--- a/ProgTutorial/Essential.thy Tue Jun 08 15:18:30 2010 +0200
+++ b/ProgTutorial/Essential.thy Mon Jul 19 15:44:13 2010 +0100
@@ -244,7 +244,7 @@
@{ML_response [display,gray]
"@{typ \"bool \<Rightarrow> nat\"}"
- "Type (\"fun\", [Type (\"bool\", []), Type (\"nat\", [])])"}
+ "Type (\"fun\", [Type (\"bool\", []), Type (\"Nat.nat\", [])])"}
We can restore the usual behaviour of Isabelle's pretty printer
with the code
@@ -303,7 +303,7 @@
@{ML_response [display,gray] "make_imp @{term S} @{term T}"
"Const \<dots> $
- Abs (\"x\", Type (\"nat\",[]),
+ Abs (\"x\", Type (\"Nat.nat\",[]),
Const \<dots> $ (Free (\"S\",\<dots>) $ \<dots>) $ (Free (\"T\",\<dots>) $ \<dots>))"}
whereas with @{ML make_wrong_imp} you obtain a term involving the @{term "P"}
@@ -341,7 +341,7 @@
in
lambda x_nat trm
end"
- "Abs (\"x\", \"nat\", Free (\"P\", \"bool \<Rightarrow> bool\") $ Bound 0)"}
+ "Abs (\"x\", \"Nat.nat\", Free (\"P\", \"bool \<Rightarrow> bool\") $ Bound 0)"}
In this example, @{ML lambda} produces a de Bruijn index (i.e.~@{ML "Bound 0"}),
and an abstraction, where it also records the type of the abstracted
@@ -446,7 +446,7 @@
in
Term.dest_abs (\"x\", @{typ \"nat \<Rightarrow> bool\"}, body)
end"
- "(\"xa\", Free (\"xa\", \"nat \<Rightarrow> bool\") $ Free (\"x\", \"nat\"))"}
+ "(\"xa\", Free (\"xa\", \"Nat.nat \<Rightarrow> bool\") $ Free (\"x\", \"Nat.nat\"))"}
There are also many convenient functions that construct specific HOL-terms
in the structure @{ML_struct HOLogic}. For example @{ML_ind mk_eq in