|
1 theory General |
|
2 imports Base FirstSteps |
|
3 begin |
|
4 |
|
5 chapter {* General Infrastructure *} |
|
6 |
|
7 section {* Terms and Types *} |
|
8 |
|
9 text {* |
|
10 One way to construct Isabelle terms, is by using the antiquotation |
|
11 \mbox{@{text "@{term \<dots>}"}}. For example |
|
12 |
|
13 @{ML_response [display,gray] |
|
14 "@{term \"(a::nat) + b = c\"}" |
|
15 "Const (\"op =\", \<dots>) $ |
|
16 (Const (\"HOL.plus_class.plus\", \<dots>) $ \<dots> $ \<dots>) $ \<dots>"} |
|
17 |
|
18 will show the term @{term "(a::nat) + b = c"}, but printed using the internal |
|
19 representation corresponding to the datatype @{ML_type "term"} defined as follows: |
|
20 *} |
|
21 |
|
22 ML_val %linenosgray{*datatype term = |
|
23 Const of string * typ |
|
24 | Free of string * typ |
|
25 | Var of indexname * typ |
|
26 | Bound of int |
|
27 | Abs of string * typ * term |
|
28 | $ of term * term *} |
|
29 |
|
30 text {* |
|
31 This datatype implements lambda-terms typed in Church-style. |
|
32 As can be seen in Line 5, terms use the usual de Bruijn index mechanism |
|
33 for representing bound variables. For |
|
34 example in |
|
35 |
|
36 @{ML_response_fake [display, gray] |
|
37 "@{term \"\<lambda>x y. x y\"}" |
|
38 "Abs (\"x\", \"'a \<Rightarrow> 'b\", Abs (\"y\", \"'a\", Bound 1 $ Bound 0))"} |
|
39 |
|
40 the indices refer to the number of Abstractions (@{ML Abs}) that we need to |
|
41 skip until we hit the @{ML Abs} that binds the corresponding |
|
42 variable. Constructing a term with dangling de Bruijn indices is possible, |
|
43 but will be flagged as ill-formed when you try to typecheck or certify it |
|
44 (see Section~\ref{sec:typechecking}). Note that the names of bound variables |
|
45 are kept at abstractions for printing purposes, and so should be treated |
|
46 only as ``comments''. Application in Isabelle is realised with the |
|
47 term-constructor @{ML $}. |
|
48 |
|
49 Isabelle makes a distinction between \emph{free} variables (term-constructor |
|
50 @{ML Free} and written on the user level in blue colour) and |
|
51 \emph{schematic} variables (term-constructor @{ML Var} and written with a |
|
52 leading question mark). Consider the following two examples |
|
53 |
|
54 @{ML_response_fake [display, gray] |
|
55 "let |
|
56 val v1 = Var ((\"x\", 3), @{typ bool}) |
|
57 val v2 = Var ((\"x1\", 3), @{typ bool}) |
|
58 val v3 = Free (\"x\", @{typ bool}) |
|
59 in |
|
60 string_of_terms @{context} [v1, v2, v3] |
|
61 |> tracing |
|
62 end" |
|
63 "?x3, ?x1.3, x"} |
|
64 |
|
65 When constructing terms, you are usually concerned with free variables (as |
|
66 mentioned earlier, you cannot construct schematic variables using the |
|
67 antiquotation @{text "@{term \<dots>}"}). If you deal with theorems, you have to, |
|
68 however, observe the distinction. The reason is that only schematic |
|
69 varaibles can be instantiated with terms when a theorem is applied. A |
|
70 similar distinction between free and schematic variables holds for types |
|
71 (see below). |
|
72 |
|
73 \begin{readmore} |
|
74 Terms and types are described in detail in \isccite{sec:terms}. Their |
|
75 definition and many useful operations are implemented in @{ML_file "Pure/term.ML"}. |
|
76 For constructing terms involving HOL constants, many helper functions are defined |
|
77 in @{ML_file "HOL/Tools/hologic.ML"}. |
|
78 \end{readmore} |
|
79 |
|
80 Constructing terms via antiquotations has the advantage that only typable |
|
81 terms can be constructed. For example |
|
82 |
|
83 @{ML_response_fake_both [display,gray] |
|
84 "@{term \"x x\"}" |
|
85 "Type unification failed: Occurs check!"} |
|
86 |
|
87 raises a typing error, while it perfectly ok to construct the term |
|
88 |
|
89 @{ML_response_fake [display,gray] |
|
90 "let |
|
91 val omega = Free (\"x\", @{typ nat}) $ Free (\"x\", @{typ nat}) |
|
92 in |
|
93 tracing (string_of_term @{context} omega) |
|
94 end" |
|
95 "x x"} |
|
96 |
|
97 with the raw ML-constructors. |
|
98 |
|
99 Sometimes the internal representation of terms can be surprisingly different |
|
100 from what you see at the user-level, because the layers of |
|
101 parsing/type-checking/pretty printing can be quite elaborate. |
|
102 |
|
103 \begin{exercise} |
|
104 Look at the internal term representation of the following terms, and |
|
105 find out why they are represented like this: |
|
106 |
|
107 \begin{itemize} |
|
108 \item @{term "case x of 0 \<Rightarrow> 0 | Suc y \<Rightarrow> y"} |
|
109 \item @{term "\<lambda>(x,y). P y x"} |
|
110 \item @{term "{ [x::int] | x. x \<le> -2 }"} |
|
111 \end{itemize} |
|
112 |
|
113 Hint: The third term is already quite big, and the pretty printer |
|
114 may omit parts of it by default. If you want to see all of it, you |
|
115 can use the following ML-function to set the printing depth to a higher |
|
116 value: |
|
117 |
|
118 @{ML [display,gray] "print_depth 50"} |
|
119 \end{exercise} |
|
120 |
|
121 The antiquotation @{text "@{prop \<dots>}"} constructs terms by inserting the |
|
122 usually invisible @{text "Trueprop"}-coercions whenever necessary. |
|
123 Consider for example the pairs |
|
124 |
|
125 @{ML_response [display,gray] "(@{term \"P x\"}, @{prop \"P x\"})" |
|
126 "(Free (\"P\", \<dots>) $ Free (\"x\", \<dots>), |
|
127 Const (\"Trueprop\", \<dots>) $ (Free (\"P\", \<dots>) $ Free (\"x\", \<dots>)))"} |
|
128 |
|
129 where a coercion is inserted in the second component and |
|
130 |
|
131 @{ML_response [display,gray] "(@{term \"P x \<Longrightarrow> Q x\"}, @{prop \"P x \<Longrightarrow> Q x\"})" |
|
132 "(Const (\"==>\", \<dots>) $ \<dots> $ \<dots>, |
|
133 Const (\"==>\", \<dots>) $ \<dots> $ \<dots>)"} |
|
134 |
|
135 where it is not (since it is already constructed by a meta-implication). |
|
136 The purpose of the @{text "Trueprop"}-coercion is to embed formulae of |
|
137 an object logic, for example HOL, into the meta-logic of Isabelle. It |
|
138 is needed whenever a term is constructed that will be proved as a theorem. |
|
139 |
|
140 As already seen above, types can be constructed using the antiquotation |
|
141 @{text "@{typ \<dots>}"}. For example: |
|
142 |
|
143 @{ML_response_fake [display,gray] "@{typ \"bool \<Rightarrow> nat\"}" "bool \<Rightarrow> nat"} |
|
144 |
|
145 The corresponding datatype is |
|
146 *} |
|
147 |
|
148 ML_val{*datatype typ = |
|
149 Type of string * typ list |
|
150 | TFree of string * sort |
|
151 | TVar of indexname * sort *} |
|
152 |
|
153 text {* |
|
154 Like with terms, there is the distinction between free type |
|
155 variables (term-constructor @{ML "TFree"} and schematic |
|
156 type variables (term-constructor @{ML "TVar"}). A type constant, |
|
157 like @{typ "int"} or @{typ bool}, are types with an empty list |
|
158 of argument types. However, it is a bit difficult to show an |
|
159 example, because Isabelle always pretty-prints types (unlike terms). |
|
160 Here is a contrived example: |
|
161 |
|
162 @{ML_response [display, gray] |
|
163 "if Type (\"bool\", []) = @{typ \"bool\"} then true else false" |
|
164 "true"} |
|
165 |
|
166 \begin{readmore} |
|
167 Types are described in detail in \isccite{sec:types}. Their |
|
168 definition and many useful operations are implemented |
|
169 in @{ML_file "Pure/type.ML"}. |
|
170 \end{readmore} |
|
171 *} |
|
172 |
|
173 section {* Constructing Terms and Types Manually\label{sec:terms_types_manually} *} |
|
174 |
|
175 text {* |
|
176 While antiquotations are very convenient for constructing terms, they can |
|
177 only construct fixed terms (remember they are ``linked'' at compile-time). |
|
178 However, you often need to construct terms dynamically. For example, a |
|
179 function that returns the implication @{text "\<And>(x::nat). P x \<Longrightarrow> Q x"} taking |
|
180 @{term P} and @{term Q} as arguments can only be written as: |
|
181 |
|
182 *} |
|
183 |
|
184 ML{*fun make_imp P Q = |
|
185 let |
|
186 val x = Free ("x", @{typ nat}) |
|
187 in |
|
188 Logic.all x (Logic.mk_implies (P $ x, Q $ x)) |
|
189 end *} |
|
190 |
|
191 text {* |
|
192 The reason is that you cannot pass the arguments @{term P} and @{term Q} |
|
193 into an antiquotation.\footnote{At least not at the moment.} For example |
|
194 the following does \emph{not} work. |
|
195 *} |
|
196 |
|
197 ML{*fun make_wrong_imp P Q = @{prop "\<And>(x::nat). P x \<Longrightarrow> Q x"} *} |
|
198 |
|
199 text {* |
|
200 To see this, apply @{text "@{term S}"} and @{text "@{term T}"} |
|
201 to both functions. With @{ML make_imp} you obtain the intended term involving |
|
202 the given arguments |
|
203 |
|
