--- a/CookBook/Package/Ind_Code.thy Thu Mar 12 15:43:22 2009 +0000
+++ b/CookBook/Package/Ind_Code.thy Thu Mar 12 18:39:10 2009 +0000
@@ -24,7 +24,7 @@
been made. What is @{ML Thm.internalK}?
*}
-ML {*let
+ML{*let
val lthy = TheoryTarget.init NONE @{theory}
in
make_defs ((Binding.name "MyTrue", NoSyn), @{term "True"}) lthy
@@ -70,6 +70,18 @@
the (fresh) arguments of the predicate.
*}
+ML{*let
+ val orules = [@{term "even 0"},
+ @{term "\<forall>n::nat. odd n \<longrightarrow> even (Suc n)"},
+ @{term "\<forall>n::nat. even n \<longrightarrow> odd (Suc n)"}]
+ val preds = [@{term "even::nat\<Rightarrow>bool"}, @{term "odd::nat\<Rightarrow>bool"}]
+in
+ warning
+ (Syntax.string_of_term @{context}
+ (defs_aux @{context} orules preds (@{term "even::nat\<Rightarrow>bool"}, [@{typ "nat"}])))
+end*}
+
+
text {*
The arguments of the main function for the definitions are
the intro rules; the predicates and their names, their syntax
@@ -94,7 +106,6 @@
The actual definitions are made in Line 7.
*}
-
subsection {* Induction Principles *}
ML{*fun inst_spec ct =
@@ -172,6 +183,7 @@
val cnewpreds = map (cterm_of thy) newpreds
val rules' = map (subst_free (preds ~~ newpreds)) rules
+
fun prove_induction ((pred, newpred), tys) =
let
val zs = replicate (length tys) "z"
@@ -184,18 +196,17 @@
in
Goal.prove lthy3 [] [prem] goal
(fn {prems, ...} => induction_tac defs prems cnewpreds)
- |> singleton (ProofContext.export lthy3 lthy1)
+ |> singleton (ProofContext.export lthy3 lthy1)
end
in
map prove_induction (preds ~~ newpreds ~~ tyss)
end*}
-(*
ML {*
let
- val rules = [@{term "even 0"},
- @{term "\<And>n::nat. odd n \<Longrightarrow> even (Suc n)"},
- @{term "\<And>n::nat. even n \<Longrightarrow> odd (Suc n)"}]
+ val rules = [@{prop "even (0::nat)"},
+ @{prop "\<And>n::nat. odd n \<Longrightarrow> even (Suc n)"},
+ @{prop "\<And>n::nat. even n \<Longrightarrow> odd (Suc n)"}]
val defs = [@{thm even_def}, @{thm odd_def}]
val preds = [@{term "even::nat\<Rightarrow>bool"}, @{term "odd::nat\<Rightarrow>bool"}]
val tyss = [[@{typ "nat"}],[@{typ "nat"}]]
@@ -203,7 +214,6 @@
inductions rules defs preds tyss @{context}
end
*}
-*)
subsection {* Introduction Rules *}
@@ -242,6 +252,21 @@
REPEAT o (resolve_tac [@{thm allI},@{thm impI}]),
subproof1 rules preds i ctxt]*}
+lemma evenS:
+ shows "odd m \<Longrightarrow> even (Suc m)"
+apply(tactic {*
+let
+ val rules = [@{prop "even (0::nat)"},
+ @{prop "\<And>n::nat. odd n \<Longrightarrow> even (Suc n)"},
+ @{prop "\<And>n::nat. even n \<Longrightarrow> odd (Suc n)"}]
+ val defs = [@{thm even_def}, @{thm odd_def}]
+ val preds = [@{term "even::nat\<Rightarrow>bool"}, @{term "odd::nat\<Rightarrow>bool"}]
+in
+ introductions_tac defs rules preds 1 @{context}
+end *})
+done
+
+
ML{*fun introductions rules preds defs lthy =
let
fun prove_intro (i, goal) =