CookBook/Package/Ind_Code.thy
changeset 189 069d525f8f1d
parent 188 8939b8fd8603
child 190 ca0ac2e75f6d
--- a/CookBook/Package/Ind_Code.thy	Wed Mar 18 23:52:51 2009 +0100
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,579 +0,0 @@
-theory Ind_Code
-imports "../Base" "../FirstSteps" Simple_Inductive_Package Ind_Prelims
-begin
-
-section {* Code *}
-
-text {*
-  @{text [display] "rule ::= \<And>xs. As \<Longrightarrow> (\<And>ys. Bs \<Longrightarrow> pred ss)\<^isup>* \<Longrightarrow> pred ts"}
-
-  @{text [display] "orule ::= \<forall>xs. As \<longrightarrow> (\<forall>ys. Bs \<longrightarrow> pred ss)\<^isup>* \<longrightarrow> pred ts"}
-
-  @{text [display] "def ::= pred \<equiv> \<lambda>zs. \<forall>preds. orules \<longrightarrow> pred zs"}
-  
-  @{text [display] "ind ::= \<And>zs. pred zs \<Longrightarrow> rules[preds::=Ps] \<Longrightarrow> P zs"}
-
-  @{text [display] "oind ::= \<forall>zs. pred zs \<longrightarrow> orules[preds::=Ps] \<longrightarrow> P zs"}
-  
-  So we have @{text "pred zs"} and @{text "orules[preds::=Ps]"}; have to show
-  @{text "P zs"}. Expanding @{text "pred zs"} gives @{text "\<forall>preds. orules \<longrightarrow> pred zs"}.
-  Instantiating the @{text "preds"} with @{text "Ps"} gives
-  @{text "orules[preds::=Ps] \<longrightarrow> P zs"}. So we can conclude with @{text "P zs"}.
-
-  We have to show @{text "\<forall>xs. As \<longrightarrow> (\<forall>ys. Bs \<longrightarrow> pred ss)\<^isup>* \<longrightarrow> pred ts"};
-  expanding the defs 
-  
-  @{text [display]
-  "\<forall>xs. As \<longrightarrow> (\<forall>ys. Bs \<longrightarrow> (\<forall>preds. orules \<longrightarrow> pred ss))\<^isup>* \<longrightarrow>  (\<forall>preds. orules \<longrightarrow> pred ts"}
-  
-  so we have @{text "As"}, @{text "(\<forall>ys. Bs \<longrightarrow> (\<forall>preds. orules \<longrightarrow> pred ss))\<^isup>*"},
-  @{text "orules"}; and have to show @{text "pred ts"}
-
-  the @{text "orules"} are of the form @{text "\<forall>xs. As \<longrightarrow> (\<forall>ys. Bs \<longrightarrow> pred ss)\<^isup>* \<longrightarrow> pred ts"}.
-  
-  using the @{text "As"} we ????
-*}
-
-
-text {*
-  First we have to produce for each predicate its definitions of the form
-
-  @{text [display] "pred \<equiv> \<lambda>zs. \<forall>preds. orules \<longrightarrow> pred zs"}
-
-  In order to make definitions, we use the following wrapper for 
-  @{ML LocalTheory.define}. The wrapper takes a predicate name, a syntax
-  annotation and a term representing the right-hand side of the definition.
-*}
-
-ML %linenosgray{*fun make_defs ((predname, syn), trm) lthy =
-let 
-  val arg = ((predname, syn), (Attrib.empty_binding, trm))
-  val ((_, (_ , thm)), lthy') = LocalTheory.define Thm.internalK arg lthy
-in 
-  (thm, lthy') 
-end*}
-
-text {*
-  It returns the definition (as a theorem) and the local theory in which this definition has 
-  been made. In Line 4, @{ML internalK in Thm} is a flag attached to the 
-  theorem (others possibilities are @{ML definitionK in Thm} and @{ML axiomK in Thm}). 
