829 therefore we are not interested in them in this Tutorial, except in |
829 therefore we are not interested in them in this Tutorial, except in |
830 Appendix \ref{rec:docantiquotations} where we show how to implement your |
830 Appendix \ref{rec:docantiquotations} where we show how to implement your |
831 own document antiquotations. |
831 own document antiquotations. |
832 *} |
832 *} |
833 |
833 |
834 section {* Terms and Types *} |
|
835 |
|
836 text {* |
|
837 One way to construct Isabelle terms, is by using the antiquotation |
|
838 \mbox{@{text "@{term \<dots>}"}}. For example |
|
839 |
|
840 @{ML_response [display,gray] |
|
841 "@{term \"(a::nat) + b = c\"}" |
|
842 "Const (\"op =\", \<dots>) $ |
|
843 (Const (\"HOL.plus_class.plus\", \<dots>) $ \<dots> $ \<dots>) $ \<dots>"} |
|
844 |
|
845 will show the term @{term "(a::nat) + b = c"}, but printed using the internal |
|
846 representation corresponding to the datatype @{ML_type "term"} defined as follows: |
|
847 *} |
|
848 |
|
849 ML_val %linenosgray{*datatype term = |
|
850 Const of string * typ |
|
851 | Free of string * typ |
|
852 | Var of indexname * typ |
|
853 | Bound of int |
|
854 | Abs of string * typ * term |
|
855 | $ of term * term *} |
|
856 |
|
857 text {* |
|
858 This datatype implements lambda-terms typed in Church-style. |
|
859 As can be seen in Line 5, terms use the usual de Bruijn index mechanism |
|
860 for representing bound variables. For |
|
861 example in |
|
862 |
|
863 @{ML_response_fake [display, gray] |
|
864 "@{term \"\<lambda>x y. x y\"}" |
|
865 "Abs (\"x\", \"'a \<Rightarrow> 'b\", Abs (\"y\", \"'a\", Bound 1 $ Bound 0))"} |
|
866 |
|
867 the indices refer to the number of Abstractions (@{ML Abs}) that we need to |
|
868 skip until we hit the @{ML Abs} that binds the corresponding |
|
869 variable. Constructing a term with dangling de Bruijn indices is possible, |
|
870 but will be flagged as ill-formed when you try to typecheck or certify it |
|
871 (see Section~\ref{sec:typechecking}). Note that the names of bound variables |
|
872 are kept at abstractions for printing purposes, and so should be treated |
|
873 only as ``comments''. Application in Isabelle is realised with the |
|
874 term-constructor @{ML $}. |
|
875 |
|
876 Isabelle makes a distinction between \emph{free} variables (term-constructor |
|
877 @{ML Free} and written on the user level in blue colour) and |
|
878 \emph{schematic} variables (term-constructor @{ML Var} and written with a |
|
879 leading question mark). Consider the following two examples |
|
880 |
|
881 @{ML_response_fake [display, gray] |
|
882 "let |
|
883 val v1 = Var ((\"x\", 3), @{typ bool}) |
|
884 val v2 = Var ((\"x1\", 3), @{typ bool}) |
|
885 val v3 = Free (\"x\", @{typ bool}) |
|
886 in |
|
887 string_of_terms @{context} [v1, v2, v3] |
|
888 |> tracing |
|
889 end" |
|
890 "?x3, ?x1.3, x"} |
|
891 |
|
892 When constructing terms, you are usually concerned with free variables (as |
|
893 mentioned earlier, you cannot construct schematic variables using the |
|
894 antiquotation @{text "@{term \<dots>}"}). If you deal with theorems, you have to, |
|
895 however, observe the distinction. The reason is that only schematic |
|
896 varaibles can be instantiated with terms when a theorem is applied. A |
|
897 similar distinction between free and schematic variables holds for types |
|
898 (see below). |
|
899 |
|
900 \begin{readmore} |
|
901 Terms and types are described in detail in \isccite{sec:terms}. Their |
|
902 definition and many useful operations are implemented in @{ML_file "Pure/term.ML"}. |
|
903 For constructing terms involving HOL constants, many helper functions are defined |
|
904 in @{ML_file "HOL/Tools/hologic.ML"}. |
|
905 \end{readmore} |
|
906 |
|
907 Constructing terms via antiquotations has the advantage that only typable |
|
908 terms can be constructed. For example |
|
909 |
|
910 @{ML_response_fake_both [display,gray] |
|
911 "@{term \"x x\"}" |
|
912 "Type unification failed: Occurs check!"} |
|
913 |
|
914 raises a typing error, while it perfectly ok to construct the term |
|
915 |
|
916 @{ML_response_fake [display,gray] |
|
917 "let |
|
918 val omega = Free (\"x\", @{typ nat}) $ Free (\"x\", @{typ nat}) |
|
919 in |
|
920 tracing (string_of_term @{context} omega) |
|
921 end" |
|
922 "x x"} |
|
923 |
|
924 with the raw ML-constructors. |
|
925 |
|
926 Sometimes the internal representation of terms can be surprisingly different |
|
927 from what you see at the user-level, because the layers of |
|
928 parsing/type-checking/pretty printing can be quite elaborate. |
|
929 |
|
930 \begin{exercise} |
|
931 Look at the internal term representation of the following terms, and |
|
932 find out why they are represented like this: |
|
933 |
|
934 \begin{itemize} |
|
935 \item @{term "case x of 0 \<Rightarrow> 0 | Suc y \<Rightarrow> y"} |
|
936 \item @{term "\<lambda>(x,y). P y x"} |
|
937 \item @{term "{ [x::int] | x. x \<le> -2 }"} |
|
938 \end{itemize} |
|
939 |
|
940 Hint: The third term is already quite big, and the pretty printer |
|
941 may omit parts of it by default. If you want to see all of it, you |
|
942 can use the following ML-function to set the printing depth to a higher |
|
943 value: |
|
944 |
|
945 @{ML [display,gray] "print_depth 50"} |
|
946 \end{exercise} |
|
947 |
|
948 The antiquotation @{text "@{prop \<dots>}"} constructs terms by inserting the |
|
949 usually invisible @{text "Trueprop"}-coercions whenever necessary. |
|
950 Consider for example the pairs |
|
951 |
|
952 @{ML_response [display,gray] "(@{term \"P x\"}, @{prop \"P x\"})" |
|
953 "(Free (\"P\", \<dots>) $ Free (\"x\", \<dots>), |
|
954 Const (\"Trueprop\", \<dots>) $ (Free (\"P\", \<dots>) $ Free (\"x\", \<dots>)))"} |
|
955 |
|
956 where a coercion is inserted in the second component and |
|
957 |
|
958 @{ML_response [display,gray] "(@{term \"P x \<Longrightarrow> Q x\"}, @{prop \"P x \<Longrightarrow> Q x\"})" |
|
959 "(Const (\"==>\", \<dots>) $ \<dots> $ \<dots>, |
|
960 Const (\"==>\", \<dots>) $ \<dots> $ \<dots>)"} |
|
961 |
|
962 where it is not (since it is already constructed by a meta-implication). |
|
963 The purpose of the @{text "Trueprop"}-coercion is to embed formulae of |
|
964 an object logic, for example HOL, into the meta-logic of Isabelle. It |
|
965 is needed whenever a term is constructed that will be proved as a theorem. |
|
966 |
|
967 As already seen above, types can be constructed using the antiquotation |
|
968 @{text "@{typ \<dots>}"}. For example: |
|
969 |
|
970 @{ML_response_fake [display,gray] "@{typ \"bool \<Rightarrow> nat\"}" "bool \<Rightarrow> nat"} |
|
971 |
|
972 The corresponding datatype is |
|
973 *} |
|
974 |
|
975 ML_val{*datatype typ = |
|
976 Type of string * typ list |
|
977 | TFree of string * sort |
|
978 | TVar of indexname * sort *} |
|
979 |
|
980 text {* |
|
981 Like with terms, there is the distinction between free type |
|
982 variables (term-constructor @{ML "TFree"} and schematic |
|
983 type variables (term-constructor @{ML "TVar"}). A type constant, |
|
984 like @{typ "int"} or @{typ bool}, are types with an empty list |
|
985 of argument types. However, it is a bit difficult to show an |
|
986 example, because Isabelle always pretty-prints types (unlike terms). |
|
987 Here is a contrived example: |
|
988 |
|
989 @{ML_response [display, gray] |
|
990 "if Type (\"bool\", []) = @{typ \"bool\"} then true else false" |
|
991 "true"} |
|
992 |
|
993 \begin{readmore} |
|
994 Types are described in detail in \isccite{sec:types}. Their |
|
995 definition and many useful operations are implemented |
|
996 in @{ML_file "Pure/type.ML"}. |
|
997 \end{readmore} |
|
998 *} |
|
999 |
|
1000 section {* Constructing Terms and Types Manually\label{sec:terms_types_manually} *} |
|
1001 |
|
1002 text {* |
|
1003 While antiquotations are very convenient for constructing terms, they can |
|
1004 only construct fixed terms (remember they are ``linked'' at compile-time). |
|
1005 However, you often need to construct terms dynamically. For example, a |
|
1006 function that returns the implication @{text "\<And>(x::nat). P x \<Longrightarrow> Q x"} taking |
|
1007 @{term P} and @{term Q} as arguments can only be written as: |
|
1008 |
|
1009 *} |
|
1010 |
|
1011 ML{*fun make_imp P Q = |
|
1012 let |
|
1013 val x = Free ("x", @{typ nat}) |
|
1014 in |
|
1015 Logic.all x (Logic.mk_implies (P $ x, Q $ x)) |
|
1016 end *} |
|
1017 |
|
1018 text {* |
|
1019 The reason is that you cannot pass the arguments @{term P} and @{term Q} |
|
1020 into an antiquotation.\footnote{At least not at the moment.} For example |
|
1021 the following does \emph{not} work. |
|
1022 *} |
|
1023 |
|
1024 ML{*fun make_wrong_imp P Q = @{prop "\<And>(x::nat). P x \<Longrightarrow> Q x"} *} |
