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Chapter 1

Introduction

If your next project requires you to program on the ML-level of Isabelle, then this tu-
torial is for you. It will guide you through the first steps of Isabelle programming, and
also explain tricks of the trade. The best way to get to know the ML-level of Isabelle
is by experimenting with the many code examples included in the tutorial. The code
is as far as possible checked against Isabelle repository snapshot 2bbc22bd6a95 (26-
Apr-2009) . If something does not work, then please let us know. It is impossible for
us to know every environment, operating system or editor in which Isabelle is used.
If you have comments, criticism or like to add to the tutorial, please feel free—you
are most welcome! The tutorial is meant to be gentle and comprehensive. To achieve
this we need your feedback.

1.1 Intended Audience and Prior Knowledge

This tutorial targets readers who already know how to use Isabelle for writing the-
ories and proofs. We also assume that readers are familiar with the functional pro-
gramming language ML, the language in which most of Isabelle is implemented. If
you are unfamiliar with either of these two subjects, you should first work through
the Isabelle/HOL tutorial [3] or Paulson’s book on ML [4].

1.2 Existing Documentation

The following documentation about Isabelle programming already exists (and is part
of the distribution of Isabelle):

The Isabelle/Isar Implementation Manual describes Isabelle from a high-level per-
spective, documenting both the underlying concepts and some of the inter-
faces.

The Isabelle Reference Manual is an older document that used to be the main ref-
erence of Isabelle at a time when all proof scripts were written on the ML-level.
Many parts of this manual are outdated now, but some parts, particularly the
chapters on tactics, are still useful.
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The Isar Reference Manual provides specification material (like grammars, exam-
ples and so on) about Isar and its implementation. It is currently in the process
of being updated.

Then of course there are:

The Isabelle sources. They are the ultimate reference for how things really work.
Therefore you should not hesitate to look at the way things are actually imple-
mented. More importantly, it is often good to look at code that does similar
things as you want to do and learn from it. The GNU/UNIX command grep -R

is often your best friend while programming with Isabelle, or hypersearch if
you program using jEdit under MacOSX.

1.3 Typographic Conventions in the Tutorial

All ML-code in this tutorial is typeset in shaded boxes, like the following ML-expression:

ML {*

3 + 4

*}

These boxes correspond to how code can be processed inside the interactive environ-
ment of Isabelle. It is therefore easy to experiment with what is displayed. However,
for better readability we will drop the enclosing ML {* . . . *} and just write:

3 + 4

Whenever appropriate we also show the response the code generates when evalu-
ated. This response is prefixed with a ">", like:

3 + 4

> 7

The user-level commands of Isabelle (i.e., the non-ML code) are written in bold face
(e.g., lemma, apply, foobar and so on). We use $ . . . to indicate that a command
needs to be run in a UNIX-shell, for example:

$ grep -R ThyOutput *

Pointers to further information and Isabelle files are typeset in italic and highlighted
as follows:
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Read More
Further information or pointers to files.

The pointers to Isabelle files are hyperlinked to the tip of the Mercurial repository of
Isabelle at http://isabelle.in.tum.de/repos/isabelle/.

A few exercises are scattered around the text. Their solutions are given in Ap-
pendix B. Of course, you learn most, if you first try to solve the exercises on your
own, and then look at the solutions.

1.4 Naming Conventions in the Isabelle Sources

There are a few naming conventions in Isabelle that might aid reading and writing
code. (Remember that code is written once, but read numerous times.) The most
important conventions are:

• t, u for (raw) terms; ML-type: term

• ct, cu for certified terms; ML-type: cterm

• ty, T, U for (raw) types; ML-type: typ

• th, thm for theorems; ML-type: thm

• foo_tac for tactics; ML-type: tactic

• thy for theories; ML-type: theory

• ctxt for proof contexts; ML-type: Proof.context

• lthy for local theories; ML-type: local_theory

• context for generic contexts; ML-type Context.generic

• mx for mixfix syntax annotations; ML-type mixfix

1.5 Acknowledgements

Financial support for this tutorial was provided by the German Research Council
(DFG) under grant number URB 165/5-1. The following people contributed to the
text:

• Stefan Berghofer wrote nearly all of the ML-code of the simple inductive-
package and the code for the chunk -antiquotation. He also wrote the first
version of the chapter describing the package and has been helpful beyond
measure with answering questions about Isabelle.