-  These flags just classify theorems and have no significant meaning, except 
-  for tools that, for example, find theorems in the theorem database. We also
-  use @{ML empty_binding in Attrib} in Line 3, since the definition does 
-  not need to have any theorem attributes. A testcase for this function is
-*}
-
-local_setup %gray {* fn lthy =>
-let
-  val arg =  ((@{binding "MyTrue"}, NoSyn), @{term True})
-  val (def, lthy') = make_defs arg lthy 
-in
-  warning (str_of_thm lthy' def); lthy'
-end *}
-
-text {*
-  which makes the definition @{prop "MyTrue \<equiv> True"} and then prints it out. 
-  Since we are testing the function inside \isacommand{local\_setup}, i.e.~make
-  changes to the ambient theory, we can query the definition using the usual
-  command \isacommand{thm}:
-
-  \begin{isabelle}
-  \isacommand{thm}~@{text "MyTrue_def"}\\
-  @{text "> MyTrue \<equiv> True"}
-  \end{isabelle}
-
-  The next two functions construct the terms we need for the definitions for
-  our \isacommand{simple\_inductive} command. These 
-  terms are of the form 
-
-  @{text [display] "\<lambda>\<^raw:$zs$>. \<forall>preds. orules \<longrightarrow> pred \<^raw:$zs$>"}
-
-  The variables @{text "\<^raw:$zs$>"} need to be chosen so that they do not occur
-  in the @{text orules} and also be distinct from the @{text "preds"}. 
-
-  The first function constructs the term for one particular predicate, say
-  @{text "pred"}; the number of arguments of this predicate is
-  determined by the number of argument types of @{text "arg_tys"}. 
-  So it takes these two parameters as arguments. The other arguments are
-  all the @{text "preds"} and the @{text "orules"}.
-*}
-
-ML %linenosgray{*fun defs_aux lthy orules preds (pred, arg_tys) =
-let 
-  fun mk_all x P = HOLogic.all_const (fastype_of x) $ lambda x P
-
-  val fresh_args = 
-        arg_tys 
-        |> map (pair "z")
-        |> Variable.variant_frees lthy (preds @ orules) 
-        |> map Free
-in
-  list_comb (pred, fresh_args)
-  |> fold_rev (curry HOLogic.mk_imp) orules
-  |> fold_rev mk_all preds
-  |> fold_rev lambda fresh_args 
-end*}
-
-text {*
-  The function in Line 3 is just a helper function for constructing universal
-  quantifications. The code in Lines 5 to 9 produces the fresh @{text
-  "\<^raw:$zs$>"}. For this it pairs every argument type with the string
-  @{text [quotes] "z"} (Line 7); then generates variants for all these strings
-  so that they are unique w.r.t.~to the @{text "orules"} and the predicates;
-  in Line 9 it generates the corresponding variable terms for the unique
-  strings.
-
-  The unique free variables are applied to the predicate (Line 11) using the
-  function @{ML list_comb}; then the @{text orules} are prefixed (Line 12); in
-  Line 13 we quantify over all predicates; and in line 14 we just abstract
-  over all the @{text "\<^raw:$zs$>"}, i.e.~the fresh arguments of the
-  predicate.