204 @{ML_response [display,gray] "make_imp @{term S} @{term T}" |
|
205 "Const \<dots> $ |
|
206 Abs (\"x\", Type (\"nat\",[]), |
|
207 Const \<dots> $ (Free (\"S\",\<dots>) $ \<dots>) $ (Free (\"T\",\<dots>) $ \<dots>))"} |
|
208 |
|
209 whereas with @{ML make_wrong_imp} you obtain a term involving the @{term "P"} |
|
210 and @{text "Q"} from the antiquotation. |
|
211 |
|
212 @{ML_response [display,gray] "make_wrong_imp @{term S} @{term T}" |
|
213 "Const \<dots> $ |
|
214 Abs (\"x\", \<dots>, |
|
215 Const \<dots> $ (Const \<dots> $ (Free (\"P\",\<dots>) $ \<dots>)) $ |
|
216 (Const \<dots> $ (Free (\"Q\",\<dots>) $ \<dots>)))"} |
|
217 |
|
218 There are a number of handy functions that are frequently used for |
|
219 constructing terms. One is the function @{ML_ind list_comb}, which takes a term |
|
220 and a list of terms as arguments, and produces as output the term |
|
221 list applied to the term. For example |
|
222 |
|
223 @{ML_response_fake [display,gray] |
|
224 "let |
|
225 val trm = @{term \"P::nat\"} |
|
226 val args = [@{term \"True\"}, @{term \"False\"}] |
|
227 in |
|
228 list_comb (trm, args) |
|
229 end" |
|
230 "Free (\"P\", \"nat\") $ Const (\"True\", \"bool\") $ Const (\"False\", \"bool\")"} |
|
231 |
|
232 Another handy function is @{ML_ind lambda}, which abstracts a variable |
|
233 in a term. For example |
|
234 |
|
235 @{ML_response_fake [display,gray] |
|
236 "let |
|
237 val x_nat = @{term \"x::nat\"} |
|
238 val trm = @{term \"(P::nat \<Rightarrow> bool) x\"} |
|
239 in |
|
240 lambda x_nat trm |
|
241 end" |
|
242 "Abs (\"x\", \"nat\", Free (\"P\", \"bool \<Rightarrow> bool\") $ Bound 0)"} |
|
243 |
|
244 In this example, @{ML lambda} produces a de Bruijn index (i.e.~@{ML "Bound 0"}), |
|
245 and an abstraction. It also records the type of the abstracted |
|
246 variable and for printing purposes also its name. Note that because of the |
|
247 typing annotation on @{text "P"}, the variable @{text "x"} in @{text "P x"} |
|
248 is of the same type as the abstracted variable. If it is of different type, |
|
249 as in |
|
250 |
|
251 @{ML_response_fake [display,gray] |
|
252 "let |
|
253 val x_int = @{term \"x::int\"} |
|
254 val trm = @{term \"(P::nat \<Rightarrow> bool) x\"} |
|
255 in |
|
256 lambda x_int trm |
|
257 end" |
|
258 "Abs (\"x\", \"int\", Free (\"P\", \"nat \<Rightarrow> bool\") $ Free (\"x\", \"nat\"))"} |
|
259 |
|
260 then the variable @{text "Free (\"x\", \"int\")"} is \emph{not} abstracted. |
|
261 This is a fundamental principle |
|
262 of Church-style typing, where variables with the same name still differ, if they |
|
263 have different type. |
|
264 |
|
265 There is also the function @{ML_ind subst_free} with which terms can be |
|
266 replaced by other terms. For example below, we will replace in @{term |
|
267 "(f::nat \<Rightarrow> nat \<Rightarrow> nat) 0 x"} the subterm @{term "(f::nat \<Rightarrow> nat \<Rightarrow> nat) 0"} by |
|
268 @{term y}, and @{term x} by @{term True}. |
|
269 |
|
270 @{ML_response_fake [display,gray] |
|
271 "let |
|
272 val sub1 = (@{term \"(f::nat \<Rightarrow> nat \<Rightarrow> nat) 0\"}, @{term \"y::nat \<Rightarrow> nat\"}) |
|
273 val sub2 = (@{term \"x::nat\"}, @{term \"True\"}) |
|
274 val trm = @{term \"((f::nat \<Rightarrow> nat \<Rightarrow> nat) 0) x\"} |
|
275 in |
|
276 subst_free [sub1, sub2] trm |
|
277 end" |
|
278 "Free (\"y\", \"nat \<Rightarrow> nat\") $ Const (\"True\", \"bool\")"} |
|
279 |
|
280 As can be seen, @{ML subst_free} does not take typability into account. |
|
281 However it takes alpha-equivalence into account: |
|
282 |
|
283 @{ML_response_fake [display, gray] |
|
284 "let |
|
285 val sub = (@{term \"(\<lambda>y::nat. y)\"}, @{term \"x::nat\"}) |
|
286 val trm = @{term \"(\<lambda>x::nat. x)\"} |
|
287 in |
|
288 subst_free [sub] trm |
|
289 end" |
|
290 "Free (\"x\", \"nat\")"} |
|
291 |
|
292 Similarly the function @{ML_ind subst_bounds}, replaces lose bound |
|
293 variables with terms. To see how this function works, let us implement a |
|
294 function that strips off the outermost quantifiers in a term. |
|
295 *} |
|
296 |
|
297 ML{*fun strip_alls (Const ("All", _) $ Abs (n, T, t)) = |
|
298 strip_alls t |>> cons (Free (n, T)) |
|
299 | strip_alls t = ([], t) *} |
|
300 |
|
301 text {* |
|
302 The function returns a pair consisting of the stripped off variables and |
|
303 the body of the universal quantifications. For example |
|
304 |
|
305 @{ML_response_fake [display, gray] |
|
306 "strip_alls @{term \"\<forall>x y. x = (y::bool)\"}" |
|
307 "([Free (\"x\", \"bool\"), Free (\"y\", \"bool\")], |
|
308 Const (\"op =\", \<dots>) $ Bound 1 $ Bound 0)"} |
|
309 |
|
310 After calling @{ML strip_alls}, you obtain a term with lose bound variables. With |
|
311 the function @{ML subst_bounds}, you can replace these lose @{ML_ind |
|
312 Bound}s with the stripped off variables. |
|
313 |
|
314 @{ML_response_fake [display, gray, linenos] |
|
315 "let |
|
316 val (vrs, trm) = strip_alls @{term \"\<forall>x y. x = (y::bool)\"} |
|
317 in |
|
318 subst_bounds (rev vrs, trm) |
|
319 |> string_of_term @{context} |
|
320 |> tracing |
|
321 end" |
|
322 "x = y"} |
|
323 |
|
324 Note that in Line 4 we had to reverse the list of variables that @{ML strip_alls} |
|
325 returned. The reason is that the head of the list the function @{ML subst_bounds} |
|
326 takes is the replacement for @{ML "Bound 0"}, the next element for @{ML "Bound 1"} |
|
327 and so on. |
|
328 |
|
329 There are many convenient functions that construct specific HOL-terms. For |
|
330 example @{ML_ind mk_eq in HOLogic} constructs an equality out of two terms. |
|
331 The types needed in this equality are calculated from the type of the |
|
332 arguments. For example |
|
333 |
|
334 @{ML_response_fake [gray,display] |
|
335 "let |
|
336 val eq = HOLogic.mk_eq (@{term \"True\"}, @{term \"False\"}) |
|
337 in |
|
338 string_of_term @{context} eq |
|
339 |> tracing |
|
340 end" |
|
341 "True = False"} |
|
342 *} |
|
343 |
|
344 text {* |
|
345 \begin{readmore} |
|
346 There are many functions in @{ML_file "Pure/term.ML"}, @{ML_file |
|
347 "Pure/logic.ML"} and @{ML_file "HOL/Tools/hologic.ML"} that make such manual |
|
348 constructions of terms and types easier. |
|
349 \end{readmore} |
|
350 |
|
351 When constructing terms manually, there are a few subtle issues with |
|
352 constants. They usually crop up when pattern matching terms or types, or |
|
353 when constructing them. While it is perfectly ok to write the function |
|
354 @{text is_true} as follows |
|
355 *} |
|
356 |
|
357 ML{*fun is_true @{term True} = true |
|
358 | is_true _ = false*} |
|
359 |
|
360 text {* |
|
361 this does not work for picking out @{text "\<forall>"}-quantified terms. Because |
|
362 the function |
|
363 *} |
|
364 |
|
365 ML{*fun is_all (@{term All} $ _) = true |
|
366 | is_all _ = false*} |
|
367 |
|
368 text {* |
|
369 will not correctly match the formula @{prop[source] "\<forall>x::nat. P x"}: |
|
370 |
|
371 @{ML_response [display,gray] "is_all @{term \"\<forall>x::nat. P x\"}" "false"} |
|
372 |
|
373 The problem is that the @{text "@term"}-antiquotation in the pattern |
|
374 fixes the type of the constant @{term "All"} to be @{typ "('a \<Rightarrow> bool) \<Rightarrow> bool"} for |
|
375 an arbitrary, but fixed type @{typ "'a"}. A properly working alternative |
|
376 for this function is |
|
377 *} |
|
378 |
|
379 ML{*fun is_all (Const ("All", _) $ _) = true |
|
380 | is_all _ = false*} |
|
381 |
|
382 text {* |
|
383 because now |
|
384 |
|
385 @{ML_response [display,gray] "is_all @{term \"\<forall>x::nat. P x\"}" "true"} |
|
386 |
|
387 matches correctly (the first wildcard in the pattern matches any type and the |
|
388 second any term). |
|
389 |
|
390 However there is still a problem: consider the similar function that |
|
391 attempts to pick out @{text "Nil"}-terms: |
|
392 *} |
|
393 |
|
394 ML{*fun is_nil (Const ("Nil", _)) = true |
|
395 | is_nil _ = false *} |
|
396 |
|
397 text {* |
|
398 Unfortunately, also this function does \emph{not} work as expected, since |
|
399 |
|
400 @{ML_response [display,gray] "is_nil @{term \"Nil\"}" "false"} |
|
401 |
|
402 The problem is that on the ML-level the name of a constant is more |
|
403 subtle than you might expect. The function @{ML is_all} worked correctly, |
|
404 because @{term "All"} is such a fundamental constant, which can be referenced |
|
405 by @{ML "Const (\"All\", some_type)" for some_type}. However, if you look at |
|
406 |
|
407 @{ML_response [display,gray] "@{term \"Nil\"}" "Const (\"List.list.Nil\", \<dots>)"} |
|
408 |
|
409 the name of the constant @{text "Nil"} depends on the theory in which the |