• Sascha Böhme contributed the recipes in A.2, A.4, A.5, A.6 and A.7. He also
wrote section 4.6 and helped with recipe A.3.
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• Jeremy Dawson wrote the first version of the chapter about parsing.

• Armin Heller helped with recipe A.8.

• Alexander Krauss wrote the first version of the “first-steps” chapter and also
contributed the material on NamedThmsFun.

• Christian Sternagel proofread the tutorial and made comments on the text.

Please let me know of any omissions. Responsibility for any remaining errors lies
with me.

This document is still in the process of being written! All
of the text is still under construction. Sections and chapters
that are under heavy construction are marked with TBD.

This document was compiled with:
Isabelle repository snapshot 2bbc22bd6a95 (26-Apr-2009)
Poly/ML 5.2 Release RTS version: I386-5.2.1
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Chapter 2

First Steps

Isabelle programming is done in ML. Just like lemmas and proofs, ML-code in Isabelle
is part of a theory. If you want to follow the code given in this chapter, we assume
you are working inside the theory starting with

theory FirstSteps
imports Main
begin
. . .

We also generally assume you are working with HOL. The given examples might
need to be adapted if you work in a different logic.

2.1 Including ML-Code

The easiest and quickest way to include code in a theory is by using the ML-command.
For example:

ML {*

3 + 4

*}

> 7

Like normal Isabelle scripts, ML-commands can be evaluated by using the advance
and undo buttons of your Isabelle environment. The code inside the ML-command
can also contain value and function bindings, for example

ML {*

val r = ref 0

fun f n = n + 1

*}

and even those can be undone when the proof script is retracted. As mentioned in
the Introduction, we will drop the ML {* . . . *} scaffolding whenever we show
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code. The lines prefixed with ">" are not part of the code, rather they indicate what
the response is when the code is evaluated.

Once a portion of code is relatively stable, you usually want to export it to a separate
ML-file. Such files can then be included somewhere inside a theory by using the
command use. For example

theory FirstSteps
imports Main
uses ("file_to_be_included.ML") . . .
begin
. . .
use "file_to_be_included.ML"

. . .

The uses-command in the header of the theory is needed in order to indicate the
dependency of the theory on the ML-file. Alternatively, the file can be included by
just writing in the header

theory FirstSteps
imports Main
uses "file_to_be_included.ML" . . .
begin
. . .

Note that no parentheses are given this time.

2.2 Debugging and Printing

During development you might find it necessary to inspect some data in your code.
This can be done in a “quick-and-dirty” fashion using the function writeln. For
example

writeln "any string"

> "any string"

will print out "any string" inside the response buffer of Isabelle. This function ex-
pects a string as argument. If you develop under PolyML, then there is a convenient,
though again “quick-and-dirty”, method for converting values into strings, namely
the function PolyML.makestring :

writeln (PolyML.makestring 1)

> "1"

However, makestring only works if the type of what is converted is monomorphic
and not a function.
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The function writeln should only be used for testing purposes, because any output
this function generates will be overwritten as soon as an error is raised. For printing
anything more serious and elaborate, the function tracing is more appropriate.
This function writes all output into a separate tracing buffer. For example:

tracing "foo"

> "foo"

It is also possible to redirect the “channel” where the string foo is printed to a
separate file, e.g., to prevent ProofGeneral from choking on massive amounts of
trace output. This redirection can be achieved with the code:

val strip_specials =

let

fun strip ("\^A" :: _ :: cs) = strip cs

| strip (c :: cs) = c :: strip cs

| strip [] = [];

in implode o strip o explode end;

fun redirect_tracing stream =

Output.tracing_fn := (fn s =>

(TextIO.output (stream, (strip_specials s));

TextIO.output (stream, "\n");

TextIO.flushOut stream))

Calling redirect_tracing with (TextIO.openOut "foo.bar") will cause that all
tracing information is printed into the file foo.bar.

You can print out error messages with the function error ; for example:

if 0=1 then true else (error "foo")

> Exception- ERROR "foo" raised

> At command "ML".

(FIXME Toplevel.debug Toplevel.profiling)

Most often you want to inspect data of type term, cterm or thm. Isabelle contains
elaborate pretty-printing functions for printing them, but for quick-and-dirty solu-
tions they are far too unwieldy. A simple way to transform a term into a string is to
use the function Syntax.string_of_term.