|
1025 |
|
1026 text {* |
|
1027 To see this, apply @{text "@{term S}"} and @{text "@{term T}"} |
|
1028 to both functions. With @{ML make_imp} you obtain the intended term involving |
|
1029 the given arguments |
|
1030 |
|
1031 @{ML_response [display,gray] "make_imp @{term S} @{term T}" |
|
1032 "Const \<dots> $ |
|
1033 Abs (\"x\", Type (\"nat\",[]), |
|
1034 Const \<dots> $ (Free (\"S\",\<dots>) $ \<dots>) $ (Free (\"T\",\<dots>) $ \<dots>))"} |
|
1035 |
|
1036 whereas with @{ML make_wrong_imp} you obtain a term involving the @{term "P"} |
|
1037 and @{text "Q"} from the antiquotation. |
|
1038 |
|
1039 @{ML_response [display,gray] "make_wrong_imp @{term S} @{term T}" |
|
1040 "Const \<dots> $ |
|
1041 Abs (\"x\", \<dots>, |
|
1042 Const \<dots> $ (Const \<dots> $ (Free (\"P\",\<dots>) $ \<dots>)) $ |
|
1043 (Const \<dots> $ (Free (\"Q\",\<dots>) $ \<dots>)))"} |
|
1044 |
|
1045 There are a number of handy functions that are frequently used for |
|
1046 constructing terms. One is the function @{ML_ind list_comb}, which takes a term |
|
1047 and a list of terms as arguments, and produces as output the term |
|
1048 list applied to the term. For example |
|
1049 |
|
1050 @{ML_response_fake [display,gray] |
|
1051 "let |
|
1052 val trm = @{term \"P::nat\"} |
|
1053 val args = [@{term \"True\"}, @{term \"False\"}] |
|
1054 in |
|
1055 list_comb (trm, args) |
|
1056 end" |
|
1057 "Free (\"P\", \"nat\") $ Const (\"True\", \"bool\") $ Const (\"False\", \"bool\")"} |
|
1058 |
|
1059 Another handy function is @{ML_ind lambda}, which abstracts a variable |
|
1060 in a term. For example |
|
1061 |
|
1062 @{ML_response_fake [display,gray] |
|
1063 "let |
|
1064 val x_nat = @{term \"x::nat\"} |
|
1065 val trm = @{term \"(P::nat \<Rightarrow> bool) x\"} |
|
1066 in |
|
1067 lambda x_nat trm |
|
1068 end" |
|
1069 "Abs (\"x\", \"nat\", Free (\"P\", \"bool \<Rightarrow> bool\") $ Bound 0)"} |
|
1070 |
|
1071 In this example, @{ML lambda} produces a de Bruijn index (i.e.~@{ML "Bound 0"}), |
|
1072 and an abstraction. It also records the type of the abstracted |
|
1073 variable and for printing purposes also its name. Note that because of the |
|
1074 typing annotation on @{text "P"}, the variable @{text "x"} in @{text "P x"} |
|
1075 is of the same type as the abstracted variable. If it is of different type, |
|
1076 as in |
|
1077 |
|
1078 @{ML_response_fake [display,gray] |
|
1079 "let |
|
1080 val x_int = @{term \"x::int\"} |
|
1081 val trm = @{term \"(P::nat \<Rightarrow> bool) x\"} |
|
1082 in |
|
1083 lambda x_int trm |
|
1084 end" |
|
1085 "Abs (\"x\", \"int\", Free (\"P\", \"nat \<Rightarrow> bool\") $ Free (\"x\", \"nat\"))"} |
|
1086 |
|
1087 then the variable @{text "Free (\"x\", \"int\")"} is \emph{not} abstracted. |
|
1088 This is a fundamental principle |
|
1089 of Church-style typing, where variables with the same name still differ, if they |
|
1090 have different type. |
|
1091 |
|
1092 There is also the function @{ML_ind subst_free} with which terms can be |
|
1093 replaced by other terms. For example below, we will replace in @{term |
|
1094 "(f::nat \<Rightarrow> nat \<Rightarrow> nat) 0 x"} the subterm @{term "(f::nat \<Rightarrow> nat \<Rightarrow> nat) 0"} by |
|
1095 @{term y}, and @{term x} by @{term True}. |
|
1096 |
|
1097 @{ML_response_fake [display,gray] |
|
1098 "let |
|
1099 val sub1 = (@{term \"(f::nat \<Rightarrow> nat \<Rightarrow> nat) 0\"}, @{term \"y::nat \<Rightarrow> nat\"}) |
|
1100 val sub2 = (@{term \"x::nat\"}, @{term \"True\"}) |
|
1101 val trm = @{term \"((f::nat \<Rightarrow> nat \<Rightarrow> nat) 0) x\"} |
|
1102 in |
|
1103 subst_free [sub1, sub2] trm |
|
1104 end" |
|
1105 "Free (\"y\", \"nat \<Rightarrow> nat\") $ Const (\"True\", \"bool\")"} |
|
1106 |
|
1107 As can be seen, @{ML subst_free} does not take typability into account. |
|
1108 However it takes alpha-equivalence into account: |
|
1109 |
|
1110 @{ML_response_fake [display, gray] |
|
1111 "let |
|
1112 val sub = (@{term \"(\<lambda>y::nat. y)\"}, @{term \"x::nat\"}) |
|
1113 val trm = @{term \"(\<lambda>x::nat. x)\"} |
|
1114 in |
|
1115 subst_free [sub] trm |
|
1116 end" |
|
1117 "Free (\"x\", \"nat\")"} |
|
1118 |
|
1119 Similarly the function @{ML_ind subst_bounds}, replaces lose bound |
|
1120 variables with terms. To see how this function works, let us implement a |
|
1121 function that strips off the outermost quantifiers in a term. |
|
1122 *} |
|
1123 |
|
1124 ML{*fun strip_alls (Const ("All", _) $ Abs (n, T, t)) = |
|
1125 strip_alls t |>> cons (Free (n, T)) |
|
1126 | strip_alls t = ([], t) *} |
|
1127 |
|
1128 text {* |
|
1129 The function returns a pair consisting of the stripped off variables and |
|
1130 the body of the universal quantifications. For example |
|
1131 |
|
1132 @{ML_response_fake [display, gray] |
|
1133 "strip_alls @{term \"\<forall>x y. x = (y::bool)\"}" |
|
1134 "([Free (\"x\", \"bool\"), Free (\"y\", \"bool\")], |
|
1135 Const (\"op =\", \<dots>) $ Bound 1 $ Bound 0)"} |
|
1136 |
|
1137 After calling @{ML strip_alls}, you obtain a term with lose bound variables. With |
|
1138 the function @{ML subst_bounds}, you can replace these lose @{ML_ind |
|
1139 Bound}s with the stripped off variables. |
|
1140 |
|
1141 @{ML_response_fake [display, gray, linenos] |
|
1142 "let |
|
1143 val (vrs, trm) = strip_alls @{term \"\<forall>x y. x = (y::bool)\"} |
|
1144 in |
|
1145 subst_bounds (rev vrs, trm) |
|
1146 |> string_of_term @{context} |
|
1147 |> tracing |
|
1148 end" |
|
1149 "x = y"} |
|
1150 |
|
1151 Note that in Line 4 we had to reverse the list of variables that @{ML strip_alls} |
|
1152 returned. The reason is that the head of the list the function @{ML subst_bounds} |
|
1153 takes is the replacement for @{ML "Bound 0"}, the next element for @{ML "Bound 1"} |
|
1154 and so on. |
|
1155 |
|
1156 There are many convenient functions that construct specific HOL-terms. For |
|
1157 example @{ML_ind mk_eq in HOLogic} constructs an equality out of two terms. |
|
1158 The types needed in this equality are calculated from the type of the |
|
1159 arguments. For example |
|
1160 |
|
1161 @{ML_response_fake [gray,display] |
|
1162 "let |
|
1163 val eq = HOLogic.mk_eq (@{term \"True\"}, @{term \"False\"}) |
|
1164 in |
|
1165 string_of_term @{context} eq |
|
1166 |> tracing |
|
1167 end" |
|
1168 "True = False"} |
|
1169 *} |
|
1170 |
|
1171 text {* |
|
1172 \begin{readmore} |
|
1173 There are many functions in @{ML_file "Pure/term.ML"}, @{ML_file |
|
1174 "Pure/logic.ML"} and @{ML_file "HOL/Tools/hologic.ML"} that make such manual |
|
1175 constructions of terms and types easier. |
|
1176 \end{readmore} |
|
1177 |
|
1178 When constructing terms manually, there are a few subtle issues with |
|
1179 constants. They usually crop up when pattern matching terms or types, or |
|
1180 when constructing them. While it is perfectly ok to write the function |
|
1181 @{text is_true} as follows |
|
1182 *} |
|
1183 |
|
1184 ML{*fun is_true @{term True} = true |
|
1185 | is_true _ = false*} |
|
1186 |
|
1187 text {* |
|
1188 this does not work for picking out @{text "\<forall>"}-quantified terms. Because |
|
1189 the function |
|
1190 *} |
|
1191 |
|
1192 ML{*fun is_all (@{term All} $ _) = true |
|
1193 | is_all _ = false*} |
|
1194 |
|
1195 text {* |
|
1196 will not correctly match the formula @{prop[source] "\<forall>x::nat. P x"}: |
|
1197 |
|
1198 @{ML_response [display,gray] "is_all @{term \"\<forall>x::nat. P x\"}" "false"} |
|
1199 |
|
1200 The problem is that the @{text "@term"}-antiquotation in the pattern |
|
1201 fixes the type of the constant @{term "All"} to be @{typ "('a \<Rightarrow> bool) \<Rightarrow> bool"} for |
|
1202 an arbitrary, but fixed type @{typ "'a"}. A properly working alternative |
|
1203 for this function is |
|
1204 *} |
|
1205 |
|
1206 ML{*fun is_all (Const ("All", _) $ _) = true |
|
1207 | is_all _ = false*} |
|
1208 |
|
1209 text {* |
|
1210 because now |
|
1211 |
|
1212 @{ML_response [display,gray] "is_all @{term \"\<forall>x::nat. P x\"}" "true"} |
|
1213 |
|
1214 matches correctly (the first wildcard in the pattern matches any type and the |
|
1215 second any term). |
|
1216 |
|
1217 However there is still a problem: consider the similar function that |
|
1218 attempts to pick out @{text "Nil"}-terms: |
|
1219 *} |
|
1220 |
|
1221 ML{*fun is_nil (Const ("Nil", _)) = true |
|
1222 | is_nil _ = false *} |
|
1223 |
|
1224 text {* |
|
1225 Unfortunately, also this function does \emph{not} work as expected, since |
|
1226 |
|
1227 @{ML_response [display,gray] "is_nil @{term \"Nil\"}" "false"} |
|
1228 |
|
1229 The problem is that on the ML-level the name of a constant is more |
|
1230 subtle than you might expect. The function @{ML is_all} worked correctly, |
