31 expanding the defs, gives |
31 expanding the defs, gives |
32 |
32 |
33 @{text [display] |
33 @{text [display] |
34 "\<forall>xs. As \<longrightarrow> (\<forall>ys. Bs \<longrightarrow> (\<forall>preds. orules \<longrightarrow> pred ss))\<^isup>* \<longrightarrow> (\<forall>preds. orules \<longrightarrow> pred ts"} |
34 "\<forall>xs. As \<longrightarrow> (\<forall>ys. Bs \<longrightarrow> (\<forall>preds. orules \<longrightarrow> pred ss))\<^isup>* \<longrightarrow> (\<forall>preds. orules \<longrightarrow> pred ts"} |
35 |
35 |
36 applying as many allI and impI as possible |
36 By applying as many allI and impI as possible, we have |
37 |
37 |
38 so we have @{text "As"}, @{text "(\<forall>ys. Bs \<longrightarrow> (\<forall>preds. orules \<longrightarrow> pred ss))\<^isup>*"}, |
38 @{text "As"}, @{text "(\<forall>ys. Bs \<longrightarrow> (\<forall>preds. orules \<longrightarrow> pred ss))\<^isup>*"}, |
39 @{text "orules"}; and have to show @{text "pred ts"} |
39 @{text "orules"}; and have to show @{text "pred ts"} |
40 |
40 |
41 the $i$th @{text "orule"} is of the |
41 the $i$th @{text "orule"} is of the |
42 form @{text "\<forall>xs. As \<longrightarrow> (\<forall>ys. Bs \<longrightarrow> pred ss)\<^isup>* \<longrightarrow> pred ts"}. |
42 form @{text "\<forall>xs. As \<longrightarrow> (\<forall>ys. Bs \<longrightarrow> pred ss)\<^isup>* \<longrightarrow> pred ts"}. |
43 |
43 |
44 using the @{text "As"} we ???? |
44 So we apply the $i$th @{text "orule"}, but we have to show the @{text "As"} (by assumption) |
45 *} |
45 and all @{text "(\<forall>ys. Bs \<longrightarrow> pred ss)\<^isup>*"}. For the latter we use the assumptions |
46 |
46 @{text "(\<forall>ys. Bs \<longrightarrow> (\<forall>preds. orules \<longrightarrow> pred ss))\<^isup>*"} and @{text "orules"}. |
47 |
47 |
48 text {* |
48 *} |
49 First we have to produce for each predicate its definitions of the form |
49 |
|
50 |
|
51 text {* |
|
52 First we have to produce for each predicate the definition of the form |
50 |
53 |
51 @{text [display] "pred \<equiv> \<lambda>zs. \<forall>preds. orules \<longrightarrow> pred zs"} |
54 @{text [display] "pred \<equiv> \<lambda>zs. \<forall>preds. orules \<longrightarrow> pred zs"} |
52 |
55 |
53 In order to make definitions, we use the following wrapper for |
56 and then ``register'' the definitions with Isabelle. |
|
57 To do the latter, we use the following wrapper for |
54 @{ML LocalTheory.define}. The wrapper takes a predicate name, a syntax |
58 @{ML LocalTheory.define}. The wrapper takes a predicate name, a syntax |
55 annotation and a term representing the right-hand side of the definition. |
59 annotation and a term representing the right-hand side of the definition. |
56 *} |
60 *} |
57 |
61 |
58 ML %linenosgray{*fun make_defs ((predname, syn), trm) lthy = |
62 ML %linenosgray{*fun make_defs ((predname, syn), trm) lthy = |
90 \begin{isabelle} |
94 \begin{isabelle} |
91 \isacommand{thm}~@{text "MyTrue_def"}\\ |
95 \isacommand{thm}~@{text "MyTrue_def"}\\ |
92 @{text "> MyTrue \<equiv> True"} |
96 @{text "> MyTrue \<equiv> True"} |
93 \end{isabelle} |
97 \end{isabelle} |
94 |
98 |
95 The next two functions construct the terms we need for the definitions for |
99 The next two functions construct the right-hand sides of the definitions, which |
96 our \isacommand{simple\_inductive} command. These |
100 are of the form |
97 terms are of the form |
101 |
98 |
102 @{text [display] "\<lambda>zs. \<forall>preds. orules \<longrightarrow> pred zs"} |
99 @{text [display] "\<lambda>\<^raw:$zs$>. \<forall>preds. orules \<longrightarrow> pred \<^raw:$zs$>"} |
103 |
100 |
104 The variables @{text "zs"} need to be chosen so that they do not occur |
101 The variables @{text "\<^raw:$zs$>"} need to be chosen so that they do not occur |
|
102 in the @{text orules} and also be distinct from the @{text "preds"}. |
105 in the @{text orules} and also be distinct from the @{text "preds"}. |
103 |
106 |
104 The first function constructs the term for one particular predicate, say |