Syntax.string_of_term @{context} @{term "1::nat"}

> "\^E\^Fterm\^E\^E\^Fconst\^Fname=HOL.one_class.one\^E1\^E\^F\^E\^E\^F\^E"

This produces a string with some additional information encoded in it. The string
can be properly printed by using the function writeln.
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writeln (Syntax.string_of_term @{context} @{term "1::nat"})

> "1"

A cterm can be transformed into a string by the following function.

fun str_of_cterm ctxt t =

Syntax.string_of_term ctxt (term_of t)

In this example the function term_of extracts the term from a cterm. If there are
more than one cterms to be printed, you can use the function commas to separate
them.

fun str_of_cterms ctxt ts =

commas (map (str_of_cterm ctxt) ts)

The easiest way to get the string of a theorem is to transform it into a cterm using
the function crep_thm.

fun str_of_thm ctxt thm =

str_of_cterm ctxt (#prop (crep_thm thm))

Theorems also include schematic variables, such as ?P, ?Q and so on.

writeln (str_of_thm @{context} @{thm conjI})

> [[?P; ?Q ]] =⇒ ?P ∧ ?Q

In order to improve the readability of theorems we convert these schematic variables
into free variables using the function Variable.import_thms.

fun no_vars ctxt thm =

let

val ((_, [thm’]), _) = Variable.import_thms true [thm] ctxt

in

thm’

end

fun str_of_thm_no_vars ctxt thm =

str_of_cterm ctxt (#prop (crep_thm (no_vars ctxt thm)))

Theorem conjI is now printed as follows:

writeln (str_of_thm_no_vars @{context} @{thm conjI})

> [[P; Q ]] =⇒ P ∧ Q

Again the function commas helps with printing more than one theorem.
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fun str_of_thms ctxt thms =

commas (map (str_of_thm ctxt) thms)

fun str_of_thms_no_vars ctxt thms =

commas (map (str_of_thm_no_vars ctxt) thms)

2.3 Combinators

(FIXME: Calling convention)

For beginners perhaps the most puzzling parts in the existing code of Isabelle are the
combinators. At first they seem to greatly obstruct the comprehension of the code,
but after getting familiar with them, they actually ease the understanding and also
the programming.

The simplest combinator is I, which is just the identity function defined as

fun I x = x

Another simple combinator is K, defined as

fun K x = fn _ => x

K “wraps” a function around the argument x. However, this function ignores its
argument. As a result, K defines a constant function always returning x.

The next combinator is reverse application, |>, defined as:

fun x |> f = f x

While just syntactic sugar for the usual function application, the purpose of this
combinator is to implement functions in a “waterfall fashion”. Consider for example
the function

fun inc_by_five x =1

x |> (fn x => x + 1)2

|> (fn x => (x, x))3

|> fst4

|> (fn x => x + 4)5

which increments its argument x by 5. It proceeds by first incrementing the argu-
ment by 1 (Line 2); then storing the result in a pair (Line 3); taking the first compo-
nent of the pair (Line 4) and finally incrementing the first component by 4 (Line 5).
This kind of cascading manipulations of values is quite common when dealing with
theories (for example by adding a definition, followed by lemmas and so on). The
reverse application allows you to read what happens in a top-down manner. This
kind of coding should also be familiar, if you have been exposed to Haskell’s do-
notation. Writing the function inc_by_five using the reverse application is much
clearer than writing
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fun inc_by_five x = fst ((fn x => (x, x)) (x + 1)) + 4

or

fun inc_by_five x =

((fn x => x + 4) o fst o (fn x => (x, x)) o (fn x => x + 1)) x

and typographically more economical than

fun inc_by_five x =

let val y1 = x + 1

val y2 = (y1, y1)

val y3 = fst y2

val y4 = y3 + 4

in y4 end

Another reason why the let-bindings in the code above are better to be avoided: it is
more than easy to get the intermediate values wrong, not to mention the nightmares
the maintenance of this code causes!

