1 theory Solutions |
|
2 imports Base "Recipes/Timing" |
|
3 begin |
|
4 |
|
5 chapter {* Solutions to Most Exercises\label{ch:solutions} *} |
|
6 |
|
7 text {* \solution{fun:revsum} *} |
|
8 |
|
9 ML{*fun rev_sum t = |
|
10 let |
|
11 fun dest_sum (Const (@{const_name plus}, _) $ u $ u') = u' :: dest_sum u |
|
12 | dest_sum u = [u] |
|
13 in |
|
14 foldl1 (HOLogic.mk_binop @{const_name plus}) (dest_sum t) |
|
15 end *} |
|
16 |
|
17 text {* \solution{fun:makesum} *} |
|
18 |
|
19 ML{*fun make_sum t1 t2 = |
|
20 HOLogic.mk_nat (HOLogic.dest_nat t1 + HOLogic.dest_nat t2) *} |
|
21 |
|
22 text {* \solution{ex:scancmts} *} |
|
23 |
|
24 ML{*val any = Scan.one (Symbol.not_eof) |
|
25 |
|
26 val scan_cmt = |
|
27 let |
|
28 val begin_cmt = Scan.this_string "(*" |
|
29 val end_cmt = Scan.this_string "*)" |
|
30 in |
|
31 begin_cmt |-- Scan.repeat (Scan.unless end_cmt any) --| end_cmt |
|
32 >> (enclose "(**" "**)" o implode) |
|
33 end |
|
34 |
|
35 val parser = Scan.repeat (scan_cmt || any) |
|
36 |
|
37 val scan_all = |
|
38 Scan.finite Symbol.stopper parser >> implode #> fst *} |
|
39 |
|
40 text {* |
|
41 By using @{text "#> fst"} in the last line, the function |
|
42 @{ML scan_all} retruns a string, instead of the pair a parser would |
|
43 normally return. For example: |
|
44 |
|
45 @{ML_response [display,gray] |
|
46 "let |
|
47 val input1 = (explode \"foo bar\") |
|
48 val input2 = (explode \"foo (*test*) bar (*test*)\") |
|
49 in |
|
50 (scan_all input1, scan_all input2) |
|
51 end" |
|
52 "(\"foo bar\", \"foo (**test**) bar (**test**)\")"} |
|
53 *} |
|
54 |
|
55 text {* \solution{ex:addsimproc} *} |
|
56 |
|
57 ML{*fun dest_sum term = |
|
58 case term of |
|
59 (@{term "(op +):: nat \<Rightarrow> nat \<Rightarrow> nat"} $ t1 $ t2) => |
|
60 (snd (HOLogic.dest_number t1), snd (HOLogic.dest_number t2)) |
|
61 | _ => raise TERM ("dest_sum", [term]) |
|
62 |
|
63 fun get_sum_thm ctxt t (n1, n2) = |
|
64 let |
|
65 val sum = HOLogic.mk_number @{typ "nat"} (n1 + n2) |
|
66 val goal = Logic.mk_equals (t, sum) |
|
67 in |
|
68 Goal.prove ctxt [] [] goal (K (arith_tac ctxt 1)) |
|
69 end |
|
70 |
|
71 fun add_sp_aux ss t = |
|
72 let |
|
73 val ctxt = Simplifier.the_context ss |
|
74 val t' = term_of t |
|
75 in |
|
76 SOME (get_sum_thm ctxt t' (dest_sum t')) |
|
77 handle TERM _ => NONE |
|
78 end*} |
|
79 |
|
80 text {* The setup for the simproc is *} |
|
81 |
|
82 simproc_setup %gray add_sp ("t1 + t2") = {* K add_sp_aux *} |
|
83 |
|
84 text {* and a test case is the lemma *} |
|
85 |
|
86 lemma "P (Suc (99 + 1)) ((0 + 0)::nat) (Suc (3 + 3 + 3)) (4 + 1)" |
|
87 apply(tactic {* simp_tac (HOL_basic_ss addsimprocs [@{simproc add_sp}]) 1 *}) |
|
88 txt {* |
|
89 where the simproc produces the goal state |
|
90 |
|
91 \begin{minipage}{\textwidth} |
|
92 @{subgoals [display]} |
|
93 \end{minipage}\bigskip |
|
94 *}(*<*)oops(*>*) |
|
95 |
|
96 text {* \solution{ex:addconversion} *} |
|
97 |
|
98 text {* |
|
99 The following code assumes the function @{ML dest_sum} from the previous |
|
100 exercise. |
|
101 *} |
|
102 |
|
103 ML{*fun add_simple_conv ctxt ctrm = |
|
104 let |
|
105 val trm = Thm.term_of ctrm |
|
106 in |
|
107 get_sum_thm ctxt trm (dest_sum trm) |
|
108 end |
|
109 |
|
110 fun add_conv ctxt ctrm = |
|
111 (case Thm.term_of ctrm of |
|
112 @{term "(op +)::nat \<Rightarrow> nat \<Rightarrow> nat"} $ _ $ _ => |
|
113 (Conv.binop_conv (add_conv ctxt) |
|
114 then_conv (Conv.try_conv (add_simple_conv ctxt))) ctrm |
|
115 | _ $ _ => Conv.combination_conv |
|
116 (add_conv ctxt) (add_conv ctxt) ctrm |
|
117 | Abs _ => Conv.abs_conv (fn (_, ctxt) => add_conv ctxt) ctxt ctrm |
|
118 | _ => Conv.all_conv ctrm) |
|
119 |
|
120 fun add_tac ctxt = CSUBGOAL (fn (goal, i) => |
|
121 CONVERSION |
|
122 (Conv.params_conv ~1 (fn ctxt => |
|