107 The first function constructs the term for one particular predicate, say |
105 @{text "pred"}; the number of arguments of this predicate is |
108 @{text "pred"}; the number of arguments of this predicate is |
106 determined by the number of argument types of @{text "arg_tys"}. |
109 determined by the number of argument types given in @{text "arg_tys"}. |
107 So it takes these two parameters as arguments. The other arguments are |
110 The other arguments are all @{text "preds"} and the @{text "orules"}. |
108 all the @{text "preds"} and the @{text "orules"}. |
|
109 *} |
111 *} |
110 |
112 |
111 ML %linenosgray{*fun defs_aux lthy orules preds (pred, arg_tys) = |
113 ML %linenosgray{*fun defs_aux lthy orules preds (pred, arg_tys) = |
112 let |
114 let |
113 fun mk_all x P = HOLogic.all_const (fastype_of x) $ lambda x P |
115 fun mk_all x P = HOLogic.all_const (fastype_of x) $ lambda x P |
125 end*} |
127 end*} |
126 |
128 |
127 text {* |
129 text {* |
128 The function in Line 3 is just a helper function for constructing universal |
130 The function in Line 3 is just a helper function for constructing universal |
129 quantifications. The code in Lines 5 to 9 produces the fresh @{text |
131 quantifications. The code in Lines 5 to 9 produces the fresh @{text |
130 "\<^raw:$zs$>"}. For this it pairs every argument type with the string |
132 "zs"}. For this it pairs every argument type with the string |
131 @{text [quotes] "z"} (Line 7); then generates variants for all these strings |
133 @{text [quotes] "z"} (Line 7); then generates variants for all these strings |
132 so that they are unique w.r.t.~to the @{text "orules"} and the predicates; |
134 so that they are unique w.r.t.~to the predicates and @{text "orules"} (Line 8); |
133 in Line 9 it generates the corresponding variable terms for the unique |
135 in Line 9 it generates the corresponding variable terms for the unique |
134 strings. |
136 strings. |
135 |
137 |
136 The unique free variables are applied to the predicate (Line 11) using the |
138 The unique free variables are applied to the predicate (Line 11) using the |
137 function @{ML list_comb}; then the @{text orules} are prefixed (Line 12); in |
139 function @{ML list_comb}; then the @{text orules} are prefixed (Line 12); in |
138 Line 13 we quantify over all predicates; and in line 14 we just abstract |
140 Line 13 we quantify over all predicates; and in line 14 we just abstract |
139 over all the @{text "\<^raw:$zs$>"}, i.e.~the fresh arguments of the |
141 over all the @{text "zs"}, i.e.~the fresh arguments of the |
140 predicate. |
142 predicate. A testcase for this function is |
141 |
|
142 A testcase for this function is |
|
143 *} |
143 *} |
144 |
144 |
145 local_setup %gray{* fn lthy => |
145 local_setup %gray{* fn lthy => |
146 let |
146 let |
147 val orules = [@{prop "even 0"}, |
147 val orules = [@{prop "even 0"}, |
148 @{prop "\<forall>n::nat. odd n \<longrightarrow> even (Suc n)"}, |
148 @{prop "\<forall>n::nat. odd n \<longrightarrow> even (Suc n)"}, |
149 @{prop "\<forall>n::nat. even n \<longrightarrow> odd (Suc n)"}] |
149 @{prop "\<forall>n::nat. even n \<longrightarrow> odd (Suc n)"}] |
150 val preds = [@{term "even::nat\<Rightarrow>bool"}, @{term "odd::nat\<Rightarrow>bool"}, @{term "z::nat"}] |
150 val preds = [@{term "even::nat\<Rightarrow>bool"}, @{term "odd::nat\<Rightarrow>bool"}] |
151 val pred = @{term "even::nat\<Rightarrow>bool"} |
151 val pred = @{term "even::nat\<Rightarrow>bool"} |
152 val arg_tys = [@{typ "nat"}] |
152 val arg_tys = [@{typ "nat"}] |
153 val def = defs_aux lthy orules preds (pred, arg_tys) |
153 val def = defs_aux lthy orules preds (pred, arg_tys) |
154 in |
154 in |
155 warning (Syntax.string_of_term lthy def); lthy |
155 warning (Syntax.string_of_term lthy def); lthy |
156 end *} |
156 end *} |
157 |
157 |
158 text {* |
158 text {* |
159 It constructs the left-hand side for the definition of @{text "even"}. So we obtain |