In Isabelle, a “real world” example for a function written in the waterfall fashion
might be the following code:

fun apply_fresh_args f ctxt =1

f |> fastype_of2

|> binder_types3

|> map (pair "z")4

|> Variable.variant_frees ctxt [f]5

|> map Free6

|> (curry list_comb) f7

This code extracts the argument types of a given function f and then generates for
each argument type a distinct variable; finally it applies the generated variables to
the function. For example:

apply_fresh_args @{term "P::nat ⇒ int ⇒ unit ⇒ bool"} @{context}

|> Syntax.string_of_term @{context}

|> writeln

> P z za zb

You can read off this behaviour from how apply_fresh_args is coded: in Line 2,
the function fastype_of calculates the type of the function; binder_types in the
next line produces the list of argument types (in the case above the list [nat, int,

unit]); Line 4 pairs up each type with the string z ; the function variant_frees

generates for each z a unique name avoiding the given f ; the list of name-type pairs
is turned into a list of variable terms in Line 6, which in the last line is applied by
the function list_comb to the function. In this last step we have to use the function
curry, because list_comb expects the function and the variables list as a pair.
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The combinator #> is the reverse function composition. It can be used to define the
following function

val inc_by_six =

(fn x => x + 1)

#> (fn x => x + 2)

#> (fn x => x + 3)

which is the function composed of first the increment-by-one function and then
increment-by-two, followed by increment-by-three. Again, the reverse function com-
position allows you to read the code top-down.

The remaining combinators described in this section add convenience for the “wa-
terfall method” of writing functions. The combinator tap allows you to get hold of
an intermediate result (to do some side-calculations for instance). The function

fun inc_by_three x =1

x |> (fn x => x + 1)2

|> tap (fn x => tracing (PolyML.makestring x))3

|> (fn x => x + 2)4

increments the argument first by 1 and then by 2. In the middle (Line 3), however,
it uses tap for printing the “plus-one” intermediate result inside the tracing buffer.
The function tap can only be used for side-calculations, because any value that is
computed cannot be merged back into the “main waterfall”. To do this, you can use
the next combinator.

The combinator ‘ (a backtick) is similar to tap, but applies a function to the value
and returns the result together with the value (as a pair). For example the function

fun inc_as_pair x =

x |> ‘(fn x => x + 1)

|> (fn (x, y) => (x, y + 1))

takes x as argument, and then increments x, but also keeps x. The intermediate
result is therefore the pair (x + 1, x). After that, the function increments the right-
hand component of the pair. So finally the result will be (x + 1, x + 1).

The combinators |>> and ||> are defined for functions manipulating pairs. The first
applies the function to the first component of the pair, defined as

fun (x, y) |>> f = (f x, y)

and the second combinator to the second component, defined as

fun (x, y) ||> f = (x, f y)

With the combinator |-> you can re-combine the elements from a pair. This combi-
nator is defined as
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fun (x, y) |-> f = f x y

and can be used to write the following roundabout version of the double function:

fun double x =

x |> (fn x => (x, x))

|-> (fn x => fn y => x + y)

The combinator ||>> plays a central rôle whenever your task is to update a theory
and the update also produces a side-result (for example a theorem). Functions for
such tasks return a pair whose second component is the theory and the fist compo-
nent is the side-result. Using ||>>, you can do conveniently the update and also
accumulate the side-results. Considder the following simple function.

fun acc_incs x =1

x |> (fn x => ("", x))2

||>> (fn x => (x, x + 1))3

||>> (fn x => (x, x + 1))4

||>> (fn x => (x, x + 1))5

The purpose of Line 2 is to just pair up the argument with a dummy value (since
||>> operates on pairs). Each of the next three lines just increment the value by
one, but also nest the intrermediate results to the left. For example

acc_incs 1

> (((("", 1), 2), 3), 4)

You can continue this chain with:

acc_incs 1 ||>> (fn x => (x, x + 2))

> ((((("", 1), 2), 3), 4), 6)

(FIXME: maybe give a “real world” example)

Recall that |> is the reverse function application. Recall also that the related reverse
function composition is #>. In fact all the combinators |->, |>> , ||> and ||>>

described above have related combinators for function composition, namely #->,
#>>, ##> and ##>>. Using #->, for example, the function double can also be written
as:

val double =

(fn x => (x, x))

#-> (fn x => fn y => x + y)

(FIXME: find a good exercise for combinators)
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Read More
The most frequently used combinators are defined in the files Pure/library.ML and
Pure/General/basics.ML. Also [Impl. Man., Sec. B.1] contains further information about
combinators.