|
410 term constructor is defined (@{text "List"}) and also in which datatype |
|
411 (@{text "list"}). Even worse, some constants have a name involving |
|
412 type-classes. Consider for example the constants for @{term "zero"} and |
|
413 \mbox{@{text "(op *)"}}: |
|
414 |
|
415 @{ML_response [display,gray] "(@{term \"0::nat\"}, @{term \"(op *)\"})" |
|
416 "(Const (\"HOL.zero_class.zero\", \<dots>), |
|
417 Const (\"HOL.times_class.times\", \<dots>))"} |
|
418 |
|
419 While you could use the complete name, for example |
|
420 @{ML "Const (\"List.list.Nil\", some_type)" for some_type}, for referring to or |
|
421 matching against @{text "Nil"}, this would make the code rather brittle. |
|
422 The reason is that the theory and the name of the datatype can easily change. |
|
423 To make the code more robust, it is better to use the antiquotation |
|
424 @{text "@{const_name \<dots>}"}. With this antiquotation you can harness the |
|
425 variable parts of the constant's name. Therefore a function for |
|
426 matching against constants that have a polymorphic type should |
|
427 be written as follows. |
|
428 *} |
|
429 |
|
430 ML{*fun is_nil_or_all (Const (@{const_name "Nil"}, _)) = true |
|
431 | is_nil_or_all (Const (@{const_name "All"}, _) $ _) = true |
|
432 | is_nil_or_all _ = false *} |
|
433 |
|
434 text {* |
|
435 The antiquotation for properly referencing type constants is @{text "@{type_name \<dots>}"}. |
|
436 For example |
|
437 |
|
438 @{ML_response [display,gray] |
|
439 "@{type_name \"list\"}" "\"List.list\""} |
|
440 |
|
441 (FIXME: Explain the following better.) |
|
442 |
|
443 Occasionally you have to calculate what the ``base'' name of a given |
|
444 constant is. For this you can use the function @{ML_ind "Sign.extern_const"} or |
|
445 @{ML_ind Long_Name.base_name}. For example: |
|
446 |
|
447 @{ML_response [display,gray] "Sign.extern_const @{theory} \"List.list.Nil\"" "\"Nil\""} |
|
448 |
|
449 The difference between both functions is that @{ML extern_const in Sign} returns |
|
450 the smallest name that is still unique, whereas @{ML base_name in Long_Name} always |
|
451 strips off all qualifiers. |
|
452 |
|
453 \begin{readmore} |
|
454 Functions about naming are implemented in @{ML_file "Pure/General/name_space.ML"}; |
|
455 functions about signatures in @{ML_file "Pure/sign.ML"}. |
|
456 \end{readmore} |
|
457 |
|
458 Although types of terms can often be inferred, there are many |
|
459 situations where you need to construct types manually, especially |
|
460 when defining constants. For example the function returning a function |
|
461 type is as follows: |
|
462 |
|
463 *} |
|
464 |
|
465 ML{*fun make_fun_type ty1 ty2 = Type ("fun", [ty1, ty2]) *} |
|
466 |
|
467 text {* This can be equally written with the combinator @{ML_ind "-->"} as: *} |
|
468 |
|
469 ML{*fun make_fun_type ty1 ty2 = ty1 --> ty2 *} |
|
470 |
|
471 text {* |
|
472 If you want to construct a function type with more than one argument |
|
473 type, then you can use @{ML_ind "--->"}. |
|
474 *} |
|
475 |
|
476 ML{*fun make_fun_types tys ty = tys ---> ty *} |
|
477 |
|
478 text {* |
|
479 A handy function for manipulating terms is @{ML_ind map_types}: it takes a |
|
480 function and applies it to every type in a term. You can, for example, |
|
481 change every @{typ nat} in a term into an @{typ int} using the function: |
|
482 *} |
|
483 |
|
484 ML{*fun nat_to_int ty = |
|
485 (case ty of |
|
486 @{typ nat} => @{typ int} |
|
487 | Type (s, tys) => Type (s, map nat_to_int tys) |
|
488 | _ => ty)*} |
|
489 |
|
490 text {* |
|
491 Here is an example: |
|
492 |
|
493 @{ML_response_fake [display,gray] |
|
494 "map_types nat_to_int @{term \"a = (1::nat)\"}" |
|
495 "Const (\"op =\", \"int \<Rightarrow> int \<Rightarrow> bool\") |
|
496 $ Free (\"a\", \"int\") $ Const (\"HOL.one_class.one\", \"int\")"} |
|
497 |
|
498 If you want to obtain the list of free type-variables of a term, you |
|
499 can use the function @{ML_ind add_tfrees in Term} |
|
500 (similarly @{ML_ind add_tvars in Term} for the schematic type-variables). |
|
501 One would expect that such functions |
|
502 take a term as input and return a list of types. But their type is actually |
|
503 |
|
504 @{text[display] "Term.term -> (string * Term.sort) list -> (string * Term.sort) list"} |
|
505 |
|
506 that is they take, besides a term, also a list of type-variables as input. |
|
507 So in order to obtain the list of type-variables of a term you have to |
|
508 call them as follows |
|
509 |
|
510 @{ML_response [gray,display] |
|
511 "Term.add_tfrees @{term \"(a, b)\"} []" |
|
512 "[(\"'b\", [\"HOL.type\"]), (\"'a\", [\"HOL.type\"])]"} |
|
513 |
|
514 The reason for this definition is that @{ML add_tfrees in Term} can |
|
515 be easily folded over a list of terms. Similarly for all functions |
|
516 named @{text "add_*"} in @{ML_file "Pure/term.ML"}. |
|
517 |
|
518 \begin{exercise}\label{fun:revsum} |
|
519 Write a function @{text "rev_sum : term -> term"} that takes a |
|
520 term of the form @{text "t\<^isub>1 + t\<^isub>2 + \<dots> + t\<^isub>n"} (whereby @{text "n"} might be one) |
|
521 and returns the reversed sum @{text "t\<^isub>n + \<dots> + t\<^isub>2 + t\<^isub>1"}. Assume |
|
522 the @{text "t\<^isub>i"} can be arbitrary expressions and also note that @{text "+"} |
|
523 associates to the left. Try your function on some examples. |
|
524 \end{exercise} |
|
525 |
|
526 \begin{exercise}\label{fun:makesum} |
|
527 Write a function which takes two terms representing natural numbers |
|
528 in unary notation (like @{term "Suc (Suc (Suc 0))"}), and produces the |
|
529 number representing their sum. |
|
530 \end{exercise} |
|
531 |
|
532 \begin{exercise}\footnote{Personal communication of |
|
533 de Bruijn to Dyckhoff.}\label{ex:debruijn} |
|
534 Implement the function, which we below name deBruijn, that depends on a natural |
|
535 number n$>$0 and constructs terms of the form: |
|
536 |
|
537 \begin{center} |
|
538 \begin{tabular}{r@ {\hspace{2mm}}c@ {\hspace{2mm}}l} |
|
539 {\it rhs n} & $\dn$ & {\large$\bigwedge$}{\it i=1\ldots n. P\,i}\\ |
|
540 {\it lhs n} & $\dn$ & {\large$\bigwedge$}{\it i=1\ldots n. P\,i = P (i + 1 mod n)} |
|
541 $\longrightarrow$ {\it rhs n}\\ |
|
542 {\it deBruijn n} & $\dn$ & {\it lhs n} $\longrightarrow$ {\it rhs n}\\ |
|
543 \end{tabular} |
|
544 \end{center} |
|
545 |
|
546 For n=3 this function returns the term |
|
547 |
|
548 \begin{center} |
|
549 \begin{tabular}{l} |
|
550 (P 1 = P 2 $\longrightarrow$ P 1 $\wedge$ P 2 $\wedge$ P 3) $\wedge$\\ |
|
551 (P 2 = P 3 $\longrightarrow$ P 1 $\wedge$ P 2 $\wedge$ P 3) $\wedge$\\ |
|
552 (P 3 = P 1 $\longrightarrow$ P 1 $\wedge$ P 2 $\wedge$ P 3) $\longrightarrow$ P 1 $\wedge$ P 2 $\wedge$ P 3 |
|
553 \end{tabular} |
|
554 \end{center} |
|
555 |
|
556 Make sure you use the functions defined in @{ML_file "HOL/Tools/hologic.ML"} |
|
557 for constructing the terms for the logical connectives. |
|
558 \end{exercise} |
|
559 *} |
|
560 |
|
561 |
|
562 section {* Type-Checking\label{sec:typechecking} *} |
|
563 |
|
564 text {* |
|
565 |
|
566 You can freely construct and manipulate @{ML_type "term"}s and @{ML_type |
|
567 typ}es, since they are just arbitrary unchecked trees. However, you |
|
568 eventually want to see if a term is well-formed, or type-checks, relative to |
|
569 a theory. Type-checking is done via the function @{ML_ind cterm_of}, which |
|
570 converts a @{ML_type term} into a @{ML_type cterm}, a \emph{certified} |
|
571 term. Unlike @{ML_type term}s, which are just trees, @{ML_type "cterm"}s are |
|
572 abstract objects that are guaranteed to be type-correct, and they can only |
|
573 be constructed via ``official interfaces''. |
|
574 |
|
575 |
|
576 Type-checking is always relative to a theory context. For now we use |
|
577 the @{ML "@{theory}"} antiquotation to get hold of the current theory. |
|
578 For example you can write: |
|
579 |
|
580 @{ML_response_fake [display,gray] "cterm_of @{theory} @{term \"(a::nat) + b = c\"}" "a + b = c"} |
|
581 |
|
582 This can also be written with an antiquotation: |
|
583 |
|
584 @{ML_response_fake [display,gray] "@{cterm \"(a::nat) + b = c\"}" "a + b = c"} |
|
585 |
|
586 Attempting to obtain the certified term for |
|
587 |
|
588 @{ML_response_fake_both [display,gray] "@{cterm \"1 + True\"}" "Type unification failed \<dots>"} |
|
589 |
|
590 yields an error (since the term is not typable). A slightly more elaborate |
|
591 example that type-checks is: |
|
592 |
|
593 @{ML_response_fake [display,gray] |
|
594 "let |
|
595 val natT = @{typ \"nat\"} |
|