-
-  A testcase for this function is
-*}
-
-local_setup %gray{* fn lthy =>
-let
-  val orules = [@{prop "even 0"},
-                @{prop "\<forall>n::nat. odd n \<longrightarrow> even (Suc n)"},
-                @{prop "\<forall>n::nat. even n \<longrightarrow> odd (Suc n)"}] 
-  val preds = [@{term "even::nat\<Rightarrow>bool"}, @{term "odd::nat\<Rightarrow>bool"}, @{term "z::nat"}]
-  val pred = @{term "even::nat\<Rightarrow>bool"}
-  val arg_tys = [@{typ "nat"}]
-  val def = defs_aux lthy orules preds (pred, arg_tys)
-in
-  warning (Syntax.string_of_term lthy def); lthy
-end *}
-
-text {*
-  It constructs the left-hand side for the definition of @{text "even"}. So we obtain 
-  as printout the term
-
-  @{text [display] 
-"\<lambda>z. \<forall>even odd. (even 0) \<longrightarrow> (\<forall>n. odd n \<longrightarrow> even (Suc n)) 
-                         \<longrightarrow> (\<forall>n. even n \<longrightarrow> odd (Suc n)) \<longrightarrow> even z"}
-
-  The main function for the definitions now has to just iterate the function
-  @{ML defs_aux} over all predicates. The argument @{text "preds"} is again
-  the the list of predicates as @{ML_type term}s; the argument @{text
-  "prednames"} is the list of names of the predicates; @{text "arg_tyss"} is
-  the list of argument-type-lists for each predicate.
-*}
-
-ML %linenosgray{*fun definitions rules preds prednames syns arg_typss lthy =
-let
-  val thy = ProofContext.theory_of lthy
-  val orules = map (ObjectLogic.atomize_term thy) rules
-  val defs = map (defs_aux lthy orules preds) (preds ~~ arg_typss) 
-in
-  fold_map make_defs (prednames ~~ syns ~~ defs) lthy
-end*}
-
-text {*
-  The user will state the introduction rules using meta-implications and
-  meta-quanti\-fications. In Line 4, we transform these introduction rules into
-  the object logic (since definitions cannot be stated with
-  meta-connectives). To do this transformation we have to obtain the theory
-  behind the local theory (Line 3); with this theory we can use the function
-  @{ML ObjectLogic.atomize_term} to make the transformation (Line 4). The call
-  to @{ML defs_aux} in Line 5 produces all left-hand sides of the
-  definitions. The actual definitions are then made in Line 7.  The result
-  of the function is a list of theorems and a local theory.
-
-
-  A testcase for this function is 
-*}
-
-local_setup %gray {* fn lthy =>
-let
-  val rules = [@{prop "even 0"},
-               @{prop "\<And>n::nat. odd n \<Longrightarrow> even (Suc n)"},
-               @{prop "\<And>n::nat. even n \<Longrightarrow> odd (Suc n)"}] 
-  val preds = [@{term "even::nat\<Rightarrow>bool"}, @{term "odd::nat\<Rightarrow>bool"}]
-  val prednames = [@{binding "even"}, @{binding "odd"}] 
-  val syns = [NoSyn, NoSyn] 
-  val arg_tyss = [[@{typ "nat"}], [@{typ "nat"}]]
-  val (defs, lthy') = definitions rules preds prednames syns arg_tyss lthy
-in
-  warning (str_of_thms lthy' defs); lthy'
-end *}
-
-text {*
-  where we feed into the functions all parameters corresponding to
-  the @{text even}-@{text odd} example. The definitions we obtain
-  are:
-
-  \begin{isabelle}
-  \isacommand{thm}~@{text "even_def odd_def"}\\
-  @{text [break]
-"> even \<equiv> \<lambda>z. \<forall>even odd. (even 0) \<longrightarrow> (\<forall>n. odd n \<longrightarrow> even (Suc n)) 
->                                 \<longrightarrow> (\<forall>n. even n \<longrightarrow> odd (Suc n)) \<longrightarrow> even z,
-> odd \<equiv> \<lambda>z. \<forall>even odd. (even 0) \<longrightarrow> (\<forall>n. odd n \<longrightarrow> even (Suc n)) 
->                                \<longrightarrow> (\<forall>n. even n \<longrightarrow> odd (Suc n)) \<longrightarrow> odd z"}
-  \end{isabelle}
-
-
-  This completes the code for making the definitions. Next we deal with
-  the induction principles. Recall that the proof of the induction principle 
-  for @{text "even"} was:
-*}
-
-lemma man_ind_principle: 
-assumes prems: "even n"
-shows "P 0 \<Longrightarrow> (\<And>m. Q m \<Longrightarrow> P (Suc m)) \<Longrightarrow> (\<And>m. P m \<Longrightarrow> Q (Suc m)) \<Longrightarrow> P n"
-apply(atomize (full))
-apply(cut_tac prems)
-apply(unfold even_def)
-apply(drule spec[where x=P])
-apply(drule spec[where x=Q])
-apply(assumption)
-done
-
-text {* 
-  The code for such induction principles has to accomplish two tasks: 
-  constructing the induction principles from the given introduction
-  rules and then automatically generating a proof of them using a tactic. 