2.4 Antiquotations

The main advantage of embedding all code in a theory is that the code can con-
tain references to entities defined on the logical level of Isabelle. By this we mean
definitions, theorems, terms and so on. This kind of reference is realised with an-
tiquotations. For example, one can print out the name of the current theory by
typing

Context.theory_name @{theory}

> "FirstSteps"

where @{theory} is an antiquotation that is substituted with the current theory
(remember that we assumed we are inside the theory FirstSteps). The name of
this theory can be extracted using the function Context.theory_name.

Note, however, that antiquotations are statically linked, that is their value is deter-
mined at “compile-time”, not “run-time”. For example the function

fun not_current_thyname () = Context.theory_name @{theory}

does not return the name of the current theory, if it is run in a different theory.
Instead, the code above defines the constant function that always returns the string
"FirstSteps", no matter where the function is called. Operationally speaking, the
antiquotation @{theory} is not replaced with code that will look up the current
theory in some data structure and return it. Instead, it is literally replaced with the
value representing the theory name.

In a similar way you can use antiquotations to refer to proved theorems: @{thm . . . }
for a single theorem

@{thm allI}

> (
∧
x. ?P x) =⇒ ∀ x. ?P x

and @{thms . . . } for more than one

@{thms conj_ac}

> (?P ∧ ?Q) = (?Q ∧ ?P)

> (?P ∧ ?Q ∧ ?R) = (?Q ∧ ?P ∧ ?R)

> ((?P ∧ ?Q) ∧ ?R) = (?P ∧ ?Q ∧ ?R)
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You can also refer to the current simpset. To illustrate this we implement the function
that extracts the theorem names stored in a simpset.

fun get_thm_names_from_ss simpset =

let

val {simps,...} = MetaSimplifier.dest_ss simpset

in

map #1 simps

end

The function dest_ss returns a record containing all information stored in the
simpset, but we are only interested in the names of the simp-rules. So now you can
feed in the current simpset into this function. The current simpset can be referred to
using the antiquotation @{simpset}.

get_thm_names_from_ss @{simpset}

> ["Nat.of_nat_eq_id", "Int.of_int_eq_id", "Nat.One_nat_def", . . . ]

Again, this way of referencing simpsets makes you independent from additions of
lemmas to the simpset by the user that potentially cause loops.

On the ML-level of Isabelle, you often have to work with qualified names; these
are strings with some additional information, such as positional information and
qualifiers. Such bindings can be generated with the antiquotation @{binding . . . }.

@{binding "name"}

> name

An example where a binding is needed is the function define. Below, this function
is used to define the constant TrueConj as the conjunction True ∧ True.

local setup {*

snd o LocalTheory.define Thm.internalK

((@{binding "TrueConj"}, NoSyn),

(Attrib.empty_binding, @{term "True ∧ True"})) *}

Now querying the definition you obtain:

thm TrueConj_def

> TrueConj ≡ True ∧ True

(FIXME give a better example why bindings are important; maybe give a pointer to
local setup)

While antiquotations have many applications, they were originally introduced in
order to avoid explicit bindings of theorems such as:
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val allI = thm "allI"

Such bindings are difficult to maintain and can be overwritten by the user acciden-
tally. This often broke Isabelle packages. Antiquotations solve this problem, since
they are “linked” statically at compile-time. However, this static linkage also limits
their usefulness in cases where data needs to be built up dynamically. In the course
of this chapter you will learn more about antiquotations: they can simplify Isabelle
programming since one can directly access all kinds of logical elements from the
ML-level.

2.5 Terms and Types

One way to construct Isabelle terms, is by using the antiquotation @{term . . . } . For
example:

@{term "(a::nat) + b = c"}

> Const ("op =", . . . ) $

> (Const ("HOL.plus_class.plus", . . . ) $ . . . $ . . . ) $ . . .

will show the term a + b = c, but printed using the internal representation corre-
sponding to the data type term.

This internal representation uses the usual de Bruijn index mechanism—where bound
variables are represented by the constructor Bound. The index in Bound refers to the
number of Abstractions (Abs) we have to skip until we hit the Abs that binds the cor-
responding variable. Note that the names of bound variables are kept at abstractions
for printing purposes, and so should be treated only as “comments”. Application in
Isabelle is realised with the term-constructor $.

