--- a/ProgTutorial/Recipes/Introspection.thy Fri Jun 03 15:15:17 2016 +0100
+++ b/ProgTutorial/Recipes/Introspection.thy Tue May 14 11:10:53 2019 +0200
@@ -17,8 +17,8 @@
*}
ML %grayML{*fun pthms_of (PBody {thms, ...}) = map #2 thms
-val get_names = map #1 o pthms_of
-val get_pbodies = map (Future.join o #3) o pthms_of *}
+val get_names = (map Proofterm.thm_node_name) o pthms_of
+val get_pbodies = map (Future.join o Proofterm.thm_node_body) o pthms_of *}
text {*
To see what their purpose is, consider the following three short proofs.
@@ -57,7 +57,8 @@
|> Thm.proof_body_of
|> get_names"
"[\"Introspection.my_conjIa\"]"}
-
+*}
+text {*
whereby @{text "Introspection"} refers to the theory name in which
we established the theorem @{thm [source] my_conjIa}. The function @{ML_ind
proof_body_of in Thm} returns a part of the data that is stored in a
@@ -66,7 +67,7 @@
and @{thm [source] conjunct2}. We can obtain them by descending into the
first level of the proof-tree, as follows.
- @{ML_response [display,gray]
+ @{ML_response_fake [display,gray]
"@{thm my_conjIa}
|> Thm.proof_body_of
|> get_pbodies
@@ -74,41 +75,44 @@
|> List.concat"
"[\"HOL.conjunct2\", \"HOL.conjunct1\", \"HOL.conjI\", \"Pure.protectD\",
\"Pure.protectI\"]"}
-
+*}
+text {*
The theorems @{thm [source] protectD} and @{thm [source]
protectI} that are internal theorems are always part of a
proof in Isabelle. Note also that applications of @{text assumption} do not
count as a separate theorem, as you can see in the following code.
- @{ML_response [display,gray]
+ @{ML_response_fake [display,gray]
"@{thm my_conjIb}
|> Thm.proof_body_of
|> get_pbodies
|> map get_names
|> List.concat"
"[\"Pure.protectD\", \"Pure.protectI\"]"}
-
+*}
+text {*
Interestingly, but not surprisingly, the proof of @{thm [source]
my_conjIc} procceeds quite differently from @{thm [source] my_conjIa}
and @{thm [source] my_conjIb}, as can be seen by the theorems that
are returned for @{thm [source] my_conjIc}.
- @{ML_response [display,gray]
+ @{ML_response_fake [display,gray]
"@{thm my_conjIc}
|> Thm.proof_body_of
|> get_pbodies
|> map get_names
|> List.concat"
- "[\"HOL.Eq_TrueI\", \"HOL.simp_thms_25\", \"HOL.eq_reflection\",
- \"HOL.conjunct2\", \"HOL.conjunct1\", \"HOL.TrueI\", \"Pure.protectD\",
- \"Pure.protectI\"]"}
-
+ "[\"HOL.implies_True_equals\", \"HOL.Eq_TrueI\", \"HOL.simp_thms_25\", \"HOL.eq_reflection\",
+ \"HOL.conjunct2\", \"HOL.conjunct1\", \"HOL.TrueI\", \"Pure.protectD\",
+ \"Pure.protectI\"]"}
+*}
+text {*
Of course we can also descend into the second level of the tree
``behind'' @{thm [source] my_conjIa} say, which
means we obtain the theorems that are used in order to prove
@{thm [source] conjunct1}, @{thm [source] conjunct2} and @{thm [source] conjI}.
- @{ML_response [display, gray]
+ @{ML_response_fake [display, gray]
"@{thm my_conjIa}
|> Thm.proof_body_of
|> get_pbodies
@@ -116,10 +120,11 @@
|> (map o map) get_names
|> List.concat
|> List.concat
- |> duplicates (op=)"
- "[\"HOL.spec\", \"HOL.and_def\", \"HOL.mp\", \"HOL.impI\", \"Pure.protectD\",
- \"Pure.protectI\"]"}
-
+ |> duplicates (op =)"
+ "[\"\", \"Pure.protectD\",
+ \"Pure.protectI\"]"}
+*}
+text {*
\begin{readmore}
The data-structure @{ML_type proof_body} is implemented
in the file @{ML_file "Pure/proofterm.ML"}. The implementation