-  
-  The tactic will use the following helper function for instantiating universal 
-  quantifiers. 
-*}
-
-ML{*fun inst_spec ctrm = 
- Drule.instantiate' [SOME (ctyp_of_term ctrm)] [NONE, SOME ctrm] @{thm spec}*}
-
-text {*
-  This helper function instantiates the @{text "?x"} in the theorem 
-  @{thm spec} with a given @{ML_type cterm}. Together with the tactic
-*}
-
-ML{*fun inst_spec_tac ctrms = 
-  EVERY' (map (dtac o inst_spec) ctrms)*}
-
-text {*
-  we can use @{ML inst_spec} in the following proof to instantiate the 
-  three quantifiers in the assumption. 
-*}
-
-lemma 
-  fixes P::"nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> bool"
-  shows "\<forall>x y z. P x y z \<Longrightarrow> True"
-apply (tactic {* 
-  inst_spec_tac  [@{cterm "a::nat"},@{cterm "b::nat"},@{cterm "c::nat"}] 1 *})
-txt {* 
-  We obtain the goal state
-
-  \begin{minipage}{\textwidth}
-  @{subgoals} 
-  \end{minipage}*}
-(*<*)oops(*>*)
-
-text {*
-  Now the complete tactic for proving the induction principles can 
-  be implemented as follows:
-*}
-
-ML %linenosgray{*fun induction_tac defs prems insts =
-  EVERY1 [ObjectLogic.full_atomize_tac,
-          cut_facts_tac prems,
-          K (rewrite_goals_tac defs),
-          inst_spec_tac insts,
-          assume_tac]*}
-
-text {*
-  We only have to give it as arguments the definitions, the premise 
-  (like @{text "even n"}) 
-  and the instantiations. Compare this with the manual proof given for the
-  lemma @{thm [source] man_ind_principle}.  
-  A testcase for this tactic is the function
-*}
-
-ML{*fun test_tac prems = 
-let
-  val defs = [@{thm even_def}, @{thm odd_def}]
-  val insts = [@{cterm "P::nat\<Rightarrow>bool"}, @{cterm "Q::nat\<Rightarrow>bool"}]
-in 
-  induction_tac defs prems insts 
-end*}
-
-text {*
-  which indeed proves the induction principle: 
-*}
-
-lemma 
-assumes prems: "even n"
-shows "P 0 \<Longrightarrow> (\<And>m. Q m \<Longrightarrow> P (Suc m)) \<Longrightarrow> (\<And>m. P m \<Longrightarrow> Q (Suc m)) \<Longrightarrow> P n"
-apply(tactic {* test_tac @{thms prems} *})
-done
-
-text {*
-  While the tactic for the induction principle is relatively simple, 
-  it is a bit harder to construct the goals from the introduction 
-  rules the user provides. In general we have to construct for each predicate 
-  @{text "pred"} a goal of the form
-
-  @{text [display] 
-  "\<And>\<^raw:$zs$>. pred \<^raw:$zs$> \<Longrightarrow> rules[preds := \<^raw:$Ps$>] \<Longrightarrow> \<^raw:$P$> \<^raw:$zs$>"}
-
-  where the given predicates @{text preds} are replaced in the introduction 
-  rules by new distinct variables written @{text "\<^raw:$Ps$>"}. 
-  We also need to generate fresh arguments for the predicate @{text "pred"} in
-  the premise and the @{text "\<^raw:$P$>"} in the conclusion. We achieve
-  that in two steps. 
