--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/ProgTutorial/Package/Ind_General_Scheme.thy Thu Mar 19 13:28:16 2009 +0100
@@ -0,0 +1,87 @@
+theory Ind_General_Scheme
+imports Main
+begin
+
+section{* The General Construction Principle \label{sec:ind-general-method} *}
+
+text {*
+
+ The point of these examples is to get a feeling what the automatic proofs
+ should do in order to solve all inductive definitions we throw at them. For this
+ it is instructive to look at the general construction principle
+ of inductive definitions, which we shall do in the next section.
+
+ Before we start with the implementation, it is useful to describe the general
+ form of inductive definitions that our package should accept.
+ Suppose $R_1,\ldots,R_n$ be mutually inductive predicates and $\vec{p}$ be
+ some fixed parameters. Then the introduction rules for $R_1,\ldots,R_n$ may have
+ the form
+
+ \[
+ \bigwedge\vec{x}_i.~\vec{A}_i \Longrightarrow \left(\bigwedge\vec{y}_{ij}.~\vec{B}_{ij} \Longrightarrow
+ R_{k_{ij}}~\vec{p}~\vec{s}_{ij}\right)_{j=1,\ldots,m_i} \Longrightarrow R_{l_i}~\vec{p}~\vec{t}_i
+ \qquad \mbox{for\ } i=1,\ldots,r
+ \]
+
+ where $\vec{A}_i$ and $\vec{B}_{ij}$ are formulae not containing $R_1,\ldots,R_n$.
+ Note that by disallowing the inductive predicates to occur in $\vec{B}_{ij}$ we make sure
+ that all occurrences of the predicates in the premises of the introduction rules are
+ \emph{strictly positive}. This condition guarantees the existence of predicates
+ that are closed under the introduction rules shown above. Then the definitions of the
+ inductive predicates $R_1,\ldots,R_n$ is:
+
+ \[
+ \begin{array}{l@ {\qquad}l}
+ R_i \equiv \lambda\vec{p}~\vec{z}_i.~\forall P_1 \ldots P_n.~K_1 \longrightarrow \cdots \longrightarrow K_r \longrightarrow P_i~\vec{z}_i &
+ \mbox{for\ } i=1,\ldots,n \\[1.5ex]
+ \mbox{where} \\
+ K_i \equiv \forall\vec{x}_i.~\vec{A}_i \longrightarrow \left(\forall\vec{y}_{ij}.~\vec{B}_{ij} \longrightarrow
+ P_{k_{ij}}~\vec{s}_{ij}\right)_{j=1,\ldots,m_i} \longrightarrow P_{l_i}~\vec{t}_i &
+ \mbox{for\ } i=1,\ldots,r
+ \end{array}
+ \]
+
+ The induction principles for the inductive predicates $R_1,\ldots,R_n$ are
+
+ \[
+ \begin{array}{l@ {\qquad}l}
+ R_i~\vec{p}~\vec{z}_i \Longrightarrow I_1 \Longrightarrow \cdots \Longrightarrow I_r \Longrightarrow P_i~\vec{z}_i &
+ \mbox{for\ } i=1,\ldots,n \\[1.5ex]
+ \mbox{where} \\
+ I_i \equiv \bigwedge\vec{x}_i.~\vec{A}_i \Longrightarrow \left(\bigwedge\vec{y}_{ij}.~\vec{B}_{ij} \Longrightarrow
+ P_{k_{ij}}~\vec{s}_{ij}\right)_{j=1,\ldots,m_i} \Longrightarrow P_{l_i}~\vec{t}_i &
+ \mbox{for\ } i=1,\ldots,r
+ \end{array}
+ \]
+
+ Since $K_i$ and $I_i$ are equivalent modulo conversion between meta-level and object-level
+ connectives, it is clear that the proof of the induction theorem is straightforward. We will
+ therefore focus on the proof of the introduction rules. When proving the introduction rule
+ shown above, we start by unfolding the definition of $R_1,\ldots,R_n$, which yields
+
+ \[
+ \bigwedge\vec{x}_i.~\vec{A}_i \Longrightarrow \left(\bigwedge\vec{y}_{ij}.~\vec{B}_{ij} \Longrightarrow
+ \forall P_1 \ldots P_n.~\vec{K} \longrightarrow P_{k_{ij}}~\vec{s}_{ij}\right)_{j=1,\ldots,m_i} \Longrightarrow \forall P_1 \ldots P_n.~\vec{K} \longrightarrow P_{l_i}~\vec{t}_i
+ \]
+
+ where $\vec{K}$ abbreviates $K_1,\ldots,K_r$. Applying the introduction rules for
+ $\forall$ and $\longrightarrow$ yields a goal state in which we have to prove $P_{l_i}~\vec{t}_i$
+ from the additional assumptions $\vec{K}$. When using $K_{l_i}$ (converted to the meta-logic format)
+ to prove $P_{l_i}~\vec{t}_i$, we get subgoals $\vec{A}_i$ that are trivially solvable by assumption,
+ as well as subgoals of the form
+
+ \[
+ \bigwedge\vec{y}_{ij}.~\vec{B}_{ij} \Longrightarrow P_{k_{ij}}~\vec{s}_{ij} \qquad \mbox{for\ } j=1,\ldots,m_i
+ \]
+
+ that can be solved using the assumptions
+
+ \[
+ \bigwedge\vec{y}_{ij}.~\vec{B}_{ij} \Longrightarrow
+ \forall P_1 \ldots P_n.~\vec{K} \longrightarrow P_{k_{ij}}~\vec{s}_{ij} \qquad \mbox{and} \qquad \vec{K}
+ \]
+
+ What remains is to implement these proofs generically.
+*}
+
+end