|
1231 because @{term "All"} is such a fundamental constant, which can be referenced |
|
1232 by @{ML "Const (\"All\", some_type)" for some_type}. However, if you look at |
|
1233 |
|
1234 @{ML_response [display,gray] "@{term \"Nil\"}" "Const (\"List.list.Nil\", \<dots>)"} |
|
1235 |
|
1236 the name of the constant @{text "Nil"} depends on the theory in which the |
|
1237 term constructor is defined (@{text "List"}) and also in which datatype |
|
1238 (@{text "list"}). Even worse, some constants have a name involving |
|
1239 type-classes. Consider for example the constants for @{term "zero"} and |
|
1240 \mbox{@{text "(op *)"}}: |
|
1241 |
|
1242 @{ML_response [display,gray] "(@{term \"0::nat\"}, @{term \"(op *)\"})" |
|
1243 "(Const (\"HOL.zero_class.zero\", \<dots>), |
|
1244 Const (\"HOL.times_class.times\", \<dots>))"} |
|
1245 |
|
1246 While you could use the complete name, for example |
|
1247 @{ML "Const (\"List.list.Nil\", some_type)" for some_type}, for referring to or |
|
1248 matching against @{text "Nil"}, this would make the code rather brittle. |
|
1249 The reason is that the theory and the name of the datatype can easily change. |
|
1250 To make the code more robust, it is better to use the antiquotation |
|
1251 @{text "@{const_name \<dots>}"}. With this antiquotation you can harness the |
|
1252 variable parts of the constant's name. Therefore a function for |
|
1253 matching against constants that have a polymorphic type should |
|
1254 be written as follows. |
|
1255 *} |
|
1256 |
|
1257 ML{*fun is_nil_or_all (Const (@{const_name "Nil"}, _)) = true |
|
1258 | is_nil_or_all (Const (@{const_name "All"}, _) $ _) = true |
|
1259 | is_nil_or_all _ = false *} |
|
1260 |
|
1261 text {* |
|
1262 The antiquotation for properly referencing type constants is @{text "@{type_name \<dots>}"}. |
|
1263 For example |
|
1264 |
|
1265 @{ML_response [display,gray] |
|
1266 "@{type_name \"list\"}" "\"List.list\""} |
|
1267 |
|
1268 (FIXME: Explain the following better.) |
|
1269 |
|
1270 Occasionally you have to calculate what the ``base'' name of a given |
|
1271 constant is. For this you can use the function @{ML_ind "Sign.extern_const"} or |
|
1272 @{ML_ind Long_Name.base_name}. For example: |
|
1273 |
|
1274 @{ML_response [display,gray] "Sign.extern_const @{theory} \"List.list.Nil\"" "\"Nil\""} |
|
1275 |
|
1276 The difference between both functions is that @{ML extern_const in Sign} returns |
|
1277 the smallest name that is still unique, whereas @{ML base_name in Long_Name} always |
|
1278 strips off all qualifiers. |
|
1279 |
|
1280 \begin{readmore} |
|
1281 Functions about naming are implemented in @{ML_file "Pure/General/name_space.ML"}; |
|
1282 functions about signatures in @{ML_file "Pure/sign.ML"}. |
|
1283 \end{readmore} |
|
1284 |
|
1285 Although types of terms can often be inferred, there are many |
|
1286 situations where you need to construct types manually, especially |
|
1287 when defining constants. For example the function returning a function |
|
1288 type is as follows: |
|
1289 |
|
1290 *} |
|
1291 |
|
1292 ML{*fun make_fun_type ty1 ty2 = Type ("fun", [ty1, ty2]) *} |
|
1293 |
|
1294 text {* This can be equally written with the combinator @{ML_ind "-->"} as: *} |
|
1295 |
|
1296 ML{*fun make_fun_type ty1 ty2 = ty1 --> ty2 *} |
|
1297 |
|
1298 text {* |
|
1299 If you want to construct a function type with more than one argument |
|
1300 type, then you can use @{ML_ind "--->"}. |
|
1301 *} |
|
1302 |
|
1303 ML{*fun make_fun_types tys ty = tys ---> ty *} |
|
1304 |
|
1305 text {* |
|
1306 A handy function for manipulating terms is @{ML_ind map_types}: it takes a |
|
1307 function and applies it to every type in a term. You can, for example, |
|
1308 change every @{typ nat} in a term into an @{typ int} using the function: |
|
1309 *} |
|
1310 |
|
1311 ML{*fun nat_to_int ty = |
|
1312 (case ty of |
|
1313 @{typ nat} => @{typ int} |
|
1314 | Type (s, tys) => Type (s, map nat_to_int tys) |
|
1315 | _ => ty)*} |
|
1316 |
|
1317 text {* |
|
1318 Here is an example: |
|
1319 |
|
1320 @{ML_response_fake [display,gray] |
|
1321 "map_types nat_to_int @{term \"a = (1::nat)\"}" |
|
1322 "Const (\"op =\", \"int \<Rightarrow> int \<Rightarrow> bool\") |
|
1323 $ Free (\"a\", \"int\") $ Const (\"HOL.one_class.one\", \"int\")"} |
|
1324 |
|
1325 If you want to obtain the list of free type-variables of a term, you |
|
1326 can use the function @{ML_ind add_tfrees in Term} |
|
1327 (similarly @{ML_ind add_tvars in Term} for the schematic type-variables). |
|
1328 One would expect that such functions |
|
1329 take a term as input and return a list of types. But their type is actually |
|
1330 |
|
1331 @{text[display] "Term.term -> (string * Term.sort) list -> (string * Term.sort) list"} |
|
1332 |
|
1333 that is they take, besides a term, also a list of type-variables as input. |
|
1334 So in order to obtain the list of type-variables of a term you have to |
|
1335 call them as follows |
|
1336 |
|
1337 @{ML_response [gray,display] |
|
1338 "Term.add_tfrees @{term \"(a, b)\"} []" |
|
1339 "[(\"'b\", [\"HOL.type\"]), (\"'a\", [\"HOL.type\"])]"} |
|
1340 |
|
1341 The reason for this definition is that @{ML add_tfrees in Term} can |
|
1342 be easily folded over a list of terms. Similarly for all functions |
|
1343 named @{text "add_*"} in @{ML_file "Pure/term.ML"}. |
|
1344 |
|
1345 \begin{exercise}\label{fun:revsum} |
|
1346 Write a function @{text "rev_sum : term -> term"} that takes a |
|
1347 term of the form @{text "t\<^isub>1 + t\<^isub>2 + \<dots> + t\<^isub>n"} (whereby @{text "n"} might be one) |
|
1348 and returns the reversed sum @{text "t\<^isub>n + \<dots> + t\<^isub>2 + t\<^isub>1"}. Assume |
|
1349 the @{text "t\<^isub>i"} can be arbitrary expressions and also note that @{text "+"} |
|
1350 associates to the left. Try your function on some examples. |
|
1351 \end{exercise} |
|
1352 |
|
1353 \begin{exercise}\label{fun:makesum} |
|
1354 Write a function which takes two terms representing natural numbers |
|
1355 in unary notation (like @{term "Suc (Suc (Suc 0))"}), and produces the |
|
1356 number representing their sum. |
|
1357 \end{exercise} |
|
1358 |
|
1359 \begin{exercise}\footnote{Personal communication of |
|
1360 de Bruijn to Dyckhoff.}\label{ex:debruijn} |
|
1361 Implement the function, which we below name deBruijn, that depends on a natural |
|
1362 number n$>$0 and constructs terms of the form: |
|
1363 |
|
1364 \begin{center} |
|
1365 \begin{tabular}{r@ {\hspace{2mm}}c@ {\hspace{2mm}}l} |
|
1366 {\it rhs n} & $\dn$ & {\large$\bigwedge$}{\it i=1\ldots n. P\,i}\\ |
|
1367 {\it lhs n} & $\dn$ & {\large$\bigwedge$}{\it i=1\ldots n. P\,i = P (i + 1 mod n)} |
|
1368 $\longrightarrow$ {\it rhs n}\\ |
|
1369 {\it deBruijn n} & $\dn$ & {\it lhs n} $\longrightarrow$ {\it rhs n}\\ |
|
1370 \end{tabular} |
|
1371 \end{center} |
|
1372 |
|
1373 For n=3 this function returns the term |
|
1374 |
|
1375 \begin{center} |
|
1376 \begin{tabular}{l} |
|
1377 (P 1 = P 2 $\longrightarrow$ P 1 $\wedge$ P 2 $\wedge$ P 3) $\wedge$\\ |
|
1378 (P 2 = P 3 $\longrightarrow$ P 1 $\wedge$ P 2 $\wedge$ P 3) $\wedge$\\ |
|
1379 (P 3 = P 1 $\longrightarrow$ P 1 $\wedge$ P 2 $\wedge$ P 3) $\longrightarrow$ P 1 $\wedge$ P 2 $\wedge$ P 3 |
|
1380 \end{tabular} |
|
1381 \end{center} |
|
1382 |
|
1383 Make sure you use the functions defined in @{ML_file "HOL/Tools/hologic.ML"} |
|
1384 for constructing the terms for the logical connectives. |
|
1385 \end{exercise} |
|
1386 *} |
|
1387 |
|
1388 |
|
1389 section {* Type-Checking\label{sec:typechecking} *} |
|
1390 |
|
1391 text {* |
|
1392 |
|
1393 You can freely construct and manipulate @{ML_type "term"}s and @{ML_type |
|
1394 typ}es, since they are just arbitrary unchecked trees. However, you |
|
1395 eventually want to see if a term is well-formed, or type-checks, relative to |
|
1396 a theory. Type-checking is done via the function @{ML_ind cterm_of}, which |
|
1397 converts a @{ML_type term} into a @{ML_type cterm}, a \emph{certified} |
|
1398 term. Unlike @{ML_type term}s, which are just trees, @{ML_type "cterm"}s are |
|
1399 abstract objects that are guaranteed to be type-correct, and they can only |
|
1400 be constructed via ``official interfaces''. |
|
1401 |
|
1402 |
|
1403 Type-checking is always relative to a theory context. For now we use |
|
1404 the @{ML "@{theory}"} antiquotation to get hold of the current theory. |
|
1405 For example you can write: |
|
1406 |
|
1407 @{ML_response_fake [display,gray] "cterm_of @{theory} @{term \"(a::nat) + b = c\"}" "a + b = c"} |
|
1408 |
|
1409 This can also be written with an antiquotation: |
|
1410 |
|
1411 @{ML_response_fake [display,gray] "@{cterm \"(a::nat) + b = c\"}" "a + b = c"} |
|