596 val zero = @{term \"0::nat\"} |
|
597 in |
|
598 cterm_of @{theory} |
|
599 (Const (@{const_name plus}, natT --> natT --> natT) $ zero $ zero) |
|
600 end" "0 + 0"} |
|
601 |
|
602 In Isabelle not just terms need to be certified, but also types. For example, |
|
603 you obtain the certified type for the Isabelle type @{typ "nat \<Rightarrow> bool"} on |
|
604 the ML-level as follows: |
|
605 |
|
606 @{ML_response_fake [display,gray] |
|
607 "ctyp_of @{theory} (@{typ nat} --> @{typ bool})" |
|
608 "nat \<Rightarrow> bool"} |
|
609 |
|
610 or with the antiquotation: |
|
611 |
|
612 @{ML_response_fake [display,gray] |
|
613 "@{ctyp \"nat \<Rightarrow> bool\"}" |
|
614 "nat \<Rightarrow> bool"} |
|
615 |
|
616 \begin{readmore} |
|
617 For functions related to @{ML_type cterm}s and @{ML_type ctyp}s see |
|
618 the file @{ML_file "Pure/thm.ML"}. |
|
619 \end{readmore} |
|
620 |
|
621 Remember Isabelle follows the Church-style typing for terms, i.e., a term contains |
|
622 enough typing information (constants, free variables and abstractions all have typing |
|
623 information) so that it is always clear what the type of a term is. |
|
624 Given a well-typed term, the function @{ML_ind type_of} returns the |
|
625 type of a term. Consider for example: |
|
626 |
|
627 @{ML_response [display,gray] |
|
628 "type_of (@{term \"f::nat \<Rightarrow> bool\"} $ @{term \"x::nat\"})" "bool"} |
|
629 |
|
630 To calculate the type, this function traverses the whole term and will |
|
631 detect any typing inconsistency. For example changing the type of the variable |
|
632 @{term "x"} from @{typ "nat"} to @{typ "int"} will result in the error message: |
|
633 |
|
634 @{ML_response_fake [display,gray] |
|
635 "type_of (@{term \"f::nat \<Rightarrow> bool\"} $ @{term \"x::int\"})" |
|
636 "*** Exception- TYPE (\"type_of: type mismatch in application\" \<dots>"} |
|
637 |
|
638 Since the complete traversal might sometimes be too costly and |
|
639 not necessary, there is the function @{ML_ind fastype_of}, which |
|
640 also returns the type of a term. |
|
641 |
|
642 @{ML_response [display,gray] |
|
643 "fastype_of (@{term \"f::nat \<Rightarrow> bool\"} $ @{term \"x::nat\"})" "bool"} |
|
644 |
|
645 However, efficiency is gained on the expense of skipping some tests. You |
|
646 can see this in the following example |
|
647 |
|
648 @{ML_response [display,gray] |
|
649 "fastype_of (@{term \"f::nat \<Rightarrow> bool\"} $ @{term \"x::int\"})" "bool"} |
|
650 |
|
651 where no error is detected. |
|
652 |
|
653 Sometimes it is a bit inconvenient to construct a term with |
|
654 complete typing annotations, especially in cases where the typing |
|
655 information is redundant. A short-cut is to use the ``place-holder'' |
|
656 type @{ML_ind dummyT} and then let type-inference figure out the |
|
657 complete type. An example is as follows: |
|
658 |
|
659 @{ML_response_fake [display,gray] |
|
660 "let |
|
661 val c = Const (@{const_name \"plus\"}, dummyT) |
|
662 val o = @{term \"1::nat\"} |
|
663 val v = Free (\"x\", dummyT) |
|
664 in |
|
665 Syntax.check_term @{context} (c $ o $ v) |
|
666 end" |
|
667 "Const (\"HOL.plus_class.plus\", \"nat \<Rightarrow> nat \<Rightarrow> nat\") $ |
|
668 Const (\"HOL.one_class.one\", \"nat\") $ Free (\"x\", \"nat\")"} |
|
669 |
|
670 Instead of giving explicitly the type for the constant @{text "plus"} and the free |
|
671 variable @{text "x"}, type-inference fills in the missing information. |
|
672 |
|
673 \begin{readmore} |
|
674 See @{ML_file "Pure/Syntax/syntax.ML"} where more functions about reading, |
|
675 checking and pretty-printing of terms are defined. Functions related to |
|
676 type-inference are implemented in @{ML_file "Pure/type.ML"} and |
|
677 @{ML_file "Pure/type_infer.ML"}. |
|
678 \end{readmore} |
|
679 |
|
680 (FIXME: say something about sorts) |
|
681 |
|
682 \begin{exercise} |
|
683 Check that the function defined in Exercise~\ref{fun:revsum} returns a |
|
684 result that type-checks. See what happens to the solutions of this |
|
685 exercise given in \ref{ch:solutions} when they receive an ill-typed term |
|
686 as input. |
|
687 \end{exercise} |
|
688 *} |
|
689 |
|
690 |
|
691 section {* Theorems *} |
|
692 |
|
693 text {* |
|
694 Just like @{ML_type cterm}s, theorems are abstract objects of type @{ML_type thm} |
|
695 that can only be built by going through interfaces. As a consequence, every proof |
|
696 in Isabelle is correct by construction. This follows the tradition of the LCF approach |
|
697 \cite{GordonMilnerWadsworth79}. |
|
698 |
|
699 |
|
700 To see theorems in ``action'', let us give a proof on the ML-level for the following |
|
701 statement: |
|
702 *} |
|
703 |
|
704 lemma |
|
705 assumes assm\<^isub>1: "\<And>(x::nat). P x \<Longrightarrow> Q x" |
|
706 and assm\<^isub>2: "P t" |
|
707 shows "Q t" (*<*)oops(*>*) |
|
708 |
|
709 text {* |
|
710 The corresponding ML-code is as follows: |
|
711 |
|
712 @{ML_response_fake [display,gray] |
|
713 "let |
|
714 val assm1 = @{cprop \"\<And>(x::nat). P x \<Longrightarrow> Q x\"} |
|
715 val assm2 = @{cprop \"(P::nat\<Rightarrow>bool) t\"} |
|
716 |
|
717 val Pt_implies_Qt = |
|
718 assume assm1 |
|
719 |> forall_elim @{cterm \"t::nat\"}; |
|
720 |
|
721 val Qt = implies_elim Pt_implies_Qt (assume assm2); |
|
722 in |
|
723 Qt |
|
724 |> implies_intr assm2 |
|
725 |> implies_intr assm1 |
|
726 end" "\<lbrakk>\<And>x. P x \<Longrightarrow> Q x; P t\<rbrakk> \<Longrightarrow> Q t"} |
|
727 |
|
728 This code-snippet constructs the following proof: |
|
729 |
|
730 \[ |
|
731 \infer[(@{text "\<Longrightarrow>"}$-$intro)]{\vdash @{prop "(\<And>x. P x \<Longrightarrow> Q x) \<Longrightarrow> P t \<Longrightarrow> Q t"}} |
|
732 {\infer[(@{text "\<Longrightarrow>"}$-$intro)]{@{prop "\<And>x. P x \<Longrightarrow> Q x"} \vdash @{prop "P t \<Longrightarrow> Q t"}} |
|
733 {\infer[(@{text "\<Longrightarrow>"}$-$elim)]{@{prop "\<And>x. P x \<Longrightarrow> Q x"}, @{prop "P t"} \vdash @{prop "Q t"}} |
|
734 {\infer[(@{text "\<And>"}$-$elim)]{@{prop "\<And>x. P x \<Longrightarrow> Q x"} \vdash @{prop "P t \<Longrightarrow> Q t"}} |
|
735 {\infer[(assume)]{@{prop "\<And>x. P x \<Longrightarrow> Q x"} \vdash @{prop "\<And>x. P x \<Longrightarrow> Q x"}}{}} |
|
736 & |
|
737 \infer[(assume)]{@{prop "P t"} \vdash @{prop "P t"}}{} |
|
738 } |
|
739 } |
|
740 } |
|
741 \] |
|
742 |
|
743 However, while we obtained a theorem as result, this theorem is not |
|
744 yet stored in Isabelle's theorem database. So it cannot be referenced later |
|
745 on. How to store theorems will be explained in Section~\ref{sec:storing}. |
|
746 |
|
747 \begin{readmore} |
|
748 For the functions @{text "assume"}, @{text "forall_elim"} etc |
|
749 see \isccite{sec:thms}. The basic functions for theorems are defined in |
|
750 @{ML_file "Pure/thm.ML"}. |
|
751 \end{readmore} |
|
752 |
|
753 (FIXME: handy functions working on theorems, like @{ML_ind rulify in ObjectLogic} and so on) |
|
754 |
|
755 (FIXME: @{ML_ind prove in Goal}) |
|
756 |
|
757 (FIXME: how to add case-names to goal states - maybe in the |
|
758 next section) |
|
759 |
|
760 (FIXME: example for how to add theorem styles) |
|
761 *} |
|
762 |
|
763 ML {* |
|
764 fun strip_assums_all (params, Const("all",_) $ Abs(a, T, t)) = |
|
765 strip_assums_all ((a, T)::params, t) |
|
766 | strip_assums_all (params, B) = (params, B) |
|
767 |
|
768 fun style_parm_premise i ctxt t = |
|
769 let val prems = Logic.strip_imp_prems t in |
|
770 if i <= length prems |
|
771 then let val (params,t) = strip_assums_all([], nth prems (i - 1)) |
|
772 in subst_bounds(map Free params, t) end |
|
773 else error ("Not enough premises for prem" ^ string_of_int i ^ |
|
774 " in propositon: " ^ string_of_term ctxt t) |
|
775 end; |
|
776 *} |
|
777 |
|
778 ML {* |
|
779 strip_assums_all ([], @{term "\<And>x y. A x y"}) |
|
780 *} |
|
781 |
|
782 setup %gray {* |
|
783 TermStyle.add_style "no_all_prem1" (style_parm_premise 1) #> |
|
784 TermStyle.add_style "no_all_prem2" (style_parm_premise 2) |
|
785 *} |
|
786 |
|
787 lemma |
|
788 shows "A \<Longrightarrow> B" |
|
789 and "C \<Longrightarrow> D" |
|
790 oops |
|
791 |
|
792 |
|
793 section {* Setups (TBD) *} |
|
794 |
|
795 text {* |
|
796 In the previous section we used \isacommand{setup} in order to make |
|
797 a theorem attribute known to Isabelle. What happens behind the scenes |
|
798 is that \isacommand{setup} expects a function of type |
|
799 @{ML_type "theory -> theory"}: the input theory is the current theory and the |
|
800 output the theory where the theory attribute has been stored. |
|
801 |
|