123 (Conv.prems_conv ~1 (add_conv ctxt) then_conv |
|
124 Conv.concl_conv ~1 (add_conv ctxt))) ctxt) i)*} |
|
125 |
|
126 text {* |
|
127 A test case for this conversion is as follows |
|
128 *} |
|
129 |
|
130 lemma "P (Suc (99 + 1)) ((0 + 0)::nat) (Suc (3 + 3 + 3)) (4 + 1)" |
|
131 apply(tactic {* add_tac @{context} 1 *})? |
|
132 txt {* |
|
133 where it produces the goal state |
|
134 |
|
135 \begin{minipage}{\textwidth} |
|
136 @{subgoals [display]} |
|
137 \end{minipage}\bigskip |
|
138 *}(*<*)oops(*>*) |
|
139 |
|
140 text {* \solution{ex:addconversion} *} |
|
141 |
|
142 text {* |
|
143 We use the timing function @{ML timing_wrapper} from Recipe~\ref{rec:timing}. |
|
144 To measure any difference between the simproc and conversion, we will create |
|
145 mechanically terms involving additions and then set up a goal to be |
|
146 simplified. We have to be careful to set up the goal so that |
|
147 other parts of the simplifier do not interfere. For this we construct an |
|
148 unprovable goal which, after simplification, we are going to ``prove'' with |
|
149 the help of the lemma: |
|
150 *} |
|
151 |
|
152 lemma cheat: "A" sorry |
|
153 |
|
154 text {* |
|
155 For constructing test cases, we first define a function that returns a |
|
156 complete binary tree whose leaves are numbers and the nodes are |
|
157 additions. |
|
158 *} |
|
159 |
|
160 ML{*fun term_tree n = |
|
161 let |
|
162 val count = ref 0; |
|
163 |
|
164 fun term_tree_aux n = |
|
165 case n of |
|
166 0 => (count := !count + 1; HOLogic.mk_number @{typ nat} (!count)) |
|
167 | _ => Const (@{const_name "plus"}, @{typ "nat\<Rightarrow>nat\<Rightarrow>nat"}) |
|
168 $ (term_tree_aux (n - 1)) $ (term_tree_aux (n - 1)) |
|
169 in |
|
170 term_tree_aux n |
|
171 end*} |
|
172 |
|
173 text {* |
|
174 This function generates for example: |
|
175 |
|
176 @{ML_response_fake [display,gray] |
|
177 "warning (Syntax.string_of_term @{context} (term_tree 2))" |
|
178 "(1 + 2) + (3 + 4)"} |
|
179 |
|
180 The next function constructs a goal of the form @{text "P \<dots>"} with a term |
|
181 produced by @{ML term_tree} filled in. |
|
182 *} |
|
183 |
|
184 ML{*fun goal n = HOLogic.mk_Trueprop (@{term "P::nat\<Rightarrow> bool"} $ (term_tree n))*} |
|
185 |
|
186 text {* |
|
187 Note that the goal needs to be wrapped in a @{term "Trueprop"}. Next we define |
|
188 two tactics, @{text "c_tac"} and @{text "s_tac"}, for the conversion and simproc, |
|
189 respectively. The idea is to first apply the conversion (respectively simproc) and |
|
190 then prove the remaining goal using the @{thm [source] cheat}-lemma. |
|
191 *} |
|
192 |
|
193 ML{*local |
|
194 fun mk_tac tac = timing_wrapper (EVERY1 [tac, rtac @{thm cheat}]) |
|
195 in |
|
196 val c_tac = mk_tac (add_tac @{context}) |
|
197 val s_tac = mk_tac (simp_tac (HOL_basic_ss addsimprocs [@{simproc add_sp}])) |
|
198 end*} |
|
199 |
|
200 text {* |
|
201 This is all we need to let the conversion run against the simproc: |
|
202 *} |
|
203 |
|
204 ML{*val _ = Goal.prove @{context} [] [] (goal 8) (K c_tac) |
|
205 val _ = Goal.prove @{context} [] [] (goal 8) (K s_tac)*} |
|
206 |
|
207 text {* |
|
208 If you do the exercise, you can see that both ways of simplifying additions |
|
209 perform relatively similar with perhaps some advantages for the |
|
210 simproc. That means the simplifier, even if much more complicated than |
|
211 conversions, is quite efficient for tasks it is designed for. It usually does not |
|
212 make sense to implement general-purpose rewriting using |
|
213 conversions. Conversions only have clear advantages in special situations: |
|
214 for example if you need to have control over innermost or outermost |
|
215 rewriting, or when rewriting rules are lead to non-termination. |
|
216 *} |
|
217 |
|
218 end |
|