159 It calls @{ML defs_aux} for the definition of @{text "even"} and prints |
160 as printout the term |
160 out the definition. So we obtain as printout |
161 |
161 |
162 @{text [display] |
162 @{text [display] |
163 "\<lambda>z. \<forall>even odd. (even 0) \<longrightarrow> (\<forall>n. odd n \<longrightarrow> even (Suc n)) |
163 "\<lambda>z. \<forall>even odd. (even 0) \<longrightarrow> (\<forall>n. odd n \<longrightarrow> even (Suc n)) |
164 \<longrightarrow> (\<forall>n. even n \<longrightarrow> odd (Suc n)) \<longrightarrow> even z"} |
164 \<longrightarrow> (\<forall>n. even n \<longrightarrow> odd (Suc n)) \<longrightarrow> even z"} |
165 |
165 |
166 The main function for the definitions now has to just iterate the function |
166 The second function for the definitions has to just iterate the function |
167 @{ML defs_aux} over all predicates. The argument @{text "preds"} is again |
167 @{ML defs_aux} over all predicates. The argument @{text "preds"} is again |
168 the the list of predicates as @{ML_type term}s; the argument @{text |
168 the the list of predicates as @{ML_type term}s; the argument @{text |
169 "prednames"} is the list of names of the predicates; @{text "arg_tyss"} is |
169 "prednames"} is the list of names of the predicates; @{text "arg_tyss"} is |
170 the list of argument-type-lists for each predicate. |
170 the list of argument-type-lists for each predicate. |
171 *} |
171 *} |
186 meta-connectives). To do this transformation we have to obtain the theory |
186 meta-connectives). To do this transformation we have to obtain the theory |
187 behind the local theory (Line 3); with this theory we can use the function |
187 behind the local theory (Line 3); with this theory we can use the function |
188 @{ML ObjectLogic.atomize_term} to make the transformation (Line 4). The call |
188 @{ML ObjectLogic.atomize_term} to make the transformation (Line 4). The call |
189 to @{ML defs_aux} in Line 5 produces all left-hand sides of the |
189 to @{ML defs_aux} in Line 5 produces all left-hand sides of the |
190 definitions. The actual definitions are then made in Line 7. The result |
190 definitions. The actual definitions are then made in Line 7. The result |
191 of the function is a list of theorems and a local theory. |
191 of the function is a list of theorems and a local theory. A testcase for |
192 |
192 this function is |
193 |
|
194 A testcase for this function is |
|
195 *} |
193 *} |
196 |
194 |
197 local_setup %gray {* fn lthy => |
195 local_setup %gray {* fn lthy => |
198 let |
196 let |
199 val rules = [@{prop "even 0"}, |
197 val rules = [@{prop "even 0"}, |
288 K (rewrite_goals_tac defs), |
286 K (rewrite_goals_tac defs), |
289 inst_spec_tac insts, |
287 inst_spec_tac insts, |
290 assume_tac]*} |
288 assume_tac]*} |
291 |
289 |
292 text {* |
290 text {* |
293 We only have to give it as arguments the definitions, the premise |
291 We only have to give it the definitions, the premise (like @{text "even n"}) |
294 (like @{text "even n"}) |
292 and the instantiations as arguments. Compare this with the manual proof |
295 and the instantiations. Compare this with the manual proof given for the |
293 given for the lemma @{thm [source] man_ind_principle}: there is almos a |
296 lemma @{thm [source] man_ind_principle}. |
294 one-to-one correspondence between the \isacommand{apply}-script and the |
297 A testcase for this tactic is the function |
295 @{ML induction_tac}. A testcase for this tactic is the function |
298 *} |
296 *} |
299 |
297 |
300 ML{*fun test_tac prems = |
298 ML{*fun test_tac prems = |
301 let |
299 let |
302 val defs = [@{thm even_def}, @{thm odd_def}] |
300 val defs = [@{thm even_def}, @{thm odd_def}] |
320 it is a bit harder to construct the goals from the introduction |
318 it is a bit harder to construct the goals from the introduction |
321 rules the user provides. In general we have to construct for each predicate |
319 rules the user provides. In general we have to construct for each predicate |
322 @{text "pred"} a goal of the form |