802 This is a fundamental principle in Isabelle. A similar situation occurs |
|
803 for example with declaring constants. The function that declares a |
|
804 constant on the ML-level is @{ML_ind add_consts_i in Sign}. |
|
805 If you write\footnote{Recall that ML-code needs to be |
|
806 enclosed in \isacommand{ML}~@{text "\<verbopen> \<dots> \<verbclose>"}.} |
|
807 *} |
|
808 |
|
809 ML{*Sign.add_consts_i [(@{binding "BAR"}, @{typ "nat"}, NoSyn)] @{theory} *} |
|
810 |
|
811 text {* |
|
812 for declaring the constant @{text "BAR"} with type @{typ nat} and |
|
813 run the code, then you indeed obtain a theory as result. But if you |
|
814 query the constant on the Isabelle level using the command \isacommand{term} |
|
815 |
|
816 \begin{isabelle} |
|
817 \isacommand{term}~@{text [quotes] "BAR"}\\ |
|
818 @{text "> \"BAR\" :: \"'a\""} |
|
819 \end{isabelle} |
|
820 |
|
821 you do not obtain a constant of type @{typ nat}, but a free variable (printed in |
|
822 blue) of polymorphic type. The problem is that the ML-expression above did |
|
823 not register the declaration with the current theory. This is what the command |
|
824 \isacommand{setup} is for. The constant is properly declared with |
|
825 *} |
|
826 |
|
827 setup %gray {* Sign.add_consts_i [(@{binding "BAR"}, @{typ "nat"}, NoSyn)] *} |
|
828 |
|
829 text {* |
|
830 Now |
|
831 |
|
832 \begin{isabelle} |
|
833 \isacommand{term}~@{text [quotes] "BAR"}\\ |
|
834 @{text "> \"BAR\" :: \"nat\""} |
|
835 \end{isabelle} |
|
836 |
|
837 returns a (black) constant with the type @{typ nat}. |
|
838 |
|
839 A similar command is \isacommand{local\_setup}, which expects a function |
|
840 of type @{ML_type "local_theory -> local_theory"}. Later on we will also |
|
841 use the commands \isacommand{method\_setup} for installing methods in the |
|
842 current theory and \isacommand{simproc\_setup} for adding new simprocs to |
|
843 the current simpset. |
|
844 *} |
|
845 |
|
846 section {* Theorem Attributes\label{sec:attributes} *} |
|
847 |
|
848 text {* |
|
849 Theorem attributes are @{text "[symmetric]"}, @{text "[THEN \<dots>]"}, @{text |
|
850 "[simp]"} and so on. Such attributes are \emph{neither} tags \emph{nor} flags |
|
851 annotated to theorems, but functions that do further processing once a |
|
852 theorem is proved. In particular, it is not possible to find out |
|
853 what are all theorems that have a given attribute in common, unless of course |
|
854 the function behind the attribute stores the theorems in a retrievable |
|
855 data structure. |
|
856 |
|
857 If you want to print out all currently known attributes a theorem can have, |
|
858 you can use the Isabelle command |
|
859 |
|
860 \begin{isabelle} |
|
861 \isacommand{print\_attributes}\\ |
|
862 @{text "> COMP: direct composition with rules (no lifting)"}\\ |
|
863 @{text "> HOL.dest: declaration of Classical destruction rule"}\\ |
|
864 @{text "> HOL.elim: declaration of Classical elimination rule"}\\ |
|
865 @{text "> \<dots>"} |
|
866 \end{isabelle} |
|
867 |
|
868 The theorem attributes fall roughly into two categories: the first category manipulates |
|
869 the proved theorem (for example @{text "[symmetric]"} and @{text "[THEN \<dots>]"}), and the second |
|
870 stores the proved theorem somewhere as data (for example @{text "[simp]"}, which adds |
|
871 the theorem to the current simpset). |
|
872 |
|
873 To explain how to write your own attribute, let us start with an extremely simple |
|
874 version of the attribute @{text "[symmetric]"}. The purpose of this attribute is |
|
875 to produce the ``symmetric'' version of an equation. The main function behind |
|
876 this attribute is |
|
877 *} |
|
878 |
|
879 ML{*val my_symmetric = Thm.rule_attribute (fn _ => fn thm => thm RS @{thm sym})*} |
|
880 |
|
881 text {* |
|
882 where the function @{ML_ind rule_attribute in Thm} expects a function taking a |
|
883 context (which we ignore in the code above) and a theorem (@{text thm}), and |
|
884 returns another theorem (namely @{text thm} resolved with the theorem |
|
885 @{thm [source] sym}: @{thm sym[no_vars]}; the function @{ML_ind "RS"} |
|
886 is explained in Section~\ref{sec:simpletacs}). The function |
|
887 @{ML rule_attribute in Thm} then returns an attribute. |
|
888 |
|
889 Before we can use the attribute, we need to set it up. This can be done |
|
890 using the Isabelle command \isacommand{attribute\_setup} as follows: |
|
891 *} |
|
892 |
|
893 attribute_setup %gray my_sym = {* Scan.succeed my_symmetric *} |
|
894 "applying the sym rule" |
|
895 |
|
896 text {* |
|
897 Inside the @{text "\<verbopen> \<dots> \<verbclose>"}, we have to specify a parser |
|
898 for the theorem attribute. Since the attribute does not expect any further |
|
899 arguments (unlike @{text "[THEN \<dots>]"}, for example), we use the parser @{ML |
|
900 Scan.succeed}. Later on we will also consider attributes taking further |
|
901 arguments. An example for the attribute @{text "[my_sym]"} is the proof |
|
902 *} |
|
903 |
|
904 lemma test[my_sym]: "2 = Suc (Suc 0)" by simp |
|
905 |
|
906 text {* |
|
907 which stores the theorem @{thm test} under the name @{thm [source] test}. You |
|
908 can see this, if you query the lemma: |
|
909 |
|
910 \begin{isabelle} |
|
911 \isacommand{thm}~@{text "test"}\\ |
|
912 @{text "> "}~@{thm test} |
|
913 \end{isabelle} |
|
914 |
|
915 We can also use the attribute when referring to this theorem: |
|
916 |
|
917 \begin{isabelle} |
|
918 \isacommand{thm}~@{text "test[my_sym]"}\\ |
|
919 @{text "> "}~@{thm test[my_sym]} |
|
920 \end{isabelle} |
|
921 |
|
922 An alternative for setting up an attribute is the function @{ML_ind setup in Attrib}. |
|
923 So instead of using \isacommand{attribute\_setup}, you can also set up the |
|
924 attribute as follows: |
|
925 *} |
|
926 |
|
927 ML{*Attrib.setup @{binding "my_sym"} (Scan.succeed my_symmetric) |
|
928 "applying the sym rule" *} |
|
929 |
|
930 text {* |
|
931 This gives a function from @{ML_type "Context.theory -> Context.theory"}, which |
|
932 can be used for example with \isacommand{setup}. |
|
933 |
|
934 As an example of a slightly more complicated theorem attribute, we implement |
|
935 our own version of @{text "[THEN \<dots>]"}. This attribute will take a list of theorems |
|
936 as argument and resolve the proved theorem with this list (one theorem |
|
937 after another). The code for this attribute is |
|
938 *} |
|
939 |
|
940 ML{*fun MY_THEN thms = |
|
941 Thm.rule_attribute (fn _ => fn thm => foldl ((op RS) o swap) thm thms)*} |
|
942 |
|
943 text {* |
|
944 where @{ML swap} swaps the components of a pair. The setup of this theorem |
|
945 attribute uses the parser @{ML thms in Attrib}, which parses a list of |
|
946 theorems. |
|
947 *} |
|
948 |
|
949 attribute_setup %gray MY_THEN = {* Attrib.thms >> MY_THEN *} |
|
950 "resolving the list of theorems with the proved theorem" |
|
951 |
|
952 text {* |
|
953 You can, for example, use this theorem attribute to turn an equation into a |
|
954 meta-equation: |
|
955 |
|
956 \begin{isabelle} |
|
957 \isacommand{thm}~@{text "test[MY_THEN eq_reflection]"}\\ |
|
958 @{text "> "}~@{thm test[MY_THEN eq_reflection]} |
|
959 \end{isabelle} |
|
960 |
|
961 If you need the symmetric version as a meta-equation, you can write |
|
962 |
|
963 \begin{isabelle} |
|
964 \isacommand{thm}~@{text "test[MY_THEN sym eq_reflection]"}\\ |
|
965 @{text "> "}~@{thm test[MY_THEN sym eq_reflection]} |
|
966 \end{isabelle} |
|
967 |
|
968 It is also possible to combine different theorem attributes, as in: |
|
969 |
|
970 \begin{isabelle} |
|
971 \isacommand{thm}~@{text "test[my_sym, MY_THEN eq_reflection]"}\\ |
|
972 @{text "> "}~@{thm test[my_sym, MY_THEN eq_reflection]} |
|
973 \end{isabelle} |
|
974 |
|
975 However, here also a weakness of the concept |
|
976 of theorem attributes shows through: since theorem attributes can be |
|
977 arbitrary functions, they do not in general commute. If you try |
|
978 |
|
979 \begin{isabelle} |
|
980 \isacommand{thm}~@{text "test[MY_THEN eq_reflection, my_sym]"}\\ |
|
981 @{text "> "}~@{text "exception THM 1 raised: RSN: no unifiers"} |
|
982 \end{isabelle} |
|
983 |
|
984 you get an exception indicating that the theorem @{thm [source] sym} |
|
985 does not resolve with meta-equations. |
|
986 |
|
987 The purpose of @{ML_ind rule_attribute in Thm} is to directly manipulate theorems. |
|
988 Another usage of theorem attributes is to add and delete theorems from stored data. |
|
989 For example the theorem attribute @{text "[simp]"} adds or deletes a theorem from the |
|
990 current simpset. For these applications, you can use @{ML_ind declaration_attribute in Thm}. |
