--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/ProgTutorial/Solutions.thy Thu Mar 19 13:28:16 2009 +0100
@@ -0,0 +1,218 @@
+theory Solutions
+imports Base "Recipes/Timing"
+begin
+
+chapter {* Solutions to Most Exercises\label{ch:solutions} *}
+
+text {* \solution{fun:revsum} *}
+
+ML{*fun rev_sum t =
+let
+ fun dest_sum (Const (@{const_name plus}, _) $ u $ u') = u' :: dest_sum u
+ | dest_sum u = [u]
+in
+ foldl1 (HOLogic.mk_binop @{const_name plus}) (dest_sum t)
+end *}
+
+text {* \solution{fun:makesum} *}
+
+ML{*fun make_sum t1 t2 =
+ HOLogic.mk_nat (HOLogic.dest_nat t1 + HOLogic.dest_nat t2) *}
+
+text {* \solution{ex:scancmts} *}
+
+ML{*val any = Scan.one (Symbol.not_eof)
+
+val scan_cmt =
+let
+ val begin_cmt = Scan.this_string "(*"
+ val end_cmt = Scan.this_string "*)"
+in
+ begin_cmt |-- Scan.repeat (Scan.unless end_cmt any) --| end_cmt
+ >> (enclose "(**" "**)" o implode)
+end
+
+val parser = Scan.repeat (scan_cmt || any)
+
+val scan_all =
+ Scan.finite Symbol.stopper parser >> implode #> fst *}
+
+text {*
+ By using @{text "#> fst"} in the last line, the function
+ @{ML scan_all} retruns a string, instead of the pair a parser would
+ normally return. For example:
+
+ @{ML_response [display,gray]
+"let
+ val input1 = (explode \"foo bar\")
+ val input2 = (explode \"foo (*test*) bar (*test*)\")
+in
+ (scan_all input1, scan_all input2)
+end"
+"(\"foo bar\", \"foo (**test**) bar (**test**)\")"}
+*}
+
+text {* \solution{ex:addsimproc} *}
+
+ML{*fun dest_sum term =
+ case term of
+ (@{term "(op +):: nat \<Rightarrow> nat \<Rightarrow> nat"} $ t1 $ t2) =>
+ (snd (HOLogic.dest_number t1), snd (HOLogic.dest_number t2))
+ | _ => raise TERM ("dest_sum", [term])
+
+fun get_sum_thm ctxt t (n1, n2) =
+let
+ val sum = HOLogic.mk_number @{typ "nat"} (n1 + n2)
+ val goal = Logic.mk_equals (t, sum)
+in
+ Goal.prove ctxt [] [] goal (K (arith_tac ctxt 1))
+end
+
+fun add_sp_aux ss t =
+let
+ val ctxt = Simplifier.the_context ss
+ val t' = term_of t
+in
+ SOME (get_sum_thm ctxt t' (dest_sum t'))
+ handle TERM _ => NONE
+end*}
+
+text {* The setup for the simproc is *}
+
+simproc_setup %gray add_sp ("t1 + t2") = {* K add_sp_aux *}
+
+text {* and a test case is the lemma *}
+
+lemma "P (Suc (99 + 1)) ((0 + 0)::nat) (Suc (3 + 3 + 3)) (4 + 1)"
+ apply(tactic {* simp_tac (HOL_basic_ss addsimprocs [@{simproc add_sp}]) 1 *})
+txt {*
+ where the simproc produces the goal state
+
+ \begin{minipage}{\textwidth}
+ @{subgoals [display]}
+ \end{minipage}\bigskip
+*}(*<*)oops(*>*)
+
+text {* \solution{ex:addconversion} *}
+
+text {*
+ The following code assumes the function @{ML dest_sum} from the previous
+ exercise.
