CookBook/Package/Ind_General_Scheme.thy
changeset 189 069d525f8f1d
parent 188 8939b8fd8603
child 190 ca0ac2e75f6d
equal deleted inserted replaced
188:8939b8fd8603 189:069d525f8f1d
     1 theory Ind_General_Scheme
       
     2 imports Main
       
     3 begin
       
     4 
       
     5 section{* The General Construction Principle \label{sec:ind-general-method} *}
       
     6 
       
     7 text {*
       
     8   
       
     9   The point of these examples is to get a feeling what the automatic proofs 
       
    10   should do in order to solve all inductive definitions we throw at them. For this 
       
    11   it is instructive to look at the general construction principle 
       
    12   of inductive definitions, which we shall do in the next section.
       
    13 
       
    14   Before we start with the implementation, it is useful to describe the general
       
    15   form of inductive definitions that our package should accept.
       
    16   Suppose $R_1,\ldots,R_n$ be mutually inductive predicates and $\vec{p}$ be
       
    17   some fixed parameters. Then the introduction rules for $R_1,\ldots,R_n$ may have
       
    18   the form
       
    19 
       
    20   \[
       
    21   \bigwedge\vec{x}_i.~\vec{A}_i \Longrightarrow \left(\bigwedge\vec{y}_{ij}.~\vec{B}_{ij} \Longrightarrow
       
    22   R_{k_{ij}}~\vec{p}~\vec{s}_{ij}\right)_{j=1,\ldots,m_i} \Longrightarrow R_{l_i}~\vec{p}~\vec{t}_i
       
    23   \qquad \mbox{for\ } i=1,\ldots,r
       
    24   \]
       
    25 
       
    26   where $\vec{A}_i$ and $\vec{B}_{ij}$ are formulae not containing $R_1,\ldots,R_n$.
       
    27   Note that by disallowing the inductive predicates to occur in $\vec{B}_{ij}$ we make sure
       
    28   that all occurrences of the predicates in the premises of the introduction rules are
       
    29   \emph{strictly positive}. This condition guarantees the existence of predicates
       
    30   that are closed under the introduction rules shown above. Then the definitions of the 
       
    31   inductive predicates $R_1,\ldots,R_n$ is:
       
    32 
       
    33   \[
       
    34   \begin{array}{l@ {\qquad}l}
       
    35   R_i \equiv \lambda\vec{p}~\vec{z}_i.~\forall P_1 \ldots P_n.~K_1 \longrightarrow \cdots \longrightarrow K_r \longrightarrow P_i~\vec{z}_i &
       
    36   \mbox{for\ } i=1,\ldots,n \\[1.5ex]
       
    37   \mbox{where} \\
       
    38   K_i \equiv \forall\vec{x}_i.~\vec{A}_i \longrightarrow \left(\forall\vec{y}_{ij}.~\vec{B}_{ij} \longrightarrow
       
    39   P_{k_{ij}}~\vec{s}_{ij}\right)_{j=1,\ldots,m_i} \longrightarrow P_{l_i}~\vec{t}_i &
       
    40   \mbox{for\ } i=1,\ldots,r
       
    41   \end{array}
       
    42   \]
       
    43 
       
    44   The induction principles for the inductive predicates $R_1,\ldots,R_n$ are
       
    45 
       
    46   \[
       
    47   \begin{array}{l@ {\qquad}l}
       
    48   R_i~\vec{p}~\vec{z}_i \Longrightarrow I_1 \Longrightarrow \cdots \Longrightarrow I_r \Longrightarrow P_i~\vec{z}_i &
       
    49   \mbox{for\ } i=1,\ldots,n \\[1.5ex]
       
    50   \mbox{where} \\
       
    51   I_i \equiv \bigwedge\vec{x}_i.~\vec{A}_i \Longrightarrow \left(\bigwedge\vec{y}_{ij}.~\vec{B}_{ij} \Longrightarrow
       
    52   P_{k_{ij}}~\vec{s}_{ij}\right)_{j=1,\ldots,m_i} \Longrightarrow P_{l_i}~\vec{t}_i &
       
    53   \mbox{for\ } i=1,\ldots,r
       
    54   \end{array}
       
    55   \]
       
    56 
       
    57   Since $K_i$ and $I_i$ are equivalent modulo conversion between meta-level and object-level
       
    58   connectives, it is clear that the proof of the induction theorem is straightforward. We will
       
    59   therefore focus on the proof of the introduction rules. When proving the introduction rule
       
    60   shown above, we start by unfolding the definition of $R_1,\ldots,R_n$, which yields
       
    61 
       
    62   \[
       
    63   \bigwedge\vec{x}_i.~\vec{A}_i \Longrightarrow \left(\bigwedge\vec{y}_{ij}.~\vec{B}_{ij} \Longrightarrow
       
    64   \forall P_1 \ldots P_n.~\vec{K} \longrightarrow P_{k_{ij}}~\vec{s}_{ij}\right)_{j=1,\ldots,m_i} \Longrightarrow \forall P_1 \ldots P_n.~\vec{K} \longrightarrow P_{l_i}~\vec{t}_i
       
    65   \]
       
    66 
       
    67   where $\vec{K}$ abbreviates $K_1,\ldots,K_r$. Applying the introduction rules for
       
    68   $\forall$ and $\longrightarrow$ yields a goal state in which we have to prove $P_{l_i}~\vec{t}_i$
       
    69   from the additional assumptions $\vec{K}$. When using $K_{l_i}$ (converted to the meta-logic format)
       
    70   to prove $P_{l_i}~\vec{t}_i$, we get subgoals $\vec{A}_i$ that are trivially solvable by assumption,
       
    71   as well as subgoals of the form
       
    72 
       
    73   \[
       
    74   \bigwedge\vec{y}_{ij}.~\vec{B}_{ij} \Longrightarrow P_{k_{ij}}~\vec{s}_{ij} \qquad \mbox{for\ } j=1,\ldots,m_i
       
    75   \]
       
    76 
       
    77   that can be solved using the assumptions
       
    78 
       
    79   \[
       
    80   \bigwedge\vec{y}_{ij}.~\vec{B}_{ij} \Longrightarrow
       
    81   \forall P_1 \ldots P_n.~\vec{K} \longrightarrow P_{k_{ij}}~\vec{s}_{ij} \qquad \mbox{and} \qquad \vec{K}
       
    82   \]
       
    83 
       
    84   What remains is to implement these proofs generically.
       
    85 *}
       
    86 
       
    87 end