--- a/CookBook/Package/Ind_Code.thy Sun Mar 08 20:53:00 2009 +0000
+++ b/CookBook/Package/Ind_Code.thy Tue Mar 10 13:20:46 2009 +0000
@@ -1,26 +1,178 @@
theory Ind_Code
-imports "../Base" Simple_Inductive_Package
+imports "../Base" Simple_Inductive_Package Ind_Prelims
begin
+section {* Code *}
+
+subsection {* Definitions *}
+
+text {*
+ If we give it a term and a constant name, it will define the
+ constant as the term.
+*}
+
+ML{*fun make_defs ((binding, syn), trm) lthy =
+let
+ val arg = ((binding, syn), (Attrib.empty_binding, trm))
+ val ((_, (_ , thm)), lthy) = LocalTheory.define Thm.internalK arg lthy
+in
+ (thm, lthy)
+end*}
+
+text {*
+ Returns the definition and the local theory in which this definition has
+ been made. What is @{ML Thm.internalK}?
+*}
+
+ML {*let
+ val lthy = TheoryTarget.init NONE @{theory}
+in
+ make_defs ((Binding.name "MyTrue", NoSyn), @{term "True"}) lthy
+end*}
+
+text {*
+ Why is the output of MyTrue blue?
+*}
+
+text {*
+ Constructs the term for the definition: the main arguments are a predicate
+ and the types of the arguments, it also expects orules which are the
+ intro rules in the object logic; preds which are all predicates. returns the
+ term.
+*}
+
+ML %linenosgray{*fun defs_aux lthy orules preds (pred, arg_types) =
+let
+ fun mk_all x P = HOLogic.all_const (fastype_of x) $ lambda x P
+
+ val fresh_args =
+ arg_types
+ |> map (pair "z")
+ |> Variable.variant_frees lthy orules
+ |> map Free
+in
+ list_comb (pred, fresh_args)
+ |> fold_rev (curry HOLogic.mk_imp) orules
+ |> fold_rev mk_all preds
+ |> fold_rev lambda fresh_args
+end*}
+
+text {*
+ The lines 5-9 produce fresh arguments with which the predicate can be applied.
+ For this it pairs every type with a string @{text [quotes] "z"} (Line 7); then
+ generates variants for all these strings (names) so that they are unique w.r.t.~to
+ the intro rules; in Line 9 it generates the corresponding variable terms for these
+ unique names.
+
+ The unique free variables are applied to the predicate (Line 11); then
+ the intro rules are attached as preconditions (Line 12); in Line 13 we
+ quantify over all predicates; and in line 14 we just abstract over all
+ the (fresh) arguments of the predicate.
+*}
+
text {*
- What does the @{ML Thm.internalK} do, in the LocalTheory.define Thm.internalK?
+ The arguments of the main function for the definitions are
+ the intro rules; the predicates and their names, their syntax
+ annotations and the argument types of each predicate. It
+ returns a theorem list (the definitions) and a local
+ theory where the definitions are made
+*}
+
+ML %linenosgray{*fun definitions rules preds prednames syns arg_typss lthy =
+let
+ val thy = ProofContext.theory_of lthy
+ val orules = map (ObjectLogic.atomize_term thy) rules
+ val defs = map (defs_aux lthy orules preds) (preds ~~ arg_typss)
+in
+ fold_map make_defs (prednames ~~ syns ~~ defs) lthy
+end*}
+
+text {*
+ In line 4 we generate the intro rules in the object logic; for this we have to
+ obtain the theory behind the local theory (Line 3); with this we can
+ call @{ML defs_aux} to generate the terms for the left-hand sides.
+ The actual definitions are made in Line 7.
+*}
+
+subsection {* Introduction Rules *}
+
+ML{*fun inst_spec ct =
+ Drule.instantiate' [SOME (ctyp_of_term ct)] [NONE, SOME ct] @{thm spec}*}
+
+text {*
+ Instantiates the @{text "x"} in @{thm spec[no_vars]} with a @{ML_type cterm}.
+*}
+
+text {*
+ Instantiates universal qantifications in the premises
+*}
+
+lemma "\<forall>x\<^isub>1 x\<^isub>2 x\<^isub>3. P (x\<^isub>1::nat) (x\<^isub>2::nat) (x\<^isub>3::nat) \<Longrightarrow> True"
+apply (tactic {* EVERY' (map (dtac o inst_spec)
+ [@{cterm "y\<^isub>1::nat"},@{cterm "y\<^isub>2::nat"},@{cterm "y\<^isub>3::nat"}]) 1*})
+(*<*)oops(*>*)
+
+text {*
+ The tactic for proving the induction rules:
*}
+ML{*fun induction_tac defs prems insts =
+ EVERY1 [ObjectLogic.full_atomize_tac,
+ cut_facts_tac prems,
+ K (rewrite_goals_tac defs),
+ EVERY' (map (dtac o inst_spec) insts),
+ assume_tac]*}
+
+lemma
+ assumes asm: "even n"
+ shows "P 0 \<Longrightarrow>
+ (\<And>m. Q m \<Longrightarrow> P (Suc m)) \<Longrightarrow> (\<And>m. P m \<Longrightarrow> Q (Suc m)) \<Longrightarrow> P n"
+apply(tactic {* induction_tac [@{thm even_def}, @{thm odd_def}] [@{thm asm}]
+ [@{cterm "P::nat\<Rightarrow>bool"}, @{cterm "Q::nat\<Rightarrow>bool"}] *})
+done
+
+ML %linenosgray{*fun inductions rules defs preds Tss lthy1 =
+let
+ val Ps = replicate (length preds) "P"
+ val (newprednames, lthy2) = Variable.variant_fixes Ps lthy1
+
+ val thy = ProofContext.theory_of lthy2
+
+ val Tss' = map (fn Ts => Ts ---> HOLogic.boolT) Tss
+ val newpreds = map Free (newprednames ~~ Tss')
+ val cnewpreds = map (cterm_of thy) newpreds
+ val rules' = map (subst_free (preds ~~ newpreds)) rules
+
+ fun prove_induction ((pred, newpred), Ts) =
+ let
+ val zs = replicate (length Ts) "z"
+ val (newargnames, lthy3) = Variable.variant_fixes zs lthy2;
+ val newargs = map Free (newargnames ~~ Ts)
+
+ val prem = HOLogic.mk_Trueprop (list_comb (pred, newargs))
+ val goal = Logic.list_implies
+ (rules', HOLogic.mk_Trueprop (list_comb (newpred, newargs)))
+ in
+ Goal.prove lthy3 [] [prem] goal
+ (fn {prems, ...} => induction_tac defs prems cnewpreds)
+ |> singleton (ProofContext.export lthy3 lthy1)
+ end
+in
+ map prove_induction (preds ~~ newpreds ~~ Tss)
+end*}
+
+ML {* Goal.prove *}
+ML {* singleton *}
+ML {* ProofContext.export *}
text {*
- @{ML_chunk [display,gray] definitions_aux}
- @{ML_chunk [display,gray,linenos] definitions}
-
*}
text {*
-
- @{ML_chunk [display,gray] induction_rules}
+ @{ML_chunk [display,gray] subproof1}
-*}
-
-text {*
+ @{ML_chunk [display,gray] subproof2}
@{ML_chunk [display,gray] intro_rules}