-
-  The function below expects that the introduction rules are already appropriately
-  substituted. The argument @{text "srules"} stands for these substituted
-   rules; @{text cnewpreds} are the certified terms coresponding
-  to the variables @{text "\<^raw:$Ps$>"}; @{text "pred"} is the predicate for
-  which we prove the introduction principle; @{text "newpred"} is its
-  replacement and @{text "tys"} are the argument types of this predicate.
-*}
-
-ML %linenosgray{*fun prove_induction lthy defs srules cnewpreds ((pred, newpred), tys)  =
-let
-  val zs = replicate (length tys) "z"
-  val (newargnames, lthy') = Variable.variant_fixes zs lthy;
-  val newargs = map Free (newargnames ~~ tys)
-  
-  val prem = HOLogic.mk_Trueprop (list_comb (pred, newargs))
-  val goal = Logic.list_implies 
-         (srules, HOLogic.mk_Trueprop (list_comb (newpred, newargs)))
-in
-  Goal.prove lthy' [] [prem] goal
-  (fn {prems, ...} => induction_tac defs prems cnewpreds)
-  |> singleton (ProofContext.export lthy' lthy)
-end *}
-
-text {* 
-  In Line 3 we produce names @{text "\<^raw:$zs$>"} for each type in the 
-  argument type list. Line 4 makes these names unique and declares them as 
-  \emph{free} (but fixed) variables in the local theory @{text "lthy'"}. In 
-  Line 5 we just construct the terms corresponding to these variables. 
-  The term variables are applied to the predicate in Line 7 (this corresponds
-  to the first premise @{text "pred \<^raw:$zs$>"} of the induction principle). 
-  In Line 8 and 9, we first construct the term  @{text "\<^raw:$P$>\<^raw:$zs$>"} 
-  and then add the (substituded) introduction rules as premises. In case that
-  no introduction rules are given, the conclusion of this implication needs
-  to be wrapped inside a @{term Trueprop}, otherwise the Isabelle's goal
-  mechanism will fail. 
-
-  In Line 11 we set up the goal to be proved; in the next line call the tactic
-  for proving the induction principle. This tactic expects definitions, the
-  premise and the (certified) predicates with which the introduction rules
-  have been substituted. This will return a theorem. However, it is a theorem
-  proved inside the local theory @{text "lthy'"}, where the variables @{text
-  "\<^raw:$zs$>"} are fixed, but free. By exporting this theorem from @{text
-  "lthy'"} (which contains the @{text "\<^raw:$zs$>"} as free) to @{text
-  "lthy"} (which does not), we obtain the desired quantifications @{text
-  "\<And>\<^raw:$zs$>"}.
-
-  (FIXME testcase)
-
-
-  Now it is left to produce the new predicates with which the introduction
-  rules are substituted. 
-*}
-
-ML %linenosgray{*fun inductions rules defs preds arg_tyss lthy  =
-let
-  val Ps = replicate (length preds) "P"
-  val (newprednames, lthy') = Variable.variant_fixes Ps lthy
-  
-  val thy = ProofContext.theory_of lthy'
-
-  val tyss' = map (fn tys => tys ---> HOLogic.boolT) arg_tyss
-  val newpreds = map Free (newprednames ~~ tyss')
-  val cnewpreds = map (cterm_of thy) newpreds
-  val srules = map (subst_free (preds ~~ newpreds)) rules
-
-in
-  map (prove_induction lthy' defs srules cnewpreds) 
-        (preds ~~ newpreds ~~ arg_tyss)
-          |> ProofContext.export lthy' lthy
-end*}
-
-text {*
-  In Line 3 we generate a string @{text [quotes] "P"} for each predicate. 