|
991 To illustrate this function, let us introduce a reference containing a list |
|
992 of theorems. |
|
993 *} |
|
994 |
|
995 ML{*val my_thms = ref ([] : thm list)*} |
|
996 |
|
997 text {* |
|
998 The purpose of this reference is to store a list of theorems. |
|
999 We are going to modify it by adding and deleting theorems. |
|
1000 However, a word of warning: such references must not |
|
1001 be used in any code that is meant to be more than just for testing purposes! |
|
1002 Here it is only used to illustrate matters. We will show later how to store |
|
1003 data properly without using references. |
|
1004 |
|
1005 We need to provide two functions that add and delete theorems from this list. |
|
1006 For this we use the two functions: |
|
1007 *} |
|
1008 |
|
1009 ML{*fun my_thm_add thm ctxt = |
|
1010 (my_thms := Thm.add_thm thm (!my_thms); ctxt) |
|
1011 |
|
1012 fun my_thm_del thm ctxt = |
|
1013 (my_thms := Thm.del_thm thm (!my_thms); ctxt)*} |
|
1014 |
|
1015 text {* |
|
1016 These functions take a theorem and a context and, for what we are explaining |
|
1017 here it is sufficient that they just return the context unchanged. They change |
|
1018 however the reference @{ML my_thms}, whereby the function |
|
1019 @{ML_ind add_thm in Thm} adds a theorem if it is not already included in |
|
1020 the list, and @{ML_ind del_thm in Thm} deletes one (both functions use the |
|
1021 predicate @{ML_ind eq_thm_prop in Thm}, which compares theorems according to |
|
1022 their proved propositions modulo alpha-equivalence). |
|
1023 |
|
1024 You can turn functions @{ML my_thm_add} and @{ML my_thm_del} into |
|
1025 attributes with the code |
|
1026 *} |
|
1027 |
|
1028 ML{*val my_add = Thm.declaration_attribute my_thm_add |
|
1029 val my_del = Thm.declaration_attribute my_thm_del *} |
|
1030 |
|
1031 text {* |
|
1032 and set up the attributes as follows |
|
1033 *} |
|
1034 |
|
1035 attribute_setup %gray my_thms = {* Attrib.add_del my_add my_del *} |
|
1036 "maintaining a list of my_thms - rough test only!" |
|
1037 |
|
1038 text {* |
|
1039 The parser @{ML_ind add_del in Attrib} is a predefined parser for |
|
1040 adding and deleting lemmas. Now if you prove the next lemma |
|
1041 and attach to it the attribute @{text "[my_thms]"} |
|
1042 *} |
|
1043 |
|
1044 lemma trueI_2[my_thms]: "True" by simp |
|
1045 |
|
1046 text {* |
|
1047 then you can see it is added to the initially empty list. |
|
1048 |
|
1049 @{ML_response_fake [display,gray] |
|
1050 "!my_thms" "[\"True\"]"} |
|
1051 |
|
1052 You can also add theorems using the command \isacommand{declare}. |
|
1053 *} |
|
1054 |
|
1055 declare test[my_thms] trueI_2[my_thms add] |
|
1056 |
|
1057 text {* |
|
1058 With this attribute, the @{text "add"} operation is the default and does |
|
1059 not need to be explicitly given. These three declarations will cause the |
|
1060 theorem list to be updated as: |
|
1061 |
|
1062 @{ML_response_fake [display,gray] |
|
1063 "!my_thms" |
|
1064 "[\"True\", \"Suc (Suc 0) = 2\"]"} |
|
1065 |
|
1066 The theorem @{thm [source] trueI_2} only appears once, since the |
|
1067 function @{ML_ind add_thm in Thm} tests for duplicates, before extending |
|
1068 the list. Deletion from the list works as follows: |
|
1069 *} |
|
1070 |
|
1071 declare test[my_thms del] |
|
1072 |
|
1073 text {* After this, the theorem list is again: |
|
1074 |
|
1075 @{ML_response_fake [display,gray] |
|
1076 "!my_thms" |
|
1077 "[\"True\"]"} |
|
1078 |
|
1079 We used in this example two functions declared as @{ML_ind declaration_attribute in Thm}, |
|
1080 but there can be any number of them. We just have to change the parser for reading |
|
1081 the arguments accordingly. |
|
1082 |
|
1083 However, as said at the beginning of this example, using references for storing theorems is |
|
1084 \emph{not} the received way of doing such things. The received way is to |
|
1085 start a ``data slot'', below called @{text MyThmsData}, generated by the functor |
|
1086 @{text GenericDataFun}: |
|
1087 *} |
|
1088 |
|
1089 ML{*structure MyThmsData = GenericDataFun |
|
1090 (type T = thm list |
|
1091 val empty = [] |
|
1092 val extend = I |
|
1093 fun merge _ = Thm.merge_thms) *} |
|
1094 |
|
1095 text {* |
|
1096 The type @{text "T"} of this data slot is @{ML_type "thm list"}.\footnote{FIXME: give a pointer |
|
1097 to where data slots are explained properly.} |
|
1098 To use this data slot, you only have to change @{ML my_thm_add} and |
|
1099 @{ML my_thm_del} to: |
|
1100 *} |
|
1101 |
|
1102 ML{*val my_thm_add = MyThmsData.map o Thm.add_thm |
|
1103 val my_thm_del = MyThmsData.map o Thm.del_thm*} |
|
1104 |
|
1105 text {* |
|
1106 where @{ML MyThmsData.map} updates the data appropriately. The |
|
1107 corresponding theorem attributes are |
|
1108 *} |
|
1109 |
|
1110 ML{*val my_add = Thm.declaration_attribute my_thm_add |
|
1111 val my_del = Thm.declaration_attribute my_thm_del *} |
|
1112 |
|
1113 text {* |
|
1114 and the setup is as follows |
|
1115 *} |
|
1116 |
|
1117 attribute_setup %gray my_thms2 = {* Attrib.add_del my_add my_del *} |
|
1118 "properly maintaining a list of my_thms" |
|
1119 |
|
1120 text {* |
|
1121 Initially, the data slot is empty |
|
1122 |
|
1123 @{ML_response_fake [display,gray] |
|
1124 "MyThmsData.get (Context.Proof @{context})" |
|
1125 "[]"} |
|
1126 |
|
1127 but if you prove |
|
1128 *} |
|
1129 |
|
1130 lemma three[my_thms2]: "3 = Suc (Suc (Suc 0))" by simp |
|
1131 |
|
1132 text {* |
|
1133 then the lemma is recorded. |
|
1134 |
|
1135 @{ML_response_fake [display,gray] |
|
1136 "MyThmsData.get (Context.Proof @{context})" |
|
1137 "[\"3 = Suc (Suc (Suc 0))\"]"} |
|
1138 |
|
1139 With theorem attribute @{text my_thms2} you can also nicely see why it |
|
1140 is important to |
|
1141 store data in a ``data slot'' and \emph{not} in a reference. Backtrack |
|
1142 to the point just before the lemma @{thm [source] three} was proved and |
|
1143 check the the content of @{ML_struct MyThmsData}: it should be empty. |
|
1144 The addition has been properly retracted. Now consider the proof: |
|
1145 *} |
|
1146 |
|
1147 lemma four[my_thms]: "4 = Suc (Suc (Suc (Suc 0)))" by simp |
|
1148 |
|
1149 text {* |
|
1150 Checking the content of @{ML my_thms} gives |
|
1151 |
|
1152 @{ML_response_fake [display,gray] |
|
1153 "!my_thms" |
|
1154 "[\"4 = Suc (Suc (Suc (Suc 0)))\", \"True\"]"} |
|
1155 |
|
1156 as expected, but if you backtrack before the lemma @{thm [source] four}, the |
|
1157 content of @{ML my_thms} is unchanged. The backtracking mechanism |
|
1158 of Isabelle is completely oblivious about what to do with references, but |
|
1159 properly treats ``data slots''! |
|
1160 |
|
1161 Since storing theorems in a list is such a common task, there is the special |
|
1162 functor @{ML_functor Named_Thms}, which does most of the work for you. To obtain |
|
1163 a named theorem list, you just declare |
|
1164 *} |
|
1165 |
|
1166 ML{*structure FooRules = Named_Thms |
|
1167 (val name = "foo" |
|
1168 val description = "Rules for foo") *} |
|
1169 |
|
1170 text {* |
|
1171 and set up the @{ML_struct FooRules} with the command |
|
1172 *} |
|
1173 |
|
1174 setup %gray {* FooRules.setup *} |
|
1175 |
|
1176 text {* |
|
1177 This code declares a data slot where the theorems are stored, |
|
1178 an attribute @{text foo} (with the @{text add} and @{text del} options |
|
1179 for adding and deleting theorems) and an internal ML interface to retrieve and |
|
1180 modify the theorems. |
|
1181 |
|
1182 Furthermore, the facts are made available on the user-level under the dynamic |
|
1183 fact name @{text foo}. For example you can declare three lemmas to be of the kind |
|
1184 @{text foo} by: |
|
1185 *} |
|
1186 |
|
1187 lemma rule1[foo]: "A" sorry |
|
1188 lemma rule2[foo]: "B" sorry |
|
1189 lemma rule3[foo]: "C" sorry |
|
1190 |
|
1191 text {* and undeclare the first one by: *} |
|
1192 |
|
1193 declare rule1[foo del] |
|
1194 |
|
1195 text {* and query the remaining ones with: |
|
1196 |
|
1197 \begin{isabelle} |
|
1198 \isacommand{thm}~@{text "foo"}\\ |
|
1199 @{text "> ?C"}\\ |
|
1200 @{text "> ?B"} |
|
1201 \end{isabelle} |
|
1202 |
|
1203 On the ML-level the rules marked with @{text "foo"} can be retrieved |
|
1204 using the function @{ML FooRules.get}: |
|
1205 |
|
1206 @{ML_response_fake [display,gray] "FooRules.get @{context}" "[\"?C\",\"?B\"]"} |
|
1207 |
|
1208 \begin{readmore} |
|
1209 For more information see @{ML_file "Pure/Tools/named_thms.ML"}. |
|
1210 \end{readmore} |
|
1211 |
|
1212 (FIXME What are: @{text "theory_attributes"}, @{text "proof_attributes"}?) |
