--- a/ProgTutorial/Recipes/Sat.thy Tue May 14 17:45:13 2019 +0200
+++ b/ProgTutorial/Recipes/Sat.thy Thu May 16 19:56:12 2019 +0200
@@ -42,7 +42,7 @@
(appropriately updated) in the result. In the case above the
input table is empty (i.e.~@{ML Termtab.empty}) and the output table is
- @{ML_response_fake [display,gray]
+ @{ML_matchresult_fake [display,gray]
"Termtab.dest table"
"[(Free (\"A\", \"bool\"), 1), (Free (\"B\", \"bool\"), 2)]"}
@@ -58,7 +58,7 @@
returns @{ML "BoolVar 1" in Prop_Logic} for @{ML pform'} and the table
@{ML table'} is:
- @{ML_response_fake [display,gray]
+ @{ML_matchresult_fake [display,gray]
"map (apfst (Syntax.string_of_term @{context})) (Termtab.dest table')"
"(\<forall>x. P x, 1)"}
@@ -68,7 +68,7 @@
Having produced a propositional formula, you can now call the SAT solvers
with the function @{ML "SAT_Solver.invoke_solver"}. For example
- @{ML_response_fake [display,gray]
+ @{ML_matchresult_fake [display,gray]
"SAT_Solver.invoke_solver \"minisat\" pform"
"SAT_Solver.SATISFIABLE assg"}
\<close>
@@ -77,7 +77,7 @@
determines that the formula @{ML pform} is satisfiable. If we inspect
the returned function \<open>assg\<close>
- @{ML_response [display,gray]
+ @{ML_matchresult [display,gray]
"let
val SAT_Solver.SATISFIABLE assg = SAT_Solver.invoke_solver \"auto\" pform
in