--- a/ProgTutorial/Package/Ind_Code.thy Fri May 17 11:21:09 2019 +0200
+++ b/ProgTutorial/Package/Ind_Code.thy Tue May 21 14:37:39 2019 +0200
@@ -493,7 +493,7 @@
theorems of the form @{thm [source] all_elims_test}. For example we can instantiate
the quantifiers in this theorem with @{term a}, @{term b} and @{term c} as follows:
- @{ML_matchresult_fake [display, gray]
+ @{ML_response [display, gray]
\<open>let
val ctrms = [@{cterm "a::nat"}, @{cterm "b::nat"}, @{cterm "c::nat"}]
val new_thm = all_elims ctrms @{thm all_elims_test}
@@ -510,13 +510,13 @@
For example we can eliminate the preconditions \<open>A\<close> and \<open>B\<close> from
@{thm [source] imp_elims_test}:
- @{ML_matchresult_fake [display, gray]
+ @{ML_response [display, gray]
\<open>let
val res = imp_elims @{thms imp_elims_test'} @{thm imp_elims_test}
in
pwriteln (pretty_thm_no_vars @{context} res)
end\<close>
- \<open>C\<close>}
+ \<open>Q\<close>}
Now we set up the proof for the introduction rule as follows:
\<close>