--- a/ProgTutorial/Tactical.thy Sat Jan 21 15:18:38 2012 +0000
+++ b/ProgTutorial/Tactical.thy Sat Jan 21 15:35:47 2012 +0000
@@ -2114,7 +2114,6 @@
If we get hold of the ``raw'' representation of the produced theorem,
we obtain the expected result.
-
@{ML_response [display,gray]
"let
val add = @{cterm \"\<lambda>x y. x + (y::nat)\"}
@@ -2128,6 +2127,24 @@
(Abs (\"x\",\<dots>,Abs (\"y\",\<dots>,\<dots>)) $\<dots>$\<dots>) $
(Const (\"Groups.plus_class.plus\",\<dots>) $ \<dots> $ \<dots>)"}
+ or in the pretty-printed form
+
+ @{ML_response_fake [display,gray]
+"let
+ val add = @{cterm \"\<lambda>x y. x + (y::nat)\"}
+ val two = @{cterm \"2::nat\"}
+ val ten = @{cterm \"10::nat\"}
+ val ctrm = Thm.capply (Thm.capply add two) ten
+ val ctxt = @{context}
+ |> Config.put eta_contract false
+ |> Config.put show_abbrevs false
+in
+ Thm.prop_of (Thm.beta_conversion true ctrm)
+ |> pretty_term ctxt
+ |> pwriteln
+end"
+"(\<lambda>x y. x + y) 2 10 \<equiv> 2 + 10"}
+
The argument @{ML true} in @{ML beta_conversion in Thm} indicates that
the right-hand side should be fully beta-normalised. If instead
@{ML false} is given, then only a single beta-reduction is performed