1412 |
|
1413 Attempting to obtain the certified term for |
|
1414 |
|
1415 @{ML_response_fake_both [display,gray] "@{cterm \"1 + True\"}" "Type unification failed \<dots>"} |
|
1416 |
|
1417 yields an error (since the term is not typable). A slightly more elaborate |
|
1418 example that type-checks is: |
|
1419 |
|
1420 @{ML_response_fake [display,gray] |
|
1421 "let |
|
1422 val natT = @{typ \"nat\"} |
|
1423 val zero = @{term \"0::nat\"} |
|
1424 in |
|
1425 cterm_of @{theory} |
|
1426 (Const (@{const_name plus}, natT --> natT --> natT) $ zero $ zero) |
|
1427 end" "0 + 0"} |
|
1428 |
|
1429 In Isabelle not just terms need to be certified, but also types. For example, |
|
1430 you obtain the certified type for the Isabelle type @{typ "nat \<Rightarrow> bool"} on |
|
1431 the ML-level as follows: |
|
1432 |
|
1433 @{ML_response_fake [display,gray] |
|
1434 "ctyp_of @{theory} (@{typ nat} --> @{typ bool})" |
|
1435 "nat \<Rightarrow> bool"} |
|
1436 |
|
1437 or with the antiquotation: |
|
1438 |
|
1439 @{ML_response_fake [display,gray] |
|
1440 "@{ctyp \"nat \<Rightarrow> bool\"}" |
|
1441 "nat \<Rightarrow> bool"} |
|
1442 |
|
1443 \begin{readmore} |
|
1444 For functions related to @{ML_type cterm}s and @{ML_type ctyp}s see |
|
1445 the file @{ML_file "Pure/thm.ML"}. |
|
1446 \end{readmore} |
|
1447 |
|
1448 Remember Isabelle follows the Church-style typing for terms, i.e., a term contains |
|
1449 enough typing information (constants, free variables and abstractions all have typing |
|
1450 information) so that it is always clear what the type of a term is. |
|
1451 Given a well-typed term, the function @{ML_ind type_of} returns the |
|
1452 type of a term. Consider for example: |
|
1453 |
|
1454 @{ML_response [display,gray] |
|
1455 "type_of (@{term \"f::nat \<Rightarrow> bool\"} $ @{term \"x::nat\"})" "bool"} |
|
1456 |
|
1457 To calculate the type, this function traverses the whole term and will |
|
1458 detect any typing inconsistency. For example changing the type of the variable |
|
1459 @{term "x"} from @{typ "nat"} to @{typ "int"} will result in the error message: |
|
1460 |
|
1461 @{ML_response_fake [display,gray] |
|
1462 "type_of (@{term \"f::nat \<Rightarrow> bool\"} $ @{term \"x::int\"})" |
|
1463 "*** Exception- TYPE (\"type_of: type mismatch in application\" \<dots>"} |
|
1464 |
|
1465 Since the complete traversal might sometimes be too costly and |
|
1466 not necessary, there is the function @{ML_ind fastype_of}, which |
|
1467 also returns the type of a term. |
|
1468 |
|
1469 @{ML_response [display,gray] |
|
1470 "fastype_of (@{term \"f::nat \<Rightarrow> bool\"} $ @{term \"x::nat\"})" "bool"} |
|
1471 |
|
1472 However, efficiency is gained on the expense of skipping some tests. You |
|
1473 can see this in the following example |
|
1474 |
|
1475 @{ML_response [display,gray] |
|
1476 "fastype_of (@{term \"f::nat \<Rightarrow> bool\"} $ @{term \"x::int\"})" "bool"} |
|
1477 |
|
1478 where no error is detected. |
|
1479 |
|
1480 Sometimes it is a bit inconvenient to construct a term with |
|
1481 complete typing annotations, especially in cases where the typing |
|
1482 information is redundant. A short-cut is to use the ``place-holder'' |
|
1483 type @{ML_ind dummyT} and then let type-inference figure out the |
|
1484 complete type. An example is as follows: |
|
1485 |
|
1486 @{ML_response_fake [display,gray] |
|
1487 "let |
|
1488 val c = Const (@{const_name \"plus\"}, dummyT) |
|
1489 val o = @{term \"1::nat\"} |
|
1490 val v = Free (\"x\", dummyT) |
|
1491 in |
|
1492 Syntax.check_term @{context} (c $ o $ v) |
|
1493 end" |
|
1494 "Const (\"HOL.plus_class.plus\", \"nat \<Rightarrow> nat \<Rightarrow> nat\") $ |
|
1495 Const (\"HOL.one_class.one\", \"nat\") $ Free (\"x\", \"nat\")"} |
|
1496 |
|
1497 Instead of giving explicitly the type for the constant @{text "plus"} and the free |
|
1498 variable @{text "x"}, type-inference fills in the missing information. |
|
1499 |
|
1500 \begin{readmore} |
|
1501 See @{ML_file "Pure/Syntax/syntax.ML"} where more functions about reading, |
|
1502 checking and pretty-printing of terms are defined. Functions related to |
|
1503 type-inference are implemented in @{ML_file "Pure/type.ML"} and |
|
1504 @{ML_file "Pure/type_infer.ML"}. |
|
1505 \end{readmore} |
|
1506 |
|
1507 (FIXME: say something about sorts) |
|
1508 |
|
1509 \begin{exercise} |
|
1510 Check that the function defined in Exercise~\ref{fun:revsum} returns a |
|
1511 result that type-checks. See what happens to the solutions of this |
|
1512 exercise given in \ref{ch:solutions} when they receive an ill-typed term |
|
1513 as input. |
|
1514 \end{exercise} |
|
1515 *} |
|
1516 |
|
1517 |
|
1518 section {* Theorems *} |
|
1519 |
|
1520 text {* |
|
1521 Just like @{ML_type cterm}s, theorems are abstract objects of type @{ML_type thm} |
|
1522 that can only be built by going through interfaces. As a consequence, every proof |
|
1523 in Isabelle is correct by construction. This follows the tradition of the LCF approach |
|
1524 \cite{GordonMilnerWadsworth79}. |
|
1525 |
|
1526 |
|
1527 To see theorems in ``action'', let us give a proof on the ML-level for the following |
|
1528 statement: |
|
1529 *} |
|
1530 |
|
1531 lemma |
|
1532 assumes assm\<^isub>1: "\<And>(x::nat). P x \<Longrightarrow> Q x" |
|
1533 and assm\<^isub>2: "P t" |
|
1534 shows "Q t" (*<*)oops(*>*) |
|
1535 |
|
1536 text {* |
|
1537 The corresponding ML-code is as follows: |
|
1538 |
|
1539 @{ML_response_fake [display,gray] |
|
1540 "let |
|
1541 val assm1 = @{cprop \"\<And>(x::nat). P x \<Longrightarrow> Q x\"} |
|
1542 val assm2 = @{cprop \"(P::nat\<Rightarrow>bool) t\"} |
|
1543 |
|
1544 val Pt_implies_Qt = |
|
1545 assume assm1 |
|
1546 |> forall_elim @{cterm \"t::nat\"}; |
|
1547 |
|
1548 val Qt = implies_elim Pt_implies_Qt (assume assm2); |
|
1549 in |
|
1550 Qt |
|
1551 |> implies_intr assm2 |
|
1552 |> implies_intr assm1 |
|
1553 end" "\<lbrakk>\<And>x. P x \<Longrightarrow> Q x; P t\<rbrakk> \<Longrightarrow> Q t"} |
|
1554 |
|
1555 This code-snippet constructs the following proof: |
|
1556 |
|
1557 \[ |
|
1558 \infer[(@{text "\<Longrightarrow>"}$-$intro)]{\vdash @{prop "(\<And>x. P x \<Longrightarrow> Q x) \<Longrightarrow> P t \<Longrightarrow> Q t"}} |
|
1559 {\infer[(@{text "\<Longrightarrow>"}$-$intro)]{@{prop "\<And>x. P x \<Longrightarrow> Q x"} \vdash @{prop "P t \<Longrightarrow> Q t"}} |
|
1560 {\infer[(@{text "\<Longrightarrow>"}$-$elim)]{@{prop "\<And>x. P x \<Longrightarrow> Q x"}, @{prop "P t"} \vdash @{prop "Q t"}} |
|
1561 {\infer[(@{text "\<And>"}$-$elim)]{@{prop "\<And>x. P x \<Longrightarrow> Q x"} \vdash @{prop "P t \<Longrightarrow> Q t"}} |
|
1562 {\infer[(assume)]{@{prop "\<And>x. P x \<Longrightarrow> Q x"} \vdash @{prop "\<And>x. P x \<Longrightarrow> Q x"}}{}} |
|
1563 & |
|
1564 \infer[(assume)]{@{prop "P t"} \vdash @{prop "P t"}}{} |
|
1565 } |
|
1566 } |
|
1567 } |
|
1568 \] |
|
1569 |
|
1570 However, while we obtained a theorem as result, this theorem is not |
|
1571 yet stored in Isabelle's theorem database. So it cannot be referenced later |
|
1572 on. How to store theorems will be explained in Section~\ref{sec:storing}. |
|
1573 |
|
1574 \begin{readmore} |
|
1575 For the functions @{text "assume"}, @{text "forall_elim"} etc |
|
1576 see \isccite{sec:thms}. The basic functions for theorems are defined in |
|
1577 @{ML_file "Pure/thm.ML"}. |
|
1578 \end{readmore} |
|
1579 |
|
1580 (FIXME: handy functions working on theorems, like @{ML_ind rulify in ObjectLogic} and so on) |
|
1581 |
|
1582 (FIXME: how to add case-names to goal states - maybe in the |
|
1583 next section) |
|
1584 |
|
1585 (FIXME: example for how to add theorem styles) |
|
1586 *} |
|
1587 |
|
1588 ML {* |
|
1589 fun strip_assums_all (params, Const("all",_) $ Abs(a, T, t)) = |
|
1590 strip_assums_all ((a, T)::params, t) |
|
1591 | strip_assums_all (params, B) = (params, B) |
|
1592 |
|
1593 fun style_parm_premise i ctxt t = |
|
1594 let val prems = Logic.strip_imp_prems t in |
|
1595 if i <= length prems |
|
1596 then let val (params,t) = strip_assums_all([], nth prems (i - 1)) |
|
1597 in subst_bounds(map Free params, t) end |
|
1598 else error ("Not enough premises for prem" ^ string_of_int i ^ |
|
1599 " in propositon: " ^ string_of_term ctxt t) |
|
1600 end; |
|
1601 *} |
|
1602 |
|
1603 ML {* |
|
1604 strip_assums_all ([], @{term "\<And>x y. A x y"}) |
|
1605 *} |
|
1606 |
|
1607 setup %gray {* |
|
1608 TermStyle.add_style "no_all_prem1" (style_parm_premise 1) #> |
|
1609 TermStyle.add_style "no_all_prem2" (style_parm_premise 2) |
|
1610 *} |
|
1611 |
|
1612 |
|
1613 section {* Setups (TBD) *} |
|
1614 |
|
1615 text {* |
|
1616 In the previous section we used \isacommand{setup} in order to make |
|
