_name ":" -- OuterParse.prop))) []*}+ −
+ −
ML{*val specification =+ −
spec_parser >>+ −
(fn ((loc, pred_specs), rule_specs) =>+ −
Toplevel.local_theory loc (add_inductive pred_specs rule_specs))*}+ −
+ −
ML{*val _ = OuterSyntax.command "simple_inductive" "define inductive predicates"+ −
OuterKeyword.thy_decl specification*}+ −
+ −
text {*+ −
Things to include at the end:+ −
+ −
\begin{itemize}+ −
\item say something about add-inductive-i to return+ −
the rules+ −
\item say that the induction principle is weaker (weaker than+ −
what the standard inductive package generates)+ −
\end{itemize}+ −
+ −
*}+ −
+ −
simple_inductive+ −
Even and Odd+ −
where+ −
Even0: "Even 0"+ −
| EvenS: "Odd n \<Longrightarrow> Even (Suc n)"+ −
| OddS: "Even n \<Longrightarrow> Odd (Suc n)"+ −
+ −
end+ −