320 @{text "pred"} a goal of the form |
323 |
321 |
324 @{text [display] |
322 @{text [display] |
325 "\<And>\<^raw:$zs$>. pred \<^raw:$zs$> \<Longrightarrow> rules[preds := \<^raw:$Ps$>] \<Longrightarrow> \<^raw:$P$> \<^raw:$zs$>"} |
323 "pred ?zs \<Longrightarrow> rules[preds := ?Ps] \<Longrightarrow> ?P$ ?zs"} |
326 |
324 |
327 where the given predicates @{text preds} are replaced in the introduction |
325 where the predicates @{text preds} are replaced in the introduction |
328 rules by new distinct variables written @{text "\<^raw:$Ps$>"}. |
326 rules by new distinct variables written @{text "Ps"}. |
329 We also need to generate fresh arguments for the predicate @{text "pred"} in |
327 We also need to generate fresh arguments for the predicate @{text "pred"} in |
330 the premise and the @{text "\<^raw:$P$>"} in the conclusion. We achieve |
328 the premise and the @{text "?P"} in the conclusion. Note |
|
329 that the @{text "?Ps"} and @{text "?zs"} need to be |
|
330 schematic variables that can be instantiated. This corresponds to what the |
|
331 @{thm [source] auto_ind_principle} looks like: |
|
332 |
|
333 \begin{isabelle} |
|
334 \isacommand{thm}~@{thm [source] auto_ind_principle}\\ |
|
335 @{text "> \<lbrakk>even ?n; ?P 0; \<And>m. ?Q m \<Longrightarrow> ?P (Suc m); \<And>m. ?P m \<Longrightarrow> ?Q (Suc m)\<rbrakk> \<Longrightarrow> ?P ?n"} |
|
336 \end{isabelle} |
|
337 |
|
338 We achieve |
331 that in two steps. |
339 that in two steps. |
332 |
340 |
333 The function below expects that the introduction rules are already appropriately |
341 The function below expects that the introduction rules are already appropriately |
334 substituted. The argument @{text "srules"} stands for these substituted |
342 substituted. The argument @{text "srules"} stands for these substituted |
335 rules; @{text cnewpreds} are the certified terms coresponding |
343 rules; @{text cnewpreds} are the certified terms coresponding |
336 to the variables @{text "\<^raw:$Ps$>"}; @{text "pred"} is the predicate for |
344 to the variables @{text "Ps"}; @{text "pred"} is the predicate for |
337 which we prove the introduction principle; @{text "newpred"} is its |
345 which we prove the introduction principle; @{text "newpred"} is its |
338 replacement and @{text "tys"} are the argument types of this predicate. |
346 replacement and @{text "tys"} are the argument types of this predicate. |
339 *} |
347 *} |
340 |
348 |
341 ML %linenosgray{*fun prove_induction lthy defs srules cnewpreds ((pred, newpred), tys) = |
349 ML %linenosgray{*fun prove_induction lthy defs srules cnewpreds ((pred, newpred), arg_tys) = |
342 let |
350 let |
343 val zs = replicate (length tys) "z" |
351 val zs = replicate (length arg_tys) "z" |
344 val (newargnames, lthy') = Variable.variant_fixes zs lthy; |
352 val (newargnames, lthy') = Variable.variant_fixes zs lthy; |
345 val newargs = map Free (newargnames ~~ tys) |
353 val newargs = map Free (newargnames ~~ arg_tys) |
346 |
354 |
347 val prem = HOLogic.mk_Trueprop (list_comb (pred, newargs)) |
355 val prem = HOLogic.mk_Trueprop (list_comb (pred, newargs)) |
348 val goal = Logic.list_implies |
356 val goal = Logic.list_implies |
349 (srules, HOLogic.mk_Trueprop (list_comb (newpred, newargs))) |
357 (srules, HOLogic.mk_Trueprop (list_comb (newpred, newargs))) |
350 in |
358 in |
352 (fn {prems, ...} => induction_tac defs prems cnewpreds) |
360 (fn {prems, ...} => induction_tac defs prems cnewpreds) |
353 |> singleton (ProofContext.export lthy' lthy) |
361 |> singleton (ProofContext.export lthy' lthy) |
354 end *} |
362 end *} |
355 |
363 |
356 text {* |
364 text {* |
357 In Line 3 we produce names @{text "\<^raw:$zs$>"} for each type in the |
365 In Line 3 we produce names @{text "zs"} for each type in the |
358 argument type list. Line 4 makes these names unique and declares them as |
366 argument type list. Line 4 makes these names unique and declares them as |
359 \emph{free} (but fixed) variables in the local theory @{text "lthy'"}. In |