1617 a theorem attribute known to Isabelle. What happens behind the scenes |
|
1618 is that \isacommand{setup} expects a function of type |
|
1619 @{ML_type "theory -> theory"}: the input theory is the current theory and the |
|
1620 output the theory where the theory attribute has been stored. |
|
1621 |
|
1622 This is a fundamental principle in Isabelle. A similar situation occurs |
|
1623 for example with declaring constants. The function that declares a |
|
1624 constant on the ML-level is @{ML_ind add_consts_i in Sign}. |
|
1625 If you write\footnote{Recall that ML-code needs to be |
|
1626 enclosed in \isacommand{ML}~@{text "\<verbopen> \<dots> \<verbclose>"}.} |
|
1627 *} |
|
1628 |
|
1629 ML{*Sign.add_consts_i [(@{binding "BAR"}, @{typ "nat"}, NoSyn)] @{theory} *} |
|
1630 |
|
1631 text {* |
|
1632 for declaring the constant @{text "BAR"} with type @{typ nat} and |
|
1633 run the code, then you indeed obtain a theory as result. But if you |
|
1634 query the constant on the Isabelle level using the command \isacommand{term} |
|
1635 |
|
1636 \begin{isabelle} |
|
1637 \isacommand{term}~@{text [quotes] "BAR"}\\ |
|
1638 @{text "> \"BAR\" :: \"'a\""} |
|
1639 \end{isabelle} |
|
1640 |
|
1641 you do not obtain a constant of type @{typ nat}, but a free variable (printed in |
|
1642 blue) of polymorphic type. The problem is that the ML-expression above did |
|
1643 not register the declaration with the current theory. This is what the command |
|
1644 \isacommand{setup} is for. The constant is properly declared with |
|
1645 *} |
|
1646 |
|
1647 setup %gray {* Sign.add_consts_i [(@{binding "BAR"}, @{typ "nat"}, NoSyn)] *} |
|
1648 |
|
1649 text {* |
|
1650 Now |
|
1651 |
|
1652 \begin{isabelle} |
|
1653 \isacommand{term}~@{text [quotes] "BAR"}\\ |
|
1654 @{text "> \"BAR\" :: \"nat\""} |
|
1655 \end{isabelle} |
|
1656 |
|
1657 returns a (black) constant with the type @{typ nat}. |
|
1658 |
|
1659 A similar command is \isacommand{local\_setup}, which expects a function |
|
1660 of type @{ML_type "local_theory -> local_theory"}. Later on we will also |
|
1661 use the commands \isacommand{method\_setup} for installing methods in the |
|
1662 current theory and \isacommand{simproc\_setup} for adding new simprocs to |
|
1663 the current simpset. |
|
1664 *} |
|
1665 |
|
1666 section {* Theorem Attributes\label{sec:attributes} *} |
|
1667 |
|
1668 text {* |
|
1669 Theorem attributes are @{text "[symmetric]"}, @{text "[THEN \<dots>]"}, @{text |
|
1670 "[simp]"} and so on. Such attributes are \emph{neither} tags \emph{nor} flags |
|
1671 annotated to theorems, but functions that do further processing once a |
|
1672 theorem is proved. In particular, it is not possible to find out |
|
1673 what are all theorems that have a given attribute in common, unless of course |
|
1674 the function behind the attribute stores the theorems in a retrievable |
|
1675 data structure. |
|
1676 |
|
1677 If you want to print out all currently known attributes a theorem can have, |
|
1678 you can use the Isabelle command |
|
1679 |
|
1680 \begin{isabelle} |
|
1681 \isacommand{print\_attributes}\\ |
|
1682 @{text "> COMP: direct composition with rules (no lifting)"}\\ |
|
1683 @{text "> HOL.dest: declaration of Classical destruction rule"}\\ |
|
1684 @{text "> HOL.elim: declaration of Classical elimination rule"}\\ |
|
1685 @{text "> \<dots>"} |
|
1686 \end{isabelle} |
|
1687 |
|
1688 The theorem attributes fall roughly into two categories: the first category manipulates |
|
1689 the proved theorem (for example @{text "[symmetric]"} and @{text "[THEN \<dots>]"}), and the second |
|
1690 stores the proved theorem somewhere as data (for example @{text "[simp]"}, which adds |
|
1691 the theorem to the current simpset). |
|
1692 |
|
1693 To explain how to write your own attribute, let us start with an extremely simple |
|
1694 version of the attribute @{text "[symmetric]"}. The purpose of this attribute is |
|
1695 to produce the ``symmetric'' version of an equation. The main function behind |
|
1696 this attribute is |
|
1697 *} |
|
1698 |
|
1699 ML{*val my_symmetric = Thm.rule_attribute (fn _ => fn thm => thm RS @{thm sym})*} |
|
1700 |
|
1701 text {* |
|
1702 where the function @{ML_ind rule_attribute in Thm} expects a function taking a |
|
1703 context (which we ignore in the code above) and a theorem (@{text thm}), and |
|
1704 returns another theorem (namely @{text thm} resolved with the theorem |
|
1705 @{thm [source] sym}: @{thm sym[no_vars]}; the function @{ML_ind "RS"} |
|
1706 is explained in Section~\ref{sec:simpletacs}). The function |
|
1707 @{ML rule_attribute in Thm} then returns an attribute. |
|
1708 |
|
1709 Before we can use the attribute, we need to set it up. This can be done |
|
1710 using the Isabelle command \isacommand{attribute\_setup} as follows: |
|
1711 *} |
|
1712 |
|
1713 attribute_setup %gray my_sym = {* Scan.succeed my_symmetric *} |
|
1714 "applying the sym rule" |
|
1715 |
|
1716 text {* |
|
1717 Inside the @{text "\<verbopen> \<dots> \<verbclose>"}, we have to specify a parser |
|
1718 for the theorem attribute. Since the attribute does not expect any further |
|
1719 arguments (unlike @{text "[THEN \<dots>]"}, for example), we use the parser @{ML |
|
1720 Scan.succeed}. Later on we will also consider attributes taking further |
|
1721 arguments. An example for the attribute @{text "[my_sym]"} is the proof |
|
1722 *} |
|
1723 |
|
1724 lemma test[my_sym]: "2 = Suc (Suc 0)" by simp |
|
1725 |
|
1726 text {* |
|
1727 which stores the theorem @{thm test} under the name @{thm [source] test}. You |
|
1728 can see this, if you query the lemma: |
|
1729 |
|
1730 \begin{isabelle} |
|
1731 \isacommand{thm}~@{text "test"}\\ |
|
1732 @{text "> "}~@{thm test} |
|
1733 \end{isabelle} |
|
1734 |
|
1735 We can also use the attribute when referring to this theorem: |
|
1736 |
|
1737 \begin{isabelle} |
|
1738 \isacommand{thm}~@{text "test[my_sym]"}\\ |
|
1739 @{text "> "}~@{thm test[my_sym]} |
|
1740 \end{isabelle} |
|
1741 |
|
1742 An alternative for setting up an attribute is the function @{ML_ind setup in Attrib}. |
|
1743 So instead of using \isacommand{attribute\_setup}, you can also set up the |
|
1744 attribute as follows: |
|
1745 *} |
|
1746 |
|
1747 ML{*Attrib.setup @{binding "my_sym"} (Scan.succeed my_symmetric) |
|
1748 "applying the sym rule" *} |
|
1749 |
|
1750 text {* |
|
1751 This gives a function from @{ML_type "Context.theory -> Context.theory"}, which |
|
1752 can be used for example with \isacommand{setup}. |
|
1753 |
|
1754 As an example of a slightly more complicated theorem attribute, we implement |
|
1755 our own version of @{text "[THEN \<dots>]"}. This attribute will take a list of theorems |
|
1756 as argument and resolve the proved theorem with this list (one theorem |
|
1757 after another). The code for this attribute is |
|
1758 *} |
|
1759 |
|
1760 ML{*fun MY_THEN thms = |
|
1761 Thm.rule_attribute (fn _ => fn thm => foldl ((op RS) o swap) thm thms)*} |
|
1762 |
|
1763 text {* |
|
1764 where @{ML swap} swaps the components of a pair. The setup of this theorem |
|
1765 attribute uses the parser @{ML thms in Attrib}, which parses a list of |
|
1766 theorems. |
|
1767 *} |
|
1768 |
|
1769 attribute_setup %gray MY_THEN = {* Attrib.thms >> MY_THEN *} |
|
1770 "resolving the list of theorems with the proved theorem" |
|
1771 |
|
1772 text {* |
|
1773 You can, for example, use this theorem attribute to turn an equation into a |
|
1774 meta-equation: |
|
1775 |
|
1776 \begin{isabelle} |
|
1777 \isacommand{thm}~@{text "test[MY_THEN eq_reflection]"}\\ |
|
1778 @{text "> "}~@{thm test[MY_THEN eq_reflection]} |
|
1779 \end{isabelle} |
|
1780 |
|
1781 If you need the symmetric version as a meta-equation, you can write |
|
1782 |
|
1783 \begin{isabelle} |
|
1784 \isacommand{thm}~@{text "test[MY_THEN sym eq_reflection]"}\\ |
|
1785 @{text "> "}~@{thm test[MY_THEN sym eq_reflection]} |
|
1786 \end{isabelle} |
|
1787 |
|
1788 It is also possible to combine different theorem attributes, as in: |
|
1789 |
|
1790 \begin{isabelle} |
|
1791 \isacommand{thm}~@{text "test[my_sym, MY_THEN eq_reflection]"}\\ |
|
1792 @{text "> "}~@{thm test[my_sym, MY_THEN eq_reflection]} |
|
1793 \end{isabelle} |
|
1794 |
|
1795 However, here also a weakness of the concept |
|
1796 of theorem attributes shows through: since theorem attributes can be |
|
1797 arbitrary functions, they do not in general commute. If you try |
|
1798 |
|
1799 \begin{isabelle} |
|
1800 \isacommand{thm}~@{text "test[MY_THEN eq_reflection, my_sym]"}\\ |
|
1801 @{text "> "}~@{text "exception THM 1 raised: RSN: no unifiers"} |
|
1802 \end{isabelle} |
|
1803 |
|
1804 you get an exception indicating that the theorem @{thm [source] sym} |
|
1805 does not resolve with meta-equations. |