-  In Line 4, we use the same trick as in the previous function, that is making the 
-  @{text "\<^raw:$Ps$>"} fresh and declaring them as fixed but free in
-  the new local theory @{text "lthy'"}. From the local theory we extract
-  the ambient theory in Line 6. We need this theory in order to certify 
-  the new predicates. In Line 8 we calculate the types of these new predicates
-  using the argument types. Next we turn them into terms and subsequently
-  certify them. We can now produce the substituted introduction rules 
-  (Line 11). Line 14 and 15 just iterate the proofs for all predicates.
-  From this we obtain a list of theorems. Finally we need to export the 
-  fixed variables @{text "\<^raw:$Ps$>"} to obtain the correct quantification 
-  (Line 16).
-
-  A testcase for this function is
-*}
-
-local_setup %gray {* fn lthy =>
-let 
-  val rules = [@{prop "even (0::nat)"},
-               @{prop "\<And>n::nat. odd n \<Longrightarrow> even (Suc n)"},
-               @{prop "\<And>n::nat. even n \<Longrightarrow> odd (Suc n)"}] 
-  val defs = [@{thm even_def}, @{thm odd_def}]
-  val preds = [@{term "even::nat\<Rightarrow>bool"}, @{term "odd::nat\<Rightarrow>bool"}]
-  val tyss = [[@{typ "nat"}], [@{typ "nat"}]]
-  val ind_thms = inductions rules defs preds tyss lthy
-in
-  warning (str_of_thms lthy ind_thms); lthy
-end  
-*}
-
-
-text {*
-  which prints out
-
-@{text [display]
-"> even z \<Longrightarrow> 
->  P 0 \<Longrightarrow> (\<And>m. Pa m \<Longrightarrow> P (Suc m)) \<Longrightarrow> (\<And>m. P m \<Longrightarrow> Pa (Suc m)) \<Longrightarrow> P z,
-> odd z \<Longrightarrow> 
->  P 0 \<Longrightarrow> (\<And>m. Pa m \<Longrightarrow> P (Suc m)) \<Longrightarrow> (\<And>m. P m \<Longrightarrow> Pa (Suc m)) \<Longrightarrow> Pa z"}
-
-
-  This completes the code for the induction principles. Finally we can 
-  prove the introduction rules. 
-
-*}
-
-ML {* ObjectLogic.rulify  *}
-
-
-ML{*val all_elims = fold (fn ct => fn th => th RS inst_spec ct)
-val imp_elims = fold (fn th => fn th' => [th', th] MRS @{thm mp})*}
-
-ML{*fun subproof2 prem params2 prems2 =  
- SUBPROOF (fn {prems, ...} =>
-   let
-     val prem' = prems MRS prem;
-     val prem'' = 
-       case prop_of prem' of
-           _ $ (Const (@{const_name All}, _) $ _) =>
-             prem' |> all_elims params2 
-                   |> imp_elims prems2
-         | _ => prem';
-   in 
-     rtac prem'' 1 
-   end)*}
-
-ML{*fun subproof1 rules preds i = 
- SUBPROOF (fn {params, prems, context = ctxt', ...} =>
-   let
-     val (prems1, prems2) = chop (length prems - length rules) prems;
-     val (params1, params2) = chop (length params - length preds) params;
-   in
-     rtac (ObjectLogic.rulify (all_elims params1 (nth prems2 i))) 1 
-     THEN
-     EVERY1 (map (fn prem => subproof2 prem params2 prems2 ctxt') prems1)
-   end)*}
-
-ML{*
-fun introductions_tac defs rules preds i ctxt =
-  EVERY1 [ObjectLogic.rulify_tac,
-          K (rewrite_goals_tac defs),
-          REPEAT o (resolve_tac [@{thm allI}, @{thm impI}]),
-          subproof1 rules preds i ctxt]*}
-
-lemma evenS: 
-  shows "odd m \<Longrightarrow> even (Suc m)"
-apply(tactic {* 
-let
-  val rules = [@{prop "even (0::nat)"},
