--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/CookBook/Recipes/ExternalSolver.thy Wed Jan 07 16:29:49 2009 +0100
@@ -0,0 +1,112 @@
+theory ExternalSolver
+imports "../Base"
+begin
+
+section {* Using an External Solver *}
+
+text {*
+ {\bf Problem:}
+ You want to use an external solver, say, because it is more efficient in
+ deciding particular formulas than any Isabelle tactic.
+ \smallskip
+
+ {\bf Solution:} The easiest way to do this is writing an oracle.
+ To yield results checked by Isabelle's kernel, one can reconstruct the
+ proofs.
+ \smallskip
+
+ \begin{readmore}
+ A short introduction to oracles can be found in [isar-ref: no suitable label
+ for section 3.11]. A simple example is given in
+ @{ML_file "FOL/ex/IffOracle"}.
+ (TODO: add more references to the code)
+ \end{readmore}
+
+ The general layout will be as follows. Given a goal G, we transform it into
+ the syntactical respresentation of the external solver, and invoke the
+ solver. The solver's result is then used inside the oracle to either return
+ the proved goal or raise an exception meaning that the solver was unable to
+ prove the goal.
+
+ For communication with external programs, there are the primitives
+ @{ML_text system} and @{ML_text system_out}, the latter of which captures
+ the invoked program's output. For simplicity, here, we will use metis, an
+ external solver included in the Isabelle destribution. Since it is written
+ in ML, we can call it directly without the detour of invoking an external
+ program.
+
+ We will restrict ourselves to proving formulas of propositional logic, a
+ task metis is very good at.
+ *}
+
+
+ML {*
+fun trans t =
+ (case t of
+ @{term Trueprop} $ t => trans t
+ | @{term True} => Metis.Formula.True
+ | @{term False} => Metis.Formula.False
+ | @{term Not} $ t => Metis.Formula.Not (trans t)
+ | @{term "op &"} $ t1 $ t2 => Metis.Formula.And (trans t1, trans t2)
+ | @{term "op |"} $ t1 $ t2 => Metis.Formula.Or (trans t1, trans t2)
+ | @{term "op -->"} $ t1 $ t2 => Metis.Formula.Imp (trans t1, trans t2)
+ | @{term "op = :: bool => bool => bool"} $ t1 $ t2 =>
+ Metis.Formula.Iff (trans t1, trans t2)
+ | Free (n, @{typ bool}) => Metis.Formula.Atom (n, [])
+ | _ => error "inacceptable term")
+*}
+
+
+ML {*
+fun solve f =
+ let
+ open Metis
+ fun fromLiterals fms = LiteralSet.fromList (map Literal.fromFormula fms)
+ fun fromClause fm = fromLiterals (Formula.stripDisj fm)
+ fun fromCnf fm = map fromClause (Formula.stripConj fm)
+
+ val mk_cnfs = map fromCnf o Normalize.cnf o Formula.Not
+ fun refute cls =
+ let val res = Resolution.new Resolution.default (map Thm.axiom cls)
+ in
+ (case Resolution.loop res of
+ Resolution.Contradiction _ => true
+ | Resolution.Satisfiable _ => false)
+ end
+ in List.all refute (mk_cnfs f) end
+*}
+
+
+ML {*
+fun prop_dp (thy, t) = if solve (trans t) then Thm.cterm_of thy t
+ else error "Proof failed."
+*}
+
+oracle prop_oracle = prop_dp
+
+ML {*
+fun prop_oracle_tac ctxt =
+ SUBGOAL (fn (goal, i) =>
+ (case try prop_oracle (ProofContext.theory_of ctxt, goal) of
+ SOME thm => rtac thm i
+ | NONE => no_tac))
+*}
+
+method_setup prop_oracle = {*
+ Method.ctxt_args (fn ctxt => Method.SIMPLE_METHOD' (prop_oracle_tac ctxt))
+*} "Oracle-based decision procedure for propositional logic"
+
+lemma "p \<or> \<not>p"
+ by prop_oracle
+
+lemma "((p \<longrightarrow> q) \<longrightarrow> p) \<longrightarrow> p"
+ by prop_oracle
+
+lemma "\<forall>x::nat. x \<ge> 0"
+ sorry
+
+
+(* TODO: proof reconstruction *)
+
+
+end
\ No newline at end of file