|
1806 |
|
1807 The purpose of @{ML_ind rule_attribute in Thm} is to directly manipulate theorems. |
|
1808 Another usage of theorem attributes is to add and delete theorems from stored data. |
|
1809 For example the theorem attribute @{text "[simp]"} adds or deletes a theorem from the |
|
1810 current simpset. For these applications, you can use @{ML_ind declaration_attribute in Thm}. |
|
1811 To illustrate this function, let us introduce a reference containing a list |
|
1812 of theorems. |
|
1813 *} |
|
1814 |
|
1815 ML{*val my_thms = ref ([] : thm list)*} |
|
1816 |
|
1817 text {* |
|
1818 The purpose of this reference is to store a list of theorems. |
|
1819 We are going to modify it by adding and deleting theorems. |
|
1820 However, a word of warning: such references must not |
|
1821 be used in any code that is meant to be more than just for testing purposes! |
|
1822 Here it is only used to illustrate matters. We will show later how to store |
|
1823 data properly without using references. |
|
1824 |
|
1825 We need to provide two functions that add and delete theorems from this list. |
|
1826 For this we use the two functions: |
|
1827 *} |
|
1828 |
|
1829 ML{*fun my_thm_add thm ctxt = |
|
1830 (my_thms := Thm.add_thm thm (!my_thms); ctxt) |
|
1831 |
|
1832 fun my_thm_del thm ctxt = |
|
1833 (my_thms := Thm.del_thm thm (!my_thms); ctxt)*} |
|
1834 |
|
1835 text {* |
|
1836 These functions take a theorem and a context and, for what we are explaining |
|
1837 here it is sufficient that they just return the context unchanged. They change |
|
1838 however the reference @{ML my_thms}, whereby the function |
|
1839 @{ML_ind add_thm in Thm} adds a theorem if it is not already included in |
|
1840 the list, and @{ML_ind del_thm in Thm} deletes one (both functions use the |
|
1841 predicate @{ML_ind eq_thm_prop in Thm}, which compares theorems according to |
|
1842 their proved propositions modulo alpha-equivalence). |
|
1843 |
|
1844 You can turn functions @{ML my_thm_add} and @{ML my_thm_del} into |
|
1845 attributes with the code |
|
1846 *} |
|
1847 |
|
1848 ML{*val my_add = Thm.declaration_attribute my_thm_add |
|
1849 val my_del = Thm.declaration_attribute my_thm_del *} |
|
1850 |
|
1851 text {* |
|
1852 and set up the attributes as follows |
|
1853 *} |
|
1854 |
|
1855 attribute_setup %gray my_thms = {* Attrib.add_del my_add my_del *} |
|
1856 "maintaining a list of my_thms - rough test only!" |
|
1857 |
|
1858 text {* |
|
1859 The parser @{ML_ind add_del in Attrib} is a predefined parser for |
|
1860 adding and deleting lemmas. Now if you prove the next lemma |
|
1861 and attach to it the attribute @{text "[my_thms]"} |
|
1862 *} |
|
1863 |
|
1864 lemma trueI_2[my_thms]: "True" by simp |
|
1865 |
|
1866 text {* |
|
1867 then you can see it is added to the initially empty list. |
|
1868 |
|
1869 @{ML_response_fake [display,gray] |
|
1870 "!my_thms" "[\"True\"]"} |
|
1871 |
|
1872 You can also add theorems using the command \isacommand{declare}. |
|
1873 *} |
|
1874 |
|
1875 declare test[my_thms] trueI_2[my_thms add] |
|
1876 |
|
1877 text {* |
|
1878 With this attribute, the @{text "add"} operation is the default and does |
|
1879 not need to be explicitly given. These three declarations will cause the |
|
1880 theorem list to be updated as: |
|
1881 |
|
1882 @{ML_response_fake [display,gray] |
|
1883 "!my_thms" |
|
1884 "[\"True\", \"Suc (Suc 0) = 2\"]"} |
|
1885 |
|
1886 The theorem @{thm [source] trueI_2} only appears once, since the |
|
1887 function @{ML_ind add_thm in Thm} tests for duplicates, before extending |
|
1888 the list. Deletion from the list works as follows: |
|
1889 *} |
|
1890 |
|
1891 declare test[my_thms del] |
|
1892 |
|
1893 text {* After this, the theorem list is again: |
|
1894 |
|
1895 @{ML_response_fake [display,gray] |
|
1896 "!my_thms" |
|
1897 "[\"True\"]"} |
|
1898 |
|
1899 We used in this example two functions declared as @{ML_ind declaration_attribute in Thm}, |
|
1900 but there can be any number of them. We just have to change the parser for reading |
|
1901 the arguments accordingly. |
|
1902 |
|
1903 However, as said at the beginning of this example, using references for storing theorems is |
|
1904 \emph{not} the received way of doing such things. The received way is to |
|
1905 start a ``data slot'', below called @{text MyThmsData}, generated by the functor |
|
1906 @{text GenericDataFun}: |
|
1907 *} |
|
1908 |
|
1909 ML{*structure MyThmsData = GenericDataFun |
|
1910 (type T = thm list |
|
1911 val empty = [] |
|
1912 val extend = I |
|
1913 fun merge _ = Thm.merge_thms) *} |
|
1914 |
|
1915 text {* |
|
1916 The type @{text "T"} of this data slot is @{ML_type "thm list"}.\footnote{FIXME: give a pointer |
|
1917 to where data slots are explained properly.} |
|
1918 To use this data slot, you only have to change @{ML my_thm_add} and |
|
1919 @{ML my_thm_del} to: |
|
1920 *} |
|
1921 |
|
1922 ML{*val my_thm_add = MyThmsData.map o Thm.add_thm |
|
1923 val my_thm_del = MyThmsData.map o Thm.del_thm*} |
|
1924 |
|
1925 text {* |
|
1926 where @{ML MyThmsData.map} updates the data appropriately. The |
|
1927 corresponding theorem attributes are |
|
1928 *} |
|
1929 |
|
1930 ML{*val my_add = Thm.declaration_attribute my_thm_add |
|
1931 val my_del = Thm.declaration_attribute my_thm_del *} |
|
1932 |
|
1933 text {* |
|
1934 and the setup is as follows |
|
1935 *} |
|
1936 |
|
1937 attribute_setup %gray my_thms2 = {* Attrib.add_del my_add my_del *} |
|
1938 "properly maintaining a list of my_thms" |
|
1939 |
|
1940 text {* |
|
1941 Initially, the data slot is empty |
|
1942 |
|
1943 @{ML_response_fake [display,gray] |
|
1944 "MyThmsData.get (Context.Proof @{context})" |
|
1945 "[]"} |
|
1946 |
|
1947 but if you prove |
|
1948 *} |
|
1949 |
|
1950 lemma three[my_thms2]: "3 = Suc (Suc (Suc 0))" by simp |
|
1951 |
|
1952 text {* |
|
1953 then the lemma is recorded. |
|
1954 |
|
1955 @{ML_response_fake [display,gray] |
|
1956 "MyThmsData.get (Context.Proof @{context})" |
|
1957 "[\"3 = Suc (Suc (Suc 0))\"]"} |
|
1958 |
|
1959 With theorem attribute @{text my_thms2} you can also nicely see why it |
|
1960 is important to |
|
1961 store data in a ``data slot'' and \emph{not} in a reference. Backtrack |
|
1962 to the point just before the lemma @{thm [source] three} was proved and |
|
1963 check the the content of @{ML_struct MyThmsData}: it should be empty. |
|
1964 The addition has been properly retracted. Now consider the proof: |
|
1965 *} |
|
1966 |
|
1967 lemma four[my_thms]: "4 = Suc (Suc (Suc (Suc 0)))" by simp |
|
1968 |
|
1969 text {* |
|
1970 Checking the content of @{ML my_thms} gives |
|
1971 |
|
1972 @{ML_response_fake [display,gray] |
|
1973 "!my_thms" |
|
1974 "[\"4 = Suc (Suc (Suc (Suc 0)))\", \"True\"]"} |
|
1975 |
|
1976 as expected, but if you backtrack before the lemma @{thm [source] four}, the |
|
1977 content of @{ML my_thms} is unchanged. The backtracking mechanism |
|
1978 of Isabelle is completely oblivious about what to do with references, but |
|
1979 properly treats ``data slots''! |
|
1980 |
|
1981 Since storing theorems in a list is such a common task, there is the special |
|
1982 functor @{ML_functor Named_Thms}, which does most of the work for you. To obtain |
|
1983 a named theorem list, you just declare |
|
1984 *} |
|
1985 |
|
1986 ML{*structure FooRules = Named_Thms |
|
1987 (val name = "foo" |
|
1988 val description = "Rules for foo") *} |
|
1989 |
|
1990 text {* |
|
1991 and set up the @{ML_struct FooRules} with the command |
|
1992 *} |
|
1993 |
|
1994 setup %gray {* FooRules.setup *} |
|
1995 |
|
1996 text {* |
|
1997 This code declares a data slot where the theorems are stored, |
|
1998 an attribute @{text foo} (with the @{text add} and @{text del} options |
|
1999 for adding and deleting theorems) and an internal ML interface to retrieve and |
|
2000 modify the theorems. |
|
2001 |
|
2002 Furthermore, the facts are made available on the user-level under the dynamic |
|
2003 fact name @{text foo}. For example you can declare three lemmas to be of the kind |
|
2004 @{text foo} by: |
|
2005 *} |
|
2006 |
|
2007 lemma rule1[foo]: "A" sorry |
|
2008 lemma rule2[foo]: "B" sorry |
|
2009 lemma rule3[foo]: "C" sorry |
|
2010 |
|
2011 text {* and undeclare the first one by: *} |
|
2012 |
|
2013 declare rule1[foo del] |
|
2014 |
|
2015 text {* and query the remaining ones with: |
|
2016 |
|
2017 \begin{isabelle} |
|
2018 \isacommand{thm}~@{text "foo"}\\ |
|
2019 @{text "> ?C"}\\ |
|
2020 @{text "> ?B"} |
|
2021 \end{isabelle} |
|
2022 |
|
2023 On the ML-level the rules marked with @{text "foo"} can be retrieved |
|
2024 using the function @{ML FooRules.get}: |
|
2025 |
|
2026 @{ML_response_fake [display,gray] "FooRules.get @{context}" "[\"?C\",\"?B\"]"} |