367 \emph{free} (but fixed) variables in the local theory @{text "lthy'"}. In |
360 Line 5 we just construct the terms corresponding to these variables. |
368 Line 5 we just construct the terms corresponding to these variables. |
361 The term variables are applied to the predicate in Line 7 (this corresponds |
369 The term variables are applied to the predicate in Line 7 (this corresponds |
362 to the first premise @{text "pred \<^raw:$zs$>"} of the induction principle). |
370 to the first premise @{text "pred zs"} of the induction principle). |
363 In Line 8 and 9, we first construct the term @{text "\<^raw:$P$>\<^raw:$zs$>"} |
371 In Line 8 and 9, we first construct the term @{text "P zs"} |
364 and then add the (substituded) introduction rules as premises. In case that |
372 and then add the (substituded) introduction rules as premises. In case that |
365 no introduction rules are given, the conclusion of this implication needs |
373 no introduction rules are given, the conclusion of this implication needs |
366 to be wrapped inside a @{term Trueprop}, otherwise the Isabelle's goal |
374 to be wrapped inside a @{term Trueprop}, otherwise the Isabelle's goal |
367 mechanism will fail. |
375 mechanism will fail. |
368 |
376 |
369 In Line 11 we set up the goal to be proved; in the next line call the tactic |
377 In Line 11 we set up the goal to be proved; in the next line we call the tactic |
370 for proving the induction principle. This tactic expects definitions, the |
378 for proving the induction principle. This tactic expects the definitions, the |
371 premise and the (certified) predicates with which the introduction rules |
379 premise and the (certified) predicates with which the introduction rules |
372 have been substituted. This will return a theorem. However, it is a theorem |
380 have been substituted. The code in these two lines will return a theorem. |
|
381 However, it is a theorem |
373 proved inside the local theory @{text "lthy'"}, where the variables @{text |
382 proved inside the local theory @{text "lthy'"}, where the variables @{text |
374 "\<^raw:$zs$>"} are fixed, but free. By exporting this theorem from @{text |
383 "zs"} are fixed, but free. By exporting this theorem from @{text |
375 "lthy'"} (which contains the @{text "\<^raw:$zs$>"} as free) to @{text |
384 "lthy'"} (which contains the @{text "zs"} as free) to @{text |
376 "lthy"} (which does not), we obtain the desired quantifications @{text |
385 "lthy"} (which does not), we obtain the desired schematic variables. |
377 "\<And>\<^raw:$zs$>"}. |
386 *} |
378 |
387 |
379 (FIXME testcase) |
388 local_setup %gray{* fn lthy => |
380 |
389 let |
381 |
390 val defs = [@{thm even_def}, @{thm odd_def}] |
382 Now it is left to produce the new predicates with which the introduction |
391 val srules = [@{prop "P (0::nat)"}, |
383 rules are substituted. |
392 @{prop "\<And>n::nat. Q n \<Longrightarrow> P (Suc n)"}, |
|
393 @{prop "\<And>n::nat. P n \<Longrightarrow> Q (Suc n)"}] |
|
394 val cnewpreds = [@{cterm "P::nat\<Rightarrow>bool"}, @{cterm "Q::nat\<Rightarrow>bool"}] |
|
395 val pred = @{term "even::nat\<Rightarrow>bool"} |
|
396 val newpred = @{term "P::nat\<Rightarrow>bool"} |
|
397 val arg_tys = [@{typ "nat"}] |
|
398 val intro = |
|
399 prove_induction lthy defs srules cnewpreds ((pred, newpred), arg_tys) |
|
400 in |
|
401 warning (str_of_thm_raw lthy intro); lthy |
|
402 end *} |
|
403 |
|
404 text {* |
|
405 This prints out: |
|
406 |
|
407 @{text [display] |
|
408 " \<lbrakk>even ?z; P 0; \<And>n. Q n \<Longrightarrow> P (Suc n); \<And>n. P n \<Longrightarrow> Q (Suc n)\<rbrakk> \<Longrightarrow> P ?z"} |
|
409 |
|
410 Note that the export from @{text lthy'} to @{text lthy} in Line 13 above |
|
411 has turned the free, but fixed, @{text "z"} into a schematic |
|
412 variable @{text "?z"}. |
|
413 |
|
414 We still have to produce the new predicates with which the introduction |
|
415 rules are substituted and iterate @{ML prove_induction} over all |
