--- a/ProgTutorial/Advanced.thy Mon Apr 30 12:36:32 2012 +0100
+++ b/ProgTutorial/Advanced.thy Mon Apr 30 14:43:52 2012 +0100
@@ -2,14 +2,6 @@
imports Base First_Steps
begin
-(*<*)
-setup{*
-open_file_with_prelude
- "Advanced_Code.thy"
- ["theory Advanced", "imports Base First_Steps", "begin"]
-*}
-(*>*)
-
chapter {* Advanced Isabelle\label{chp:advanced} *}
@@ -82,7 +74,7 @@
*}
-ML{*let
+ML %grayML{*let
val thy = @{theory}
val bar_const = ((@{binding "BAR"}, @{typ "nat"}), NoSyn)
in
@@ -256,7 +248,7 @@
for a context. The above proof fragment corresponds roughly to the following ML-code
*}
-ML{*val ctxt0 = @{context};
+ML %grayML{*val ctxt0 = @{context};
val ([x, y], ctxt1) = Variable.add_fixes ["x", "y"] ctxt0;
val ([z, w], ctxt2) = Variable.add_fixes ["z", "w"] ctxt1*}
@@ -526,8 +518,8 @@
(*
-ML{*Proof_Context.debug := true*}
-ML{*Proof_Context.verbose := true*}
+ML %grayML{*Proof_Context.debug := true*}
+ML %grayML{*Proof_Context.verbose := true*}
*)
(*
@@ -600,20 +592,20 @@
The simplest morphism is the @{ML_ind identity in Morphism}-morphism defined as
*}
-ML{*val identity = Morphism.morphism {binding = [], typ = [], term = [], fact = []}*}
+ML %grayML{*val identity = Morphism.morphism {binding = [], typ = [], term = [], fact = []}*}
text {*
Morphisms can be composed with the function @{ML_ind "$>" in Morphism}
*}
-ML{*fun trm_phi (Free (x, T)) = Var ((x, 0), T)
+ML %grayML{*fun trm_phi (Free (x, T)) = Var ((x, 0), T)
| trm_phi (Abs (x, T, t)) = Abs (x, T, trm_phi t)
| trm_phi (t $ s) = (trm_phi t) $ (trm_phi s)
| trm_phi t = t*}
-ML{*val phi = Morphism.term_morphism trm_phi*}
+ML %grayML{*val phi = Morphism.term_morphism trm_phi*}
-ML{*Morphism.term phi @{term "P x y"}*}
+ML %grayML{*Morphism.term phi @{term "P x y"}*}
text {*
@{ML_ind term_morphism in Morphism}