|
1213 |
|
1214 |
|
1215 \begin{readmore} |
|
1216 FIXME: @{ML_file "Pure/more_thm.ML"}; parsers for attributes is in |
|
1217 @{ML_file "Pure/Isar/attrib.ML"}...also explained in the chapter about |
|
1218 parsing. |
|
1219 \end{readmore} |
|
1220 *} |
|
1221 |
|
1222 |
|
1223 |
|
1224 section {* Theories, Contexts and Local Theories (TBD) *} |
|
1225 |
|
1226 text {* |
|
1227 There are theories, proof contexts and local theories (in this order, if you |
|
1228 want to order them). |
|
1229 |
|
1230 In contrast to an ordinary theory, which simply consists of a type |
|
1231 signature, as well as tables for constants, axioms and theorems, a local |
|
1232 theory contains additional context information, such as locally fixed |
|
1233 variables and local assumptions that may be used by the package. The type |
|
1234 @{ML_type local_theory} is identical to the type of \emph{proof contexts} |
|
1235 @{ML_type "Proof.context"}, although not every proof context constitutes a |
|
1236 valid local theory. |
|
1237 *} |
|
1238 |
|
1239 (* |
|
1240 ML{*signature UNIVERSAL_TYPE = |
|
1241 sig |
|
1242 type t |
|
1243 |
|
1244 val embed: unit -> ('a -> t) * (t -> 'a option) |
|
1245 end*} |
|
1246 |
|
1247 ML{*structure U:> UNIVERSAL_TYPE = |
|
1248 struct |
|
1249 type t = exn |
|
1250 |
|
1251 fun 'a embed () = |
|
1252 let |
|
1253 exception E of 'a |
|
1254 fun project (e: t): 'a option = |
|
1255 case e of |
|
1256 E a => SOME a |
|
1257 | _ => NONE |
|
1258 in |
|
1259 (E, project) |
|
1260 end |
|
1261 end*} |
|
1262 |
|
1263 text {* |
|
1264 The idea is that type t is the universal type and that each call to embed |
|
1265 returns a new pair of functions (inject, project), where inject embeds a |
|
1266 value into the universal type and project extracts the value from the |
|
1267 universal type. A pair (inject, project) returned by embed works together in |
|
1268 that project u will return SOME v if and only if u was created by inject |
|
1269 v. If u was created by a different function inject', then project returns |
|
1270 NONE. |
|
1271 |
|
1272 in library.ML |
|
1273 *} |
|
1274 |
|
1275 ML_val{*structure Object = struct type T = exn end; *} |
|
1276 |
|
1277 ML{*functor Test (U: UNIVERSAL_TYPE): sig end = |
|
1278 struct |
|
1279 val (intIn: int -> U.t, intOut) = U.embed () |
|
1280 val r: U.t ref = ref (intIn 13) |
|
1281 val s1 = |
|
1282 case intOut (!r) of |
|
1283 NONE => "NONE" |
|
1284 | SOME i => Int.toString i |
|
1285 val (realIn: real -> U.t, realOut) = U.embed () |
|
1286 val () = r := realIn 13.0 |
|
1287 val s2 = |
|
1288 case intOut (!r) of |
|
1289 NONE => "NONE" |
|
1290 | SOME i => Int.toString i |
|
1291 val s3 = |
|
1292 case realOut (!r) of |
|
1293 NONE => "NONE" |
|
1294 | SOME x => Real.toString x |
|
1295 val () = tracing (concat [s1, " ", s2, " ", s3, "\n"]) |
|
1296 end*} |
|
1297 |
|
1298 ML_val{*structure t = Test(U) *} |
|
1299 |
|
1300 ML_val{*structure Datatab = TableFun(type key = int val ord = int_ord);*} |
|
1301 |
|
1302 ML {* LocalTheory.restore *} |
|
1303 ML {* LocalTheory.set_group *} |
|
1304 *) |
|
1305 |
|
1306 section {* Storing Theorems\label{sec:storing} (TBD) *} |
|
1307 |
|
1308 text {* @{ML_ind add_thms_dynamic in PureThy} *} |
|
1309 |
|
1310 local_setup %gray {* |
|
1311 LocalTheory.note Thm.theoremK |
|
1312 ((@{binding "allI_alt"}, []), [@{thm allI}]) #> snd *} |
|
1313 |
|
1314 |
|
1315 (* FIXME: some code below *) |
|
1316 |
|
1317 (*<*) |
|
1318 (* |
|
1319 setup {* |
|
1320 Sign.add_consts_i [(Binding"bar", @{typ "nat"},NoSyn)] |
|
1321 *} |
|
1322 *) |
|
1323 lemma "bar = (1::nat)" |
|
1324 oops |
|
1325 |
|
1326 (* |
|
1327 setup {* |
|
1328 Sign.add_consts_i [("foo", @{typ "nat"},NoSyn)] |
|
1329 #> PureThy.add_defs false [((@{binding "foo_def"}, |
|
1330 Logic.mk_equals (Const ("FirstSteps.foo", @{typ "nat"}), @{term "1::nat"})), [])] |
|
1331 #> snd |
|
1332 *} |
|
1333 *) |
|
1334 (* |
|
1335 lemma "foo = (1::nat)" |
|
1336 apply(simp add: foo_def) |
|
1337 done |
|
1338 |
|
1339 thm foo_def |
|
1340 *) |
|
1341 (*>*) |
|
1342 |
|
1343 section {* Pretty-Printing\label{sec:pretty} *} |
|
1344 |
|
1345 text {* |
|
1346 So far we printed out only plain strings without any formatting except for |
|
1347 occasional explicit line breaks using @{text [quotes] "\\n"}. This is |
|
1348 sufficient for ``quick-and-dirty'' printouts. For something more |
|
1349 sophisticated, Isabelle includes an infrastructure for properly formatting text. |
|
1350 This infrastructure is loosely based on a paper by Oppen~\cite{Oppen80}. Most of |
|
1351 its functions do not operate on @{ML_type string}s, but on instances of the |
|
1352 type: |
|
1353 |
|
1354 @{ML_type_ind [display, gray] "Pretty.T"} |
|
1355 |
|
1356 The function @{ML str in Pretty} transforms a (plain) string into such a pretty |
|
1357 type. For example |
|
1358 |
|
1359 @{ML_response_fake [display,gray] |
|
1360 "Pretty.str \"test\"" "String (\"test\", 4)"} |
|
1361 |
|
1362 where the result indicates that we transformed a string with length 4. Once |
|
1363 you have a pretty type, you can, for example, control where linebreaks may |
|
1364 occur in case the text wraps over a line, or with how much indentation a |
|
1365 text should be printed. However, if you want to actually output the |
|
1366 formatted text, you have to transform the pretty type back into a @{ML_type |
|
1367 string}. This can be done with the function @{ML_ind string_of in Pretty}. In what |
|
1368 follows we will use the following wrapper function for printing a pretty |
|
1369 type: |
|
1370 *} |
|
1371 |
|
1372 ML{*fun pprint prt = tracing (Pretty.string_of prt)*} |
|
1373 |
|
1374 text {* |
|
1375 The point of the pretty-printing infrastructure is to give hints about how to |
|
1376 layout text and let Isabelle do the actual layout. Let us first explain |
|
1377 how you can insert places where a line break can occur. For this assume the |
|
1378 following function that replicates a string n times: |
|
1379 *} |
|
1380 |
|
1381 ML{*fun rep n str = implode (replicate n str) *} |
|
1382 |
|
1383 text {* |
|
1384 and suppose we want to print out the string: |
|
1385 *} |
|
1386 |
|
1387 ML{*val test_str = rep 8 "fooooooooooooooobaaaaaaaaaaaar "*} |
|
1388 |
|
1389 text {* |
|
1390 We deliberately chose a large string so that it spans over more than one line. |
|
1391 If we print out the string using the usual ``quick-and-dirty'' method, then |
|
1392 we obtain the ugly output: |
|
1393 |
|
1394 @{ML_response_fake [display,gray] |
|
1395 "tracing test_str" |
|
1396 "fooooooooooooooobaaaaaaaaaaaar fooooooooooooooobaaaaaaaaaaaar foooooooooo |
|
1397 ooooobaaaaaaaaaaaar fooooooooooooooobaaaaaaaaaaaar fooooooooooooooobaaaaa |
|
1398 aaaaaaar fooooooooooooooobaaaaaaaaaaaar fooooooooooooooobaaaaaaaaaaaar fo |
|
1399 oooooooooooooobaaaaaaaaaaaar"} |
|
1400 |
|
1401 We obtain the same if we just use |
|
1402 |
|
1403 @{ML_response_fake [display,gray] |
|
1404 "pprint (Pretty.str test_str)" |
|
1405 "fooooooooooooooobaaaaaaaaaaaar fooooooooooooooobaaaaaaaaaaaar foooooooooo |
|
1406 ooooobaaaaaaaaaaaar fooooooooooooooobaaaaaaaaaaaar fooooooooooooooobaaaaa |
|
1407 aaaaaaar fooooooooooooooobaaaaaaaaaaaar fooooooooooooooobaaaaaaaaaaaar fo |
|
1408 oooooooooooooobaaaaaaaaaaaar"} |
|
1409 |
|
1410 However by using pretty types you have the ability to indicate a possible |
|
1411 line break for example at each space. You can achieve this with the function |
|
1412 @{ML_ind breaks in Pretty}, which expects a list of pretty types and inserts a |
|
1413 possible line break in between every two elements in this list. To print |
|
1414 this list of pretty types as a single string, we concatenate them |
|
1415 with the function @{ML_ind blk in Pretty} as follows: |
|
1416 |
|
1417 |
|
1418 @{ML_response_fake [display,gray] |
|
1419 "let |
|
1420 val ptrs = map Pretty.str (space_explode \" \" test_str) |
|
1421 in |
|
1422 pprint (Pretty.blk (0, Pretty.breaks ptrs)) |
|
1423 end" |
|
1424 "fooooooooooooooobaaaaaaaaaaaar fooooooooooooooobaaaaaaaaaaaar |
|
1425 fooooooooooooooobaaaaaaaaaaaar fooooooooooooooobaaaaaaaaaaaar |
|
1426 fooooooooooooooobaaaaaaaaaaaar fooooooooooooooobaaaaaaaaaaaar |
|
1427 fooooooooooooooobaaaaaaaaaaaar fooooooooooooooobaaaaaaaaaaaar"} |
|
1428 |
|
1429 Here the layout of @{ML test_str} is much more pleasing to the |
|
1430 eye. The @{ML "0"} in @{ML_ind blk in Pretty} stands for no indentation |
|
1431 of the printed string. You can increase the indentation and obtain |
|
1432 |
|
1433 @{ML_response_fake [display,gray] |
|
1434 "let |
|
1435 val ptrs = map Pretty.str (space_explode \" \" test_str) |