|
416 predicates. This is what the next function does. |
384 *} |
417 *} |
385 |
418 |
386 ML %linenosgray{*fun inductions rules defs preds arg_tyss lthy = |
419 ML %linenosgray{*fun inductions rules defs preds arg_tyss lthy = |
387 let |
420 let |
388 val Ps = replicate (length preds) "P" |
421 val Ps = replicate (length preds) "P" |
402 end*} |
435 end*} |
403 |
436 |
404 text {* |
437 text {* |
405 In Line 3 we generate a string @{text [quotes] "P"} for each predicate. |
438 In Line 3 we generate a string @{text [quotes] "P"} for each predicate. |
406 In Line 4, we use the same trick as in the previous function, that is making the |
439 In Line 4, we use the same trick as in the previous function, that is making the |
407 @{text "\<^raw:$Ps$>"} fresh and declaring them as fixed but free in |
440 @{text "Ps"} fresh and declaring them as fixed, but free, in |
408 the new local theory @{text "lthy'"}. From the local theory we extract |
441 the new local theory @{text "lthy'"}. From the local theory we extract |
409 the ambient theory in Line 6. We need this theory in order to certify |
442 the ambient theory in Line 6. We need this theory in order to certify |
410 the new predicates. In Line 8 we calculate the types of these new predicates |
443 the new predicates. In Line 8 we calculate the types of these new predicates |
411 using the argument types. Next we turn them into terms and subsequently |
444 using the given argument types. Next we turn them into terms and subsequently |
412 certify them. We can now produce the substituted introduction rules |
445 certify them (Line 9 and 10). We can now produce the substituted introduction rules |
413 (Line 11). Line 14 and 15 just iterate the proofs for all predicates. |
446 (Line 11) using the function @{ML subst_free}. Line 14 and 15 just iterate |
|
447 the proofs for all predicates. |
414 From this we obtain a list of theorems. Finally we need to export the |
448 From this we obtain a list of theorems. Finally we need to export the |
415 fixed variables @{text "\<^raw:$Ps$>"} to obtain the correct quantification |
449 fixed variables @{text "Ps"} to obtain the schematic variables |
416 (Line 16). |
450 (Line 16). |
417 |
451 |
418 A testcase for this function is |
452 A testcase for this function is |
419 *} |
453 *} |
420 |
454 |
426 val defs = [@{thm even_def}, @{thm odd_def}] |
460 val defs = [@{thm even_def}, @{thm odd_def}] |
427 val preds = [@{term "even::nat\<Rightarrow>bool"}, @{term "odd::nat\<Rightarrow>bool"}] |
461 val preds = [@{term "even::nat\<Rightarrow>bool"}, @{term "odd::nat\<Rightarrow>bool"}] |
428 val tyss = [[@{typ "nat"}], [@{typ "nat"}]] |
462 val tyss = [[@{typ "nat"}], [@{typ "nat"}]] |
429 val ind_thms = inductions rules defs preds tyss lthy |
463 val ind_thms = inductions rules defs preds tyss lthy |
430 in |
464 in |
431 warning (str_of_thms lthy ind_thms); lthy |
465 warning (str_of_thms_raw lthy ind_thms); lthy |
432 end |
466 end *} |
433 *} |
|
434 |
467 |
435 |
468 |
436 text {* |
469 text {* |
437 which prints out |
470 which prints out |
438 |
471 |
439 @{text [display] |
472 @{text [display] |
440 "> even z \<Longrightarrow> |
473 "> even ?z \<Longrightarrow> ?P1 0 \<Longrightarrow> |
441 > P 0 \<Longrightarrow> (\<And>m. Pa m \<Longrightarrow> P (Suc m)) \<Longrightarrow> (\<And>m. P m \<Longrightarrow> Pa (Suc m)) \<Longrightarrow> P z, |
474 > (\<And>m. ?Pa1 m \<Longrightarrow> ?P1 (Suc m)) \<Longrightarrow> (\<And>m. ?P1 m \<Longrightarrow> ?Pa1 (Suc m)) \<Longrightarrow> ?P1 ?z, |
442 > odd z \<Longrightarrow> |
475 > odd ?z \<Longrightarrow> ?P1 0 |
443 > P 0 \<Longrightarrow> (\<And>m. Pa m \<Longrightarrow> P (Suc m)) \<Longrightarrow> (\<And>m. P m \<Longrightarrow> Pa (Suc m)) \<Longrightarrow> Pa z"} |
476 > \<Longrightarrow> (\<And>m. ?Pa1 m \<Longrightarrow> ?P1 (Suc m)) \<Longrightarrow> (\<And>m. ?P1 m \<Longrightarrow> ?Pa1 (Suc m)) \<Longrightarrow> ?Pa1 ?z"} |
444 |
477 |
445 |
478 |
446 This completes the code for the induction principles. Finally we can |