Read More
Terms are described in detail in [Impl. Man., Sec. 2.2]. Their definition and many useful
operations are implemented in Pure/term.ML.

Constructing terms via antiquotations has the advantage that only typable terms can
be constructed. For example

@{term "(x::nat) x"}

> Type unification failed . . .

raises a typing error, while it perfectly ok to construct the term

Free ("x", @{typ nat}) $ Free ("x", @{typ nat})

with the raw ML-constructors. Sometimes the internal representation of terms can
be surprisingly different from what you see at the user-level, because the layers of
parsing/type-checking/pretty printing can be quite elaborate.
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Exercise 2.5.1. Look at the internal term representation of the following terms, and
find out why they are represented like this:

• case x of 0 ⇒ 0 | Suc y ⇒ y

• λ(x, y). P y x

• {[x] |x. x ≤ -2}

Hint: The third term is already quite big, and the pretty printer may omit parts of it
by default. If you want to see all of it, you can use the following ML-function to set the
printing depth to a higher value:

print_depth 50

The antiquotation @{prop . . . } constructs terms of propositional type, inserting the
invisible Trueprop -coercions whenever necessary. Consider for example the pairs

(@{term "P x"}, @{prop "P x"})

> (Free ("P", . . . ) $ Free ("x", . . . ),
> Const ("Trueprop", . . . ) $ (Free ("P", . . . ) $ Free ("x", . . . )))

where a coercion is inserted in the second component and

(@{term "P x =⇒ Q x"}, @{prop "P x =⇒ Q x"})

> (Const ("==>", . . . ) $ . . . $ . . . , Const ("==>", . . . ) $ . . . $ . . . )

where it is not (since it is already constructed by a meta-implication).

As already seen above, types can be constructed using the antiquotation @{typ . . . }.
For example:

@{typ "bool ⇒ nat"}

> bool ⇒ nat

Read More
Types are described in detail in [Impl. Man., Sec. 2.1]. Their definition and many useful
operations are implemented in Pure/type.ML.

2.6 Constructing Terms and Types Manually

While antiquotations are very convenient for constructing terms, they can only con-
struct fixed terms (remember they are “linked” at compile-time). However, you often
need to construct terms dynamically. For example, a function that returns the impli-
cation

∧
(x::nat). P x =⇒ Q x taking P and Q as arguments can only be written

as:
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fun make_imp P Q =

let

val x = Free ("x", @{typ nat})

in

Logic.all x (Logic.mk_implies (P $ x, Q $ x))

end

The reason is that you cannot pass the arguments P and Q into an antiquotation.1

For example the following does not work.

fun make_wrong_imp P Q = @{prop "
∧
(x::nat). P x =⇒ Q x"}

To see this, apply @{term S} and @{term T} to both functions. With make_imp you
obtain the intended term involving the given arguments

make_imp @{term S} @{term T}

> Const . . . $

> Abs ("x", Type ("nat",[]),

> Const . . . $ (Free ("S", . . . ) $ . . . ) $ (Free ("T", . . . ) $ . . . ))

whereas with make_wrong_imp you obtain a term involving the P and Q from the
antiquotation.

make_wrong_imp @{term S} @{term T}

> Const . . . $

> Abs ("x", . . . ,
> Const . . . $ (Const . . . $ (Free ("P", . . . ) $ . . . )) $

> (Const . . . $ (Free ("Q", . . . ) $ . . . )))

There are a number of handy functions that are frequently used for constructing
terms. One is the function list_comb, which takes a term and a list of terms as
arguments, and produces as output the term list applied to the term. For example

list_comb (@{term "P::nat"}, [@{term "True"}, @{term "False"}])

> Free ("P", "nat") $ Const ("True", "bool") $ Const ("False", "bool")

Another handy function is lambda, which abstracts a variable in a term. For example

lambda @{term "x::nat"} @{term "(P::nat⇒bool) x"}

> Abs ("x", "nat", Free ("P", "bool ⇒ bool") $ Bound 0)

In this example, lambda produces a de Bruijn index (i.e. Bound 0), and an abstrac-
tion. It also records the type of the abstracted variable and for printing purposes also
its name. Note that because of the typing annotation on P, the variable x in P x is
of the same type as the abstracted variable. If it is of different type, as in

1At least not at the moment.
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lambda @{term "x::nat"} @{term "(P::bool⇒bool) x"}

> Abs ("x", "nat", Free ("P", "bool ⇒ bool") $ Free ("x", "bool"))

then the variable Free ("x", "bool") is not abstracted. This is a fundamental
principle of Church-style typing, where variables with the same name still differ, if
they have different type.