|
2027 |
|
2028 \begin{readmore} |
|
2029 For more information see @{ML_file "Pure/Tools/named_thms.ML"}. |
|
2030 \end{readmore} |
|
2031 |
|
2032 (FIXME What are: @{text "theory_attributes"}, @{text "proof_attributes"}?) |
|
2033 |
|
2034 |
|
2035 \begin{readmore} |
|
2036 FIXME: @{ML_file "Pure/more_thm.ML"}; parsers for attributes is in |
|
2037 @{ML_file "Pure/Isar/attrib.ML"}...also explained in the chapter about |
|
2038 parsing. |
|
2039 \end{readmore} |
|
2040 *} |
|
2041 |
|
2042 |
|
2043 |
|
2044 section {* Theories, Contexts and Local Theories (TBD) *} |
|
2045 |
|
2046 text {* |
|
2047 There are theories, proof contexts and local theories (in this order, if you |
|
2048 want to order them). |
|
2049 |
|
2050 In contrast to an ordinary theory, which simply consists of a type |
|
2051 signature, as well as tables for constants, axioms and theorems, a local |
|
2052 theory contains additional context information, such as locally fixed |
|
2053 variables and local assumptions that may be used by the package. The type |
|
2054 @{ML_type local_theory} is identical to the type of \emph{proof contexts} |
|
2055 @{ML_type "Proof.context"}, although not every proof context constitutes a |
|
2056 valid local theory. |
|
2057 *} |
|
2058 |
|
2059 (* |
|
2060 ML{*signature UNIVERSAL_TYPE = |
|
2061 sig |
|
2062 type t |
|
2063 |
|
2064 val embed: unit -> ('a -> t) * (t -> 'a option) |
|
2065 end*} |
|
2066 |
|
2067 ML{*structure U:> UNIVERSAL_TYPE = |
|
2068 struct |
|
2069 type t = exn |
|
2070 |
|
2071 fun 'a embed () = |
|
2072 let |
|
2073 exception E of 'a |
|
2074 fun project (e: t): 'a option = |
|
2075 case e of |
|
2076 E a => SOME a |
|
2077 | _ => NONE |
|
2078 in |
|
2079 (E, project) |
|
2080 end |
|
2081 end*} |
|
2082 |
|
2083 text {* |
|
2084 The idea is that type t is the universal type and that each call to embed |
|
2085 returns a new pair of functions (inject, project), where inject embeds a |
|
2086 value into the universal type and project extracts the value from the |
|
2087 universal type. A pair (inject, project) returned by embed works together in |
|
2088 that project u will return SOME v if and only if u was created by inject |
|
2089 v. If u was created by a different function inject', then project returns |
|
2090 NONE. |
|
2091 |
|
2092 in library.ML |
|
2093 *} |
|
2094 |
|
2095 ML_val{*structure Object = struct type T = exn end; *} |
|
2096 |
|
2097 ML{*functor Test (U: UNIVERSAL_TYPE): sig end = |
|
2098 struct |
|
2099 val (intIn: int -> U.t, intOut) = U.embed () |
|
2100 val r: U.t ref = ref (intIn 13) |
|
2101 val s1 = |
|
2102 case intOut (!r) of |
|
2103 NONE => "NONE" |
|
2104 | SOME i => Int.toString i |
|
2105 val (realIn: real -> U.t, realOut) = U.embed () |
|
2106 val () = r := realIn 13.0 |
|
2107 val s2 = |
|
2108 case intOut (!r) of |
|
2109 NONE => "NONE" |
|
2110 | SOME i => Int.toString i |
|
2111 val s3 = |
|
2112 case realOut (!r) of |
|
2113 NONE => "NONE" |
|
2114 | SOME x => Real.toString x |
|
2115 val () = tracing (concat [s1, " ", s2, " ", s3, "\n"]) |
|
2116 end*} |
|
2117 |
|
2118 ML_val{*structure t = Test(U) *} |
|
2119 |
|
2120 ML_val{*structure Datatab = TableFun(type key = int val ord = int_ord);*} |
|
2121 |
|
2122 ML {* LocalTheory.restore *} |
|
2123 ML {* LocalTheory.set_group *} |
|
2124 *) |
|
2125 |
|
2126 section {* Storing Theorems\label{sec:storing} (TBD) *} |
|
2127 |
|
2128 text {* @{ML_ind add_thms_dynamic in PureThy} *} |
|
2129 |
|
2130 local_setup %gray {* |
|
2131 LocalTheory.note Thm.theoremK |
|
2132 ((@{binding "allI_alt"}, []), [@{thm allI}]) #> snd *} |
|
2133 |
|
2134 |
|
2135 (* FIXME: some code below *) |
|
2136 |
|
2137 (*<*) |
|
2138 (* |
|
2139 setup {* |
|
2140 Sign.add_consts_i [(Binding"bar", @{typ "nat"},NoSyn)] |
|
2141 *} |
|
2142 *) |
|
2143 lemma "bar = (1::nat)" |
|
2144 oops |
|
2145 |
|
2146 (* |
|
2147 setup {* |
|
2148 Sign.add_consts_i [("foo", @{typ "nat"},NoSyn)] |
|
2149 #> PureThy.add_defs false [((@{binding "foo_def"}, |
|
2150 Logic.mk_equals (Const ("FirstSteps.foo", @{typ "nat"}), @{term "1::nat"})), [])] |
|
2151 #> snd |
|
2152 *} |
|
2153 *) |
|
2154 (* |
|
2155 lemma "foo = (1::nat)" |
|
2156 apply(simp add: foo_def) |
|
2157 done |
|
2158 |
|
2159 thm foo_def |
|
2160 *) |
|
2161 (*>*) |
|
2162 |
|
2163 section {* Pretty-Printing\label{sec:pretty} *} |
|
2164 |
|
2165 text {* |
|
2166 So far we printed out only plain strings without any formatting except for |
|
2167 occasional explicit line breaks using @{text [quotes] "\\n"}. This is |
|
2168 sufficient for ``quick-and-dirty'' printouts. For something more |
|
2169 sophisticated, Isabelle includes an infrastructure for properly formatting text. |
|
2170 This infrastructure is loosely based on a paper by Oppen~\cite{Oppen80}. Most of |
|
2171 its functions do not operate on @{ML_type string}s, but on instances of the |
|
2172 type: |
|
2173 |
|
2174 @{ML_type_ind [display, gray] "Pretty.T"} |
|
2175 |
|
2176 The function @{ML str in Pretty} transforms a (plain) string into such a pretty |
|
2177 type. For example |
|
2178 |
|
2179 @{ML_response_fake [display,gray] |
|
2180 "Pretty.str \"test\"" "String (\"test\", 4)"} |
|
2181 |
|
2182 where the result indicates that we transformed a string with length 4. Once |
|
2183 you have a pretty type, you can, for example, control where linebreaks may |
|
2184 occur in case the text wraps over a line, or with how much indentation a |
|
2185 text should be printed. However, if you want to actually output the |
|
2186 formatted text, you have to transform the pretty type back into a @{ML_type |
|
2187 string}. This can be done with the function @{ML_ind string_of in Pretty}. In what |
|
2188 follows we will use the following wrapper function for printing a pretty |
|
2189 type: |
|
2190 *} |
|
2191 |
|
2192 ML{*fun pprint prt = tracing (Pretty.string_of prt)*} |
|
2193 |
|
2194 text {* |
|
2195 The point of the pretty-printing infrastructure is to give hints about how to |
|
2196 layout text and let Isabelle do the actual layout. Let us first explain |
|
2197 how you can insert places where a line break can occur. For this assume the |
|
2198 following function that replicates a string n times: |
|
2199 *} |
|
2200 |
|
2201 ML{*fun rep n str = implode (replicate n str) *} |
|
2202 |
|
2203 text {* |
|
2204 and suppose we want to print out the string: |
|
2205 *} |
|
2206 |
|
2207 ML{*val test_str = rep 8 "fooooooooooooooobaaaaaaaaaaaar "*} |
|
2208 |
|
2209 text {* |
|
2210 We deliberately chose a large string so that it spans over more than one line. |
|
2211 If we print out the string using the usual ``quick-and-dirty'' method, then |
|
2212 we obtain the ugly output: |
|
2213 |
|
2214 @{ML_response_fake [display,gray] |
|
2215 "tracing test_str" |
|
2216 "fooooooooooooooobaaaaaaaaaaaar fooooooooooooooobaaaaaaaaaaaar foooooooooo |
|
2217 ooooobaaaaaaaaaaaar fooooooooooooooobaaaaaaaaaaaar fooooooooooooooobaaaaa |
|
2218 aaaaaaar fooooooooooooooobaaaaaaaaaaaar fooooooooooooooobaaaaaaaaaaaar fo |
|
2219 oooooooooooooobaaaaaaaaaaaar"} |
|
2220 |
|
2221 We obtain the same if we just use |
|
2222 |
|
2223 @{ML_response_fake [display,gray] |
|
2224 "pprint (Pretty.str test_str)" |
|
2225 "fooooooooooooooobaaaaaaaaaaaar fooooooooooooooobaaaaaaaaaaaar foooooooooo |
|
2226 ooooobaaaaaaaaaaaar fooooooooooooooobaaaaaaaaaaaar fooooooooooooooobaaaaa |
|
2227 aaaaaaar fooooooooooooooobaaaaaaaaaaaar fooooooooooooooobaaaaaaaaaaaar fo |
|
2228 oooooooooooooobaaaaaaaaaaaar"} |
|
2229 |
|
2230 However by using pretty types you have the ability to indicate a possible |
|
2231 line break for example at each space. You can achieve this with the function |
|
2232 @{ML_ind breaks in Pretty}, which expects a list of pretty types and inserts a |
|
2233 possible line break in between every two elements in this list. To print |
|
2234 this list of pretty types as a single string, we concatenate them |
|
2235 with the function @{ML_ind blk in Pretty} as follows: |
|
2236 |
|
2237 |
|
2238 @{ML_response_fake [display,gray] |
|
2239 "let |
|
2240 val ptrs = map Pretty.str (space_explode \" \" test_str) |
|
2241 in |
|
2242 pprint (Pretty.blk (0, Pretty.breaks ptrs)) |
|
2243 end" |
|
2244 "fooooooooooooooobaaaaaaaaaaaar fooooooooooooooobaaaaaaaaaaaar |
|
2245 fooooooooooooooobaaaaaaaaaaaar fooooooooooooooobaaaaaaaaaaaar |
|
2246 fooooooooooooooobaaaaaaaaaaaar fooooooooooooooobaaaaaaaaaaaar |
|
2247 fooooooooooooooobaaaaaaaaaaaar fooooooooooooooobaaaaaaaaaaaar"} |
|
2248 |
|
2249 Here the layout of @{ML test_str} is much more pleasing to the |
|
2250 eye. The @{ML "0"} in @{ML_ind blk in Pretty} stands for no indentation |
|
2251 of the printed string. You can increase the indentation and obtain |