479 Note that now both, the @{text "Ps"} and the @{text "zs"}, are schematic |
447 prove the introduction rules. |
480 variables. The numbers have been introduced by the pretty-printer and are |
448 |
481 not significant. |
449 *} |
482 |
450 |
483 This completes the code for the induction principles. Finally we can prove the |
451 ML {* ObjectLogic.rulify *} |
484 introduction rules. Their proofs are quite a bit more involved. To ease them |
452 |
485 somewhat we use the following two helper function. |
|
486 *} |
453 |
487 |
454 ML{*val all_elims = fold (fn ct => fn th => th RS inst_spec ct) |
488 ML{*val all_elims = fold (fn ct => fn th => th RS inst_spec ct) |
455 val imp_elims = fold (fn th => fn th' => [th', th] MRS @{thm mp})*} |
489 val imp_elims = fold (fn th => fn th' => [th', th] MRS @{thm mp})*} |
|
490 |
|
491 text {* |
|
492 To see what they do, let us suppose whe have the follwoing three |
|
493 theorems. |
|
494 *} |
|
495 |
|
496 lemma all_elims_test: |
|
497 fixes P::"nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> bool" |
|
498 shows "\<forall>x y z. P x y z" sorry |
|
499 |
|
500 lemma imp_elims_test: |
|
501 fixes A B C::"bool" |
|
502 shows "A \<longrightarrow> B \<longrightarrow> C" sorry |
|
503 |
|
504 lemma imp_elims_test': |
|
505 fixes A::"bool" |
|
506 shows "A" "B" sorry |
|
507 |
|
508 text {* |
|
509 The function @{ML all_elims} takes a list of (certified) terms and instantiates |
|
510 theorems of the form @{thm [source] all_elims_test}. For example we can instantiate |
|
511 the quantifiers in this theorem with @{term a}, @{term b} and @{term c} as follows |
|
512 |
|
513 @{ML_response_fake [display, gray] |
|
514 "let |
|
515 val ctrms = [@{cterm \"a::nat\"}, @{cterm \"b::nat\"}, @{cterm \"c::nat\"}] |
|
516 val new_thm = all_elims ctrms @{thm all_elims_test} |
|
517 in |
|
518 warning (str_of_thm @{context} new_thm) |
|
519 end" |
|
520 "P a b c"} |
|
521 |
|
522 Similarly, the function @{ML imp_elims} eliminates preconditions from implications. |
|
523 For example |
|
524 |
|
525 @{ML_response_fake [display, gray] |
|
526 "warning (str_of_thm @{context} |
|
527 (imp_elims @{thms imp_elims_test'} @{thm imp_elims_test}))" |
|
528 "C"} |
|
529 *} |
|
530 |
|
531 ML {* prems_of *} |
|
532 ML {* Logic.strip_params *} |
|
533 ML {* Logic.strip_assums_hyp *} |
|
534 |
|
535 ML {* |
|
536 fun chop_print_tac ctxt thm = |
|
537 let |
|
538 val [trm] = prems_of thm |
|
539 val params = map fst (Logic.strip_params trm) |
|
540 val prems = Logic.strip_assums_hyp trm |
|
541 val (prems1, prems2) = chop (length prems - 3) prems; |
|
542 val (params1, params2) = chop (length params - 2) params; |
|
543 val _ = warning (Syntax.string_of_term ctxt trm) |
|
544 val _ = warning (commas params) |
|
545 val _ = warning (commas (map (Syntax.string_of_term ctxt) prems)) |
|
546 val _ = warning ((commas params1) ^ " | " ^ (commas params2)) |
|
547 val _ = warning ((commas (map (Syntax.string_of_term ctxt) prems1)) ^ " | " ^ |
|
548 (commas (map (Syntax.string_of_term ctxt) prems2))) |
|
549 in |
|
550 Seq.single thm |
|
551 end |
|
552 *} |
|
553 |
|
554 |
|
555 lemma intro1: |
|
556 shows "\<And>m. odd m \<Longrightarrow> even (Suc m)" |
|
557 apply(tactic {* ObjectLogic.rulify_tac 1 *}) |
|
558 apply(tactic {* rewrite_goals_tac [@{thm even_def}, @{thm odd_def}] *}) |
|
559 apply(tactic {* REPEAT (resolve_tac [@{thm allI}, @{thm impI}] 1) *}) |
|
560 apply(tactic {* chop_print_tac @{context} *}) |
|
561 oops |
456 |
562 |
457 ML{*fun subproof2 prem params2 prems2 = |
563 ML{*fun subproof2 prem params2 prems2 = |
458 SUBPROOF (fn {prems, ...} => |
564 SUBPROOF (fn {prems, ...} => |
459 let |
565 let |
460 val prem' = prems MRS prem; |
566 val prem' = prems MRS prem; |
466 | _ => prem'; |
572 | _ => prem'; |
467 in |
573 in |
468 rtac prem'' 1 |
574 rtac prem'' 1 |
469 end)*} |
575 end)*} |
470 |
576 |
471 ML{*fun subproof1 rules preds i = |
577 text {* |
|
578 |
|
579 *} |
|
580 |
|
581 |