-                 @{prop "\<And>n::nat. odd n \<Longrightarrow> even (Suc n)"},
-                 @{prop "\<And>n::nat. even n \<Longrightarrow> odd (Suc n)"}] 
-  val defs = [@{thm even_def}, @{thm odd_def}]
-  val preds = [@{term "even::nat\<Rightarrow>bool"}, @{term "odd::nat\<Rightarrow>bool"}]
-in
-  introductions_tac defs rules preds 1 @{context}
-end *})
-done
-
-ML{*fun introductions rules preds defs lthy = 
-let
-  fun prove_intro (i, goal) =
-    Goal.prove lthy [] [] goal
-      (fn {context, ...} => introductions_tac defs rules preds i context)
-in
-  map_index prove_intro rules
-end*}
-
-text {* main internal function *}
-
-ML %linenosgray{*fun add_inductive pred_specs rule_specs lthy =
-let
-  val syns = map snd pred_specs
-  val pred_specs' = map fst pred_specs
-  val prednames = map fst pred_specs'
-  val preds = map (fn (p, ty) => Free (Binding.name_of p, ty)) pred_specs'
-
-  val tyss = map (binder_types o fastype_of) preds   
-  val (attrs, rules) = split_list rule_specs    
-
-  val (defs, lthy') = definitions rules preds prednames syns tyss lthy      
-  val ind_rules = inductions rules defs preds tyss lthy' 	
-  val intro_rules = introductions rules preds defs lthy'
-
-  val mut_name = space_implode "_" (map Binding.name_of prednames)
-  val case_names = map (Binding.name_of o fst) attrs
-in
-    lthy' 
-    |> LocalTheory.notes Thm.theoremK (map (fn (((a, atts), _), th) =>
-        ((Binding.qualify false mut_name a, atts), [([th], [])])) (rule_specs ~~ intro_rules)) 
-    |-> (fn intross => LocalTheory.note Thm.theoremK
-         ((Binding.qualify false mut_name (@{binding "intros"}), []), maps snd intross)) 
-    |>> snd 
-    ||>> (LocalTheory.notes Thm.theoremK (map (fn (((R, _), _), th) =>
-         ((Binding.qualify false (Binding.name_of R) (@{binding "induct"}),
-          [Attrib.internal (K (RuleCases.case_names case_names)),
-           Attrib.internal (K (RuleCases.consumes 1)),
-           Attrib.internal (K (Induct.induct_pred ""))]), [([th], [])]))
-          (pred_specs ~~ ind_rules)) #>> maps snd) 
-    |> snd
-end*}
-
-ML{*fun add_inductive_cmd pred_specs rule_specs lthy =
-let
-  val ((pred_specs', rule_specs'), _) = 
-         Specification.read_spec pred_specs rule_specs lthy
-in
-  add_inductive pred_specs' rule_specs' lthy
-end*} 
-
-ML{*val spec_parser = 
-   OuterParse.fixes -- 
-   Scan.optional 
-     (OuterParse.$$$ "where" |--
-        OuterParse.!!! 
-          (OuterParse.enum1 "|" 
-             (SpecParse.opt_thm_name ":" -- OuterParse.prop))) []*}
-
-ML{*val specification =
-  spec_parser >>
-    (fn ((pred_specs), rule_specs) => add_inductive_cmd pred_specs rule_specs)*}
-
-ML{*val _ = OuterSyntax.local_theory "simple_inductive" 
-              "define inductive predicates"
-                 OuterKeyword.thy_decl specification*}
-
-text {*
-  Things to include at the end:
-
-  \begin{itemize}
-  \item say something about add-inductive-i to return
-  the rules
-  \item say that the induction principle is weaker (weaker than
-  what the standard inductive package generates)
-  \end{itemize}
-  
-*}
-
-simple_inductive
-  Even and Odd
-where
-  Even0: "Even 0"
-| EvenS: "Odd n \<Longrightarrow> Even (Suc n)"
-| OddS: "Even n \<Longrightarrow> Odd (Suc n)"
-
-end