|
2252 |
|
2253 @{ML_response_fake [display,gray] |
|
2254 "let |
|
2255 val ptrs = map Pretty.str (space_explode \" \" test_str) |
|
2256 in |
|
2257 pprint (Pretty.blk (3, Pretty.breaks ptrs)) |
|
2258 end" |
|
2259 "fooooooooooooooobaaaaaaaaaaaar fooooooooooooooobaaaaaaaaaaaar |
|
2260 fooooooooooooooobaaaaaaaaaaaar fooooooooooooooobaaaaaaaaaaaar |
|
2261 fooooooooooooooobaaaaaaaaaaaar fooooooooooooooobaaaaaaaaaaaar |
|
2262 fooooooooooooooobaaaaaaaaaaaar fooooooooooooooobaaaaaaaaaaaar"} |
|
2263 |
|
2264 where starting from the second line the indent is 3. If you want |
|
2265 that every line starts with the same indent, you can use the |
|
2266 function @{ML_ind indent in Pretty} as follows: |
|
2267 |
|
2268 @{ML_response_fake [display,gray] |
|
2269 "let |
|
2270 val ptrs = map Pretty.str (space_explode \" \" test_str) |
|
2271 in |
|
2272 pprint (Pretty.indent 10 (Pretty.blk (0, Pretty.breaks ptrs))) |
|
2273 end" |
|
2274 " fooooooooooooooobaaaaaaaaaaaar fooooooooooooooobaaaaaaaaaaaar |
|
2275 fooooooooooooooobaaaaaaaaaaaar fooooooooooooooobaaaaaaaaaaaar |
|
2276 fooooooooooooooobaaaaaaaaaaaar fooooooooooooooobaaaaaaaaaaaar |
|
2277 fooooooooooooooobaaaaaaaaaaaar fooooooooooooooobaaaaaaaaaaaar"} |
|
2278 |
|
2279 If you want to print out a list of items separated by commas and |
|
2280 have the linebreaks handled properly, you can use the function |
|
2281 @{ML_ind commas in Pretty}. For example |
|
2282 |
|
2283 @{ML_response_fake [display,gray] |
|
2284 "let |
|
2285 val ptrs = map (Pretty.str o string_of_int) (99998 upto 100020) |
|
2286 in |
|
2287 pprint (Pretty.blk (0, Pretty.commas ptrs)) |
|
2288 end" |
|
2289 "99998, 99999, 100000, 100001, 100002, 100003, 100004, 100005, 100006, |
|
2290 100007, 100008, 100009, 100010, 100011, 100012, 100013, 100014, 100015, |
|
2291 100016, 100017, 100018, 100019, 100020"} |
|
2292 |
|
2293 where @{ML upto} generates a list of integers. You can print out this |
|
2294 list as a ``set'', that means enclosed inside @{text [quotes] "{"} and |
|
2295 @{text [quotes] "}"}, and separated by commas using the function |
|
2296 @{ML_ind enum in Pretty}. For example |
|
2297 *} |
|
2298 |
|
2299 text {* |
|
2300 |
|
2301 @{ML_response_fake [display,gray] |
|
2302 "let |
|
2303 val ptrs = map (Pretty.str o string_of_int) (99998 upto 100020) |
|
2304 in |
|
2305 pprint (Pretty.enum \",\" \"{\" \"}\" ptrs) |
|
2306 end" |
|
2307 "{99998, 99999, 100000, 100001, 100002, 100003, 100004, 100005, 100006, |
|
2308 100007, 100008, 100009, 100010, 100011, 100012, 100013, 100014, 100015, |
|
2309 100016, 100017, 100018, 100019, 100020}"} |
|
2310 |
|
2311 As can be seen, this function prints out the ``set'' so that starting |
|
2312 from the second, each new line as an indentation of 2. |
|
2313 |
|
2314 If you print out something that goes beyond the capabilities of the |
|
2315 standard functions, you can do relatively easily the formatting |
|
2316 yourself. Assume you want to print out a list of items where like in ``English'' |
|
2317 the last two items are separated by @{text [quotes] "and"}. For this you can |
|
2318 write the function |
|
2319 |
|
2320 *} |
|
2321 |
|
2322 ML %linenosgray{*fun and_list [] = [] |
|
2323 | and_list [x] = [x] |
|
2324 | and_list xs = |
|
2325 let |
|
2326 val (front, last) = split_last xs |
|
2327 in |
|
2328 (Pretty.commas front) @ |
|
2329 [Pretty.brk 1, Pretty.str "and", Pretty.brk 1, last] |
|
2330 end *} |
|
2331 |
|
2332 text {* |
|
2333 where Line 7 prints the beginning of the list and Line |
|
2334 8 the last item. We have to use @{ML "Pretty.brk 1"} in order |
|
2335 to insert a space (of length 1) before the |
|
2336 @{text [quotes] "and"}. This space is also a place where a line break |
|
2337 can occur. We do the same after the @{text [quotes] "and"}. This gives you |
|
2338 for example |
|
2339 |
|
2340 @{ML_response_fake [display,gray] |
|
2341 "let |
|
2342 val ptrs = map (Pretty.str o string_of_int) (1 upto 22) |
|
2343 in |
|
2344 pprint (Pretty.blk (0, and_list ptrs)) |
|
2345 end" |
|
2346 "1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21 |
|
2347 and 22"} |
|
2348 |
|
2349 Next we like to pretty-print a term and its type. For this we use the |
|
2350 function @{text "tell_type"}. |
|
2351 *} |
|
2352 |
|
2353 ML %linenosgray{*fun tell_type ctxt t = |
|
2354 let |
|
2355 fun pstr s = Pretty.breaks (map Pretty.str (space_explode " " s)) |
|
2356 val ptrm = Pretty.quote (Syntax.pretty_term ctxt t) |
|
2357 val pty = Pretty.quote (Syntax.pretty_typ ctxt (fastype_of t)) |
|
2358 in |
|
2359 pprint (Pretty.blk (0, |
|
2360 (pstr "The term " @ [ptrm] @ pstr " has type " |
|
2361 @ [pty, Pretty.str "."]))) |
|
2362 end*} |
|
2363 |
|
2364 text {* |
|
2365 In Line 3 we define a function that inserts possible linebreaks in places |
|
2366 where a space is. In Lines 4 and 5 we pretty-print the term and its type |
|
2367 using the functions @{ML_ind pretty_term in Syntax} and @{ML_ind |
|
2368 pretty_typ in Syntax}. We also use the function @{ML_ind quote in |
|
2369 Pretty} in order to enclose the term and type inside quotation marks. In |
|
2370 Line 9 we add a period right after the type without the possibility of a |
|
2371 line break, because we do not want that a line break occurs there. |
|
2372 |
|
2373 |
|
2374 Now you can write |
|
2375 |
|
2376 @{ML_response_fake [display,gray] |
|
2377 "tell_type @{context} @{term \"min (Suc 0)\"}" |
|
2378 "The term \"min (Suc 0)\" has type \"nat \<Rightarrow> nat\"."} |
|
2379 |
|
2380 To see the proper line breaking, you can try out the function on a bigger term |
|
2381 and type. For example: |
|
2382 |
|
2383 @{ML_response_fake [display,gray] |
|
2384 "tell_type @{context} @{term \"op = (op = (op = (op = (op = op =))))\"}" |
|
2385 "The term \"op = (op = (op = (op = (op = op =))))\" has type |
|
2386 \"((((('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> bool) \<Rightarrow> bool) \<Rightarrow> bool) \<Rightarrow> bool) \<Rightarrow> bool\"."} |
|
2387 |
|
2388 |
|
2389 FIXME: TBD below |
|
2390 *} |
|
2391 |
|
2392 ML {* pprint (Pretty.big_list "header" (map (Pretty.str o string_of_int) (4 upto 10))) *} |
|
2393 |
|
2394 text {* |
|
2395 chunks inserts forced breaks (unlike blk where you have to do this yourself) |
|
2396 *} |
|
2397 |
|
2398 ML {* (Pretty.chunks [Pretty.str "a", Pretty.str "b"], |
|
2399 Pretty.blk (0, [Pretty.str "a", Pretty.str "b"])) *} |
|
2400 |
|
2401 ML {* |
|
2402 fun setmp_show_all_types f = |
|
2403 setmp show_all_types |
|
2404 (! show_types orelse ! show_sorts orelse ! show_all_types) f; |
|
2405 |
|
2406 val ctxt = @{context}; |
|
2407 val t1 = @{term "undefined::nat"}; |
|
2408 val t2 = @{term "Suc y"}; |
|
2409 val pty = Pretty.block (Pretty.breaks |
|
2410 [(setmp show_question_marks false o setmp_show_all_types) |
|
2411 (Syntax.pretty_term ctxt) t1, |
|
2412 Pretty.str "=", Syntax.pretty_term ctxt t2]); |
|
2413 pty |> Pretty.string_of |> priority |
|
2414 *} |
|
2415 |
|
2416 text {* the infrastructure of Syntax-pretty-term makes sure it is printed nicely *} |
|
2417 |
|
2418 |
|
2419 ML {* Pretty.mark Markup.hilite (Pretty.str "foo") |> Pretty.string_of |> tracing *} |
|
2420 ML {* (Pretty.str "bar") |> Pretty.string_of |> tracing *} |
|
2421 |
|
2422 |
|
2423 ML {* Pretty.mark Markup.subgoal (Pretty.str "foo") |> Pretty.string_of |> tracing *} |
|
2424 ML {* (Pretty.str "bar") |> Pretty.string_of |> tracing *} |
|
2425 |
|
2426 text {* |
|
2427 Still to be done: |
|
2428 |
|
2429 What happens with big formulae? |
|
2430 |
|
2431 \begin{readmore} |
|
2432 The general infrastructure for pretty-printing is implemented in the file |
|
2433 @{ML_file "Pure/General/pretty.ML"}. The file @{ML_file "Pure/Syntax/syntax.ML"} |
|
2434 contains pretty-printing functions for terms, types, theorems and so on. |
|
2435 |
|
2436 @{ML_file "Pure/General/markup.ML"} |
|
2437 \end{readmore} |
|
2438 *} |
|
2439 |
|
2440 text {* |
|
2441 printing into the goal buffer as part of the proof state |
|
2442 *} |
|
2443 |
|
2444 |
|
2445 ML {* Pretty.mark Markup.hilite (Pretty.str "foo") |> Pretty.string_of |> tracing *} |
|
2446 ML {* (Pretty.str "bar") |> Pretty.string_of |> tracing *} |
|
2447 |
|
2448 text {* writing into the goal buffer *} |
|
2449 |
|
2450 ML {* fun my_hook interactive state = |
|
2451 (interactive ? Proof.goal_message (fn () => Pretty.str |
|
2452 "foo")) state |
|
2453 *} |
|
2454 |
|
2455 setup %gray {* Context.theory_map (Specification.add_theorem_hook my_hook) *} |
|
2456 |
|
2457 lemma "False" |
|
2458 oops |
|
2459 |
|
2460 |
|
2461 section {* Misc (TBD) *} |
|
2462 |
|
2463 ML {*Datatype.get_info @{theory} "List.list"*} |
|
2464 |
|
2465 section {* Name Space Issues (TBD) *} |
|
2466 |
|
2467 |
|
2468 end |
834 end |