|
582 ML %linenosgray{*fun subproof1 rules preds i = |
472 SUBPROOF (fn {params, prems, context = ctxt', ...} => |
583 SUBPROOF (fn {params, prems, context = ctxt', ...} => |
473 let |
584 let |
474 val (prems1, prems2) = chop (length prems - length rules) prems; |
585 val (prems1, prems2) = chop (length prems - length rules) prems; |
475 val (params1, params2) = chop (length params - length preds) params; |
586 val (params1, params2) = chop (length params - length preds) params; |
476 in |
587 in |
477 rtac (ObjectLogic.rulify (all_elims params1 (nth prems2 i))) 1 |
588 rtac (ObjectLogic.rulify (all_elims params1 (nth prems2 i))) 1 |
|
589 (* applicateion of the i-ith intro rule *) |
478 THEN |
590 THEN |
479 EVERY1 (map (fn prem => subproof2 prem params2 prems2 ctxt') prems1) |
591 EVERY1 (map (fn prem => subproof2 prem params2 prems2 ctxt') prems1) |
480 end)*} |
592 end)*} |
481 |
593 |
|
594 text {* |
|
595 @{text "params1"} are the variables of the rules; @{text "params2"} is |
|
596 the variables corresponding to the @{text "preds"}. |
|
597 |
|
598 @{text "prems1"} are the assumption corresponding to the rules; |
|
599 @{text "prems2"} are the assumptions coming from the allIs/impIs |
|
600 |
|
601 you instantiate the parameters i-th introduction rule with the parameters |
|
602 that come from the rule; and you apply it to the goal |
|
603 |
|
604 this now generates subgoals corresponding to the premisses of this |
|
605 intro rule |
|
606 *} |
|
607 |
482 ML{* |
608 ML{* |
483 fun introductions_tac defs rules preds i ctxt = |
609 fun intros_tac defs rules preds i ctxt = |
484 EVERY1 [ObjectLogic.rulify_tac, |
610 EVERY1 [ObjectLogic.rulify_tac, |
485 K (rewrite_goals_tac defs), |
611 K (rewrite_goals_tac defs), |
486 REPEAT o (resolve_tac [@{thm allI}, @{thm impI}]), |
612 REPEAT o (resolve_tac [@{thm allI}, @{thm impI}]), |
487 subproof1 rules preds i ctxt]*} |
613 subproof1 rules preds i ctxt]*} |
488 |
614 |
489 lemma evenS: |
615 text {* |
490 shows "odd m \<Longrightarrow> even (Suc m)" |
616 A test case |
491 apply(tactic {* |
617 *} |
|
618 |
|
619 ML{*fun intros_tac_test ctxt i = |
492 let |
620 let |
493 val rules = [@{prop "even (0::nat)"}, |
621 val rules = [@{prop "even (0::nat)"}, |
494 @{prop "\<And>n::nat. odd n \<Longrightarrow> even (Suc n)"}, |
622 @{prop "\<And>n::nat. odd n \<Longrightarrow> even (Suc n)"}, |
495 @{prop "\<And>n::nat. even n \<Longrightarrow> odd (Suc n)"}] |
623 @{prop "\<And>n::nat. even n \<Longrightarrow> odd (Suc n)"}] |
496 val defs = [@{thm even_def}, @{thm odd_def}] |
624 val defs = [@{thm even_def}, @{thm odd_def}] |
497 val preds = [@{term "even::nat\<Rightarrow>bool"}, @{term "odd::nat\<Rightarrow>bool"}] |
625 val preds = [@{term "even::nat\<Rightarrow>bool"}, @{term "odd::nat\<Rightarrow>bool"}] |
498 in |
626 in |
499 introductions_tac defs rules preds 1 @{context} |
627 intros_tac defs rules preds i ctxt |
500 end *}) |
628 end*} |
|
629 |
|
630 lemma intro0: |
|
631 shows "even 0" |
|
632 apply(tactic {* intros_tac_test @{context} 0 *}) |
|
633 done |
|
634 |
|
635 lemma intro1: |
|
636 shows "\<And>m. odd m \<Longrightarrow> even (Suc m)" |
|
637 apply(tactic {* intros_tac_test @{context} 1 *}) |
|
638 done |
|
639 |
|
640 lemma intro2: |
|
641 shows "\<And>m. even m \<Longrightarrow> odd (Suc m)" |
|
642 apply(tactic {* intros_tac_test @{context} 2 *}) |
501 done |
643 done |
502 |
644 |
503 ML{*fun introductions rules preds defs lthy = |
645 ML{*fun introductions rules preds defs lthy = |
504 let |
646 let |
505 fun prove_intro (i, goal) = |
647 fun prove_intro (i, goal) = |
506 Goal.prove lthy [] [] goal |
648 Goal.prove lthy [] [] goal |
507 (fn {context, ...} => introductions_tac defs rules preds i context) |
649 (fn {context, ...} => intros_tac defs rules preds i context) |
508 in |
650 in |
509 map_index prove_intro rules |
651 map_index prove_intro rules |
510 end*} |
652 end*} |
511 |
653 |
512 text {* main internal function *} |
654 text {* main internal function *} |