|
1436 in |
|
1437 pprint (Pretty.blk (3, Pretty.breaks ptrs)) |
|
1438 end" |
|
1439 "fooooooooooooooobaaaaaaaaaaaar fooooooooooooooobaaaaaaaaaaaar |
|
1440 fooooooooooooooobaaaaaaaaaaaar fooooooooooooooobaaaaaaaaaaaar |
|
1441 fooooooooooooooobaaaaaaaaaaaar fooooooooooooooobaaaaaaaaaaaar |
|
1442 fooooooooooooooobaaaaaaaaaaaar fooooooooooooooobaaaaaaaaaaaar"} |
|
1443 |
|
1444 where starting from the second line the indent is 3. If you want |
|
1445 that every line starts with the same indent, you can use the |
|
1446 function @{ML_ind indent in Pretty} as follows: |
|
1447 |
|
1448 @{ML_response_fake [display,gray] |
|
1449 "let |
|
1450 val ptrs = map Pretty.str (space_explode \" \" test_str) |
|
1451 in |
|
1452 pprint (Pretty.indent 10 (Pretty.blk (0, Pretty.breaks ptrs))) |
|
1453 end" |
|
1454 " fooooooooooooooobaaaaaaaaaaaar fooooooooooooooobaaaaaaaaaaaar |
|
1455 fooooooooooooooobaaaaaaaaaaaar fooooooooooooooobaaaaaaaaaaaar |
|
1456 fooooooooooooooobaaaaaaaaaaaar fooooooooooooooobaaaaaaaaaaaar |
|
1457 fooooooooooooooobaaaaaaaaaaaar fooooooooooooooobaaaaaaaaaaaar"} |
|
1458 |
|
1459 If you want to print out a list of items separated by commas and |
|
1460 have the linebreaks handled properly, you can use the function |
|
1461 @{ML_ind commas in Pretty}. For example |
|
1462 |
|
1463 @{ML_response_fake [display,gray] |
|
1464 "let |
|
1465 val ptrs = map (Pretty.str o string_of_int) (99998 upto 100020) |
|
1466 in |
|
1467 pprint (Pretty.blk (0, Pretty.commas ptrs)) |
|
1468 end" |
|
1469 "99998, 99999, 100000, 100001, 100002, 100003, 100004, 100005, 100006, |
|
1470 100007, 100008, 100009, 100010, 100011, 100012, 100013, 100014, 100015, |
|
1471 100016, 100017, 100018, 100019, 100020"} |
|
1472 |
|
1473 where @{ML upto} generates a list of integers. You can print out this |
|
1474 list as a ``set'', that means enclosed inside @{text [quotes] "{"} and |
|
1475 @{text [quotes] "}"}, and separated by commas using the function |
|
1476 @{ML_ind enum in Pretty}. For example |
|
1477 *} |
|
1478 |
|
1479 text {* |
|
1480 |
|
1481 @{ML_response_fake [display,gray] |
|
1482 "let |
|
1483 val ptrs = map (Pretty.str o string_of_int) (99998 upto 100020) |
|
1484 in |
|
1485 pprint (Pretty.enum \",\" \"{\" \"}\" ptrs) |
|
1486 end" |
|
1487 "{99998, 99999, 100000, 100001, 100002, 100003, 100004, 100005, 100006, |
|
1488 100007, 100008, 100009, 100010, 100011, 100012, 100013, 100014, 100015, |
|
1489 100016, 100017, 100018, 100019, 100020}"} |
|
1490 |
|
1491 As can be seen, this function prints out the ``set'' so that starting |
|
1492 from the second, each new line as an indentation of 2. |
|
1493 |
|
1494 If you print out something that goes beyond the capabilities of the |
|
1495 standard functions, you can do relatively easily the formatting |
|
1496 yourself. Assume you want to print out a list of items where like in ``English'' |
|
1497 the last two items are separated by @{text [quotes] "and"}. For this you can |
|
1498 write the function |
|
1499 |
|
1500 *} |
|
1501 |
|
1502 ML %linenosgray{*fun and_list [] = [] |
|
1503 | and_list [x] = [x] |
|
1504 | and_list xs = |
|
1505 let |
|
1506 val (front, last) = split_last xs |
|
1507 in |
|
1508 (Pretty.commas front) @ |
|
1509 [Pretty.brk 1, Pretty.str "and", Pretty.brk 1, last] |
|
1510 end *} |
|
1511 |
|
1512 text {* |
|
1513 where Line 7 prints the beginning of the list and Line |
|
1514 8 the last item. We have to use @{ML "Pretty.brk 1"} in order |
|
1515 to insert a space (of length 1) before the |
|
1516 @{text [quotes] "and"}. This space is also a place where a line break |
|
1517 can occur. We do the same after the @{text [quotes] "and"}. This gives you |
|
1518 for example |
|
1519 |
|
1520 @{ML_response_fake [display,gray] |
|
1521 "let |
|
1522 val ptrs = map (Pretty.str o string_of_int) (1 upto 22) |
|
1523 in |
|
1524 pprint (Pretty.blk (0, and_list ptrs)) |
|
1525 end" |
|
1526 "1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21 |
|
1527 and 22"} |
|
1528 |
|
1529 Next we like to pretty-print a term and its type. For this we use the |
|
1530 function @{text "tell_type"}. |
|
1531 *} |
|
1532 |
|
1533 ML %linenosgray{*fun tell_type ctxt t = |
|
1534 let |
|
1535 fun pstr s = Pretty.breaks (map Pretty.str (space_explode " " s)) |
|
1536 val ptrm = Pretty.quote (Syntax.pretty_term ctxt t) |
|
1537 val pty = Pretty.quote (Syntax.pretty_typ ctxt (fastype_of t)) |
|
1538 in |
|
1539 pprint (Pretty.blk (0, |
|
1540 (pstr "The term " @ [ptrm] @ pstr " has type " |
|
1541 @ [pty, Pretty.str "."]))) |
|
1542 end*} |
|
1543 |
|
1544 text {* |
|
1545 In Line 3 we define a function that inserts possible linebreaks in places |
|
1546 where a space is. In Lines 4 and 5 we pretty-print the term and its type |
|
1547 using the functions @{ML_ind pretty_term in Syntax} and @{ML_ind |
|
1548 pretty_typ in Syntax}. We also use the function @{ML_ind quote in |
|
1549 Pretty} in order to enclose the term and type inside quotation marks. In |
|
1550 Line 9 we add a period right after the type without the possibility of a |
|
1551 line break, because we do not want that a line break occurs there. |
|
1552 |
|
1553 |
|
1554 Now you can write |
|
1555 |
|
1556 @{ML_response_fake [display,gray] |
|
1557 "tell_type @{context} @{term \"min (Suc 0)\"}" |
|
1558 "The term \"min (Suc 0)\" has type \"nat \<Rightarrow> nat\"."} |
|
1559 |
|
1560 To see the proper line breaking, you can try out the function on a bigger term |
|
1561 and type. For example: |
|
1562 |
|
1563 @{ML_response_fake [display,gray] |
|
1564 "tell_type @{context} @{term \"op = (op = (op = (op = (op = op =))))\"}" |
|
1565 "The term \"op = (op = (op = (op = (op = op =))))\" has type |
|
1566 \"((((('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> bool) \<Rightarrow> bool) \<Rightarrow> bool) \<Rightarrow> bool) \<Rightarrow> bool\"."} |
|
1567 |
|
1568 |
|
1569 FIXME: TBD below |
|
1570 *} |
|
1571 |
|
1572 ML {* pprint (Pretty.big_list "header" (map (Pretty.str o string_of_int) (4 upto 10))) *} |
|
1573 |
|
1574 text {* |
|
1575 chunks inserts forced breaks (unlike blk where you have to do this yourself) |
|
1576 *} |
|
1577 |
|
1578 ML {* (Pretty.chunks [Pretty.str "a", Pretty.str "b"], |
|
1579 Pretty.blk (0, [Pretty.str "a", Pretty.str "b"])) *} |
|
1580 |
|
1581 ML {* |
|
1582 fun setmp_show_all_types f = |
|
1583 setmp show_all_types |
|
1584 (! show_types orelse ! show_sorts orelse ! show_all_types) f; |
|
1585 |
|
1586 val ctxt = @{context}; |
|
1587 val t1 = @{term "undefined::nat"}; |
|
1588 val t2 = @{term "Suc y"}; |
|
1589 val pty = Pretty.block (Pretty.breaks |
|
1590 [(setmp show_question_marks false o setmp_show_all_types) |
|
1591 (Syntax.pretty_term ctxt) t1, |
|
1592 Pretty.str "=", Syntax.pretty_term ctxt t2]); |
|
1593 pty |> Pretty.string_of |> priority |
|
1594 *} |
|
1595 |
|
1596 text {* the infrastructure of Syntax-pretty-term makes sure it is printed nicely *} |
|
1597 |
|
1598 |
|
1599 ML {* Pretty.mark Markup.hilite (Pretty.str "foo") |> Pretty.string_of |> tracing *} |
|
1600 ML {* (Pretty.str "bar") |> Pretty.string_of |> tracing *} |
|
1601 |
|
1602 |
|
1603 ML {* Pretty.mark Markup.subgoal (Pretty.str "foo") |> Pretty.string_of |> tracing *} |
|
1604 ML {* (Pretty.str "bar") |> Pretty.string_of |> tracing *} |
|
1605 |
|
1606 text {* |
|
1607 Still to be done: |
|
1608 |
|
1609 What happens with big formulae? |
|
1610 |
|
1611 \begin{readmore} |
|
1612 The general infrastructure for pretty-printing is implemented in the file |
|
1613 @{ML_file "Pure/General/pretty.ML"}. The file @{ML_file "Pure/Syntax/syntax.ML"} |
|
1614 contains pretty-printing functions for terms, types, theorems and so on. |
|
1615 |
|
1616 @{ML_file "Pure/General/markup.ML"} |
|
1617 \end{readmore} |
|
1618 *} |
|
1619 |
|
1620 text {* |
|
1621 printing into the goal buffer as part of the proof state |
|
1622 *} |
|
1623 |
|
1624 |
|
1625 ML {* Pretty.mark Markup.hilite (Pretty.str "foo") |> Pretty.string_of |> tracing *} |
|
1626 ML {* (Pretty.str "bar") |> Pretty.string_of |> tracing *} |
|
1627 |
|
1628 text {* writing into the goal buffer *} |
|
1629 |
|
1630 ML {* fun my_hook interactive state = |
|
1631 (interactive ? Proof.goal_message (fn () => Pretty.str |
|
1632 "foo")) state |
|
1633 *} |
|
1634 |
|
1635 setup %gray {* Context.theory_map (Specification.add_theorem_hook my_hook) *} |
|
1636 |
|
1637 lemma "False" |
|
1638 oops |
|
1639 |
|
1640 |
|
1641 section {* Misc (TBD) *} |
|
1642 |
|
1643 ML {*Datatype.get_info @{theory} "List.list"*} |
|
1644 |
|
1645 section {* Name Space Issues (TBD) *} |
|
1646 |
|
1647 |
|
1648 end |