+*}
+
+ML{*fun add_simple_conv ctxt ctrm =
+let
+ val trm = Thm.term_of ctrm
+in
+ get_sum_thm ctxt trm (dest_sum trm)
+end
+
+fun add_conv ctxt ctrm =
+ (case Thm.term_of ctrm of
+ @{term "(op +)::nat \<Rightarrow> nat \<Rightarrow> nat"} $ _ $ _ =>
+ (Conv.binop_conv (add_conv ctxt)
+ then_conv (Conv.try_conv (add_simple_conv ctxt))) ctrm
+ | _ $ _ => Conv.combination_conv
+ (add_conv ctxt) (add_conv ctxt) ctrm
+ | Abs _ => Conv.abs_conv (fn (_, ctxt) => add_conv ctxt) ctxt ctrm
+ | _ => Conv.all_conv ctrm)
+
+fun add_tac ctxt = CSUBGOAL (fn (goal, i) =>
+ CONVERSION
+ (Conv.params_conv ~1 (fn ctxt =>
+ (Conv.prems_conv ~1 (add_conv ctxt) then_conv
+ Conv.concl_conv ~1 (add_conv ctxt))) ctxt) i)*}
+
+text {*
+ A test case for this conversion is as follows
+*}
+
+lemma "P (Suc (99 + 1)) ((0 + 0)::nat) (Suc (3 + 3 + 3)) (4 + 1)"
+ apply(tactic {* add_tac @{context} 1 *})?
+txt {*
+ where it produces the goal state
+
+ \begin{minipage}{\textwidth}
+ @{subgoals [display]}
+ \end{minipage}\bigskip
+*}(*<*)oops(*>*)
+
+text {* \solution{ex:addconversion} *}
+
+text {*
+ We use the timing function @{ML timing_wrapper} from Recipe~\ref{rec:timing}.
+ To measure any difference between the simproc and conversion, we will create
+ mechanically terms involving additions and then set up a goal to be
+ simplified. We have to be careful to set up the goal so that
+ other parts of the simplifier do not interfere. For this we construct an
+ unprovable goal which, after simplification, we are going to ``prove'' with
+ the help of the lemma:
+*}
+
+lemma cheat: "A" sorry
+
+text {*
+ For constructing test cases, we first define a function that returns a
+ complete binary tree whose leaves are numbers and the nodes are
+ additions.
+*}
+
+ML{*fun term_tree n =
+let
+ val count = ref 0;
+
+ fun term_tree_aux n =
+ case n of
+ 0 => (count := !count + 1; HOLogic.mk_number @{typ nat} (!count))
+ | _ => Const (@{const_name "plus"}, @{typ "nat\<Rightarrow>nat\<Rightarrow>nat"})
+ $ (term_tree_aux (n - 1)) $ (term_tree_aux (n - 1))
+in
+ term_tree_aux n
+end*}
+
+text {*
+ This function generates for example:
+
+ @{ML_response_fake [display,gray]
+ "warning (Syntax.string_of_term @{context} (term_tree 2))"
+ "(1 + 2) + (3 + 4)"}
+
+ The next function constructs a goal of the form @{text "P \<dots>"} with a term
+ produced by @{ML term_tree} filled in.
+*}
+
+ML{*fun goal n = HOLogic.mk_Trueprop (@{term "P::nat\<Rightarrow> bool"} $ (term_tree n))*}
+
+text {*
+ Note that the goal needs to be wrapped in a @{term "Trueprop"}. Next we define
+ two tactics, @{text "c_tac"} and @{text "s_tac"}, for the conversion and simproc,
+ respectively. The idea is to first apply the conversion (respectively simproc) and
+ then prove the remaining goal using the @{thm [source] cheat}-lemma.
+*}
+
+ML{*local
+ fun mk_tac tac = timing_wrapper (EVERY1 [tac, rtac @{thm cheat}])
+in
+val c_tac = mk_tac (add_tac @{context})
+val s_tac = mk_tac (simp_tac (HOL_basic_ss addsimprocs [@{simproc add_sp}]))
+end*}
+
+text {*
+ This is all we need to let the conversion run against the simproc:
+*}
+
+ML{*val _ = Goal.prove @{context} [] [] (goal 8) (K c_tac)
+val _ = Goal.prove @{context} [] [] (goal 8) (K s_tac)*}
+
+text {*
+ If you do the exercise, you can see that both ways of simplifying additions
+ perform relatively similar with perhaps some advantages for the
+ simproc. That means the simplifier, even if much more complicated than
+ conversions, is quite efficient for tasks it is designed for. It usually does not
+ make sense to implement general-purpose rewriting using
+ conversions. Conversions only have clear advantages in special situations:
+ for example if you need to have control over innermost or outermost
+ rewriting, or when rewriting rules are lead to non-termination.
+*}
+
+end
\ No newline at end of file