There is also the function subst_free with which terms can be replaced by other
terms. For example below, we will replace in f 0 x the subterm f 0 by y, and x by
True.

subst_free [(@{term "(f::nat⇒nat⇒nat) 0"}, @{term "y::nat⇒nat"}),

(@{term "x::nat"}, @{term "True"})]

@{term "((f::nat⇒nat⇒nat) 0) x"}

> Free ("y", "nat ⇒ nat") $ Const ("True", "bool")

As can be seen, subst_free does not take typability into account. However it takes
alpha-equivalence into account:

subst_free [(@{term "(λy::nat. y)"}, @{term "x::nat"})]

@{term "(λx::nat. x)"}

> Free ("x", "nat")

Read More
There are many functions in Pure/term.ML, Pure/logic.ML and HOL/Tools/hologic.ML

that make such manual constructions of terms and types easier.

Have a look at these files and try to solve the following two exercises:

Exercise 2.6.1. Write a function rev_sum : term -> term that takes a term of the
form t1 + t2 + . . . + tn (whereby n might be zero) and returns the reversed sum
tn + . . . + t2 + t1. Assume the t i can be arbitrary expressions and also note that
+ associates to the left. Try your function on some examples.

Exercise 2.6.2. Write a function which takes two terms representing natural numbers
in unary notation (like Suc (Suc (Suc 0))), and produces the number representing
their sum.

There are a few subtle issues with constants. They usually crop up when pattern
matching terms or types, or when constructing them. While it is perfectly ok to write
the function is_true as follows

fun is_true @{term True} = true

| is_true _ = false

this does not work for picking out ∀ -quantified terms. Because the function
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fun is_all (@{term All} $ _) = true

| is_all _ = false

will not correctly match the formula ∀ x. P x :

is_all @{term "∀ x::nat. P x"}

> false

The problem is that the @term -antiquotation in the pattern fixes the type of the
constant All to be (’a ⇒ bool) ⇒ bool for an arbitrary, but fixed type ’a. A
properly working alternative for this function is

fun is_all (Const ("All", _) $ _) = true

| is_all _ = false

because now

is_all @{term "∀ x::nat. P x"}

> true

matches correctly (the first wildcard in the pattern matches any type and the second
any term).

However there is still a problem: consider the similar function that attempts to pick
out Nil -terms:

fun is_nil (Const ("Nil", _)) = true

| is_nil _ = false

Unfortunately, also this function does not work as expected, since

is_nil @{term "Nil"}

> false

The problem is that on the ML-level the name of a constant is more subtle than you
might expect. The function is_all worked correctly, because All is such a funda-
mental constant, which can be referenced by Const ("All", some_type). How-
ever, if you look at

@{term "Nil"}

> Const ("List.list.Nil", . . . )

the name of the constant Nil depends on the theory in which the term constructor
is defined (List) and also in which data type (list). Even worse, some constants
have a name involving type-classes. Consider for example the constants for zero

and (op *) :
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(@{term "0::nat"}, @{term "op *"})

> (Const ("HOL.zero_class.zero", . . . ),
> Const ("HOL.times_class.times", . . . ))

While you could use the complete name, for example Const ("List.list.Nil",

some_type), for referring to or matching against Nil, this would make the code
rather brittle. The reason is that the theory and the name of the data type can
easily change. To make the code more robust, it is better to use the antiquotation
@{const_name . . . }. With this antiquotation you can harness the variable parts of
the constant’s name. Therefore a function for matching against constants that have
a polymorphic type should be written as follows.

fun is_nil_or_all (Const (@{const_name "Nil"}, _)) = true

| is_nil_or_all (Const (@{const_name "All"}, _) $ _) = true

| is_nil_or_all _ = false

The antiquotation for properly referencing type constants is is @{type_name . . . }.
For example

@{type_name "list"}

> "List.list"

Occasionally you have to calculate what the “base” name of a given constant is. For
this you can use the function Sign.extern_const or Long_Name.base_name. For
example:

Sign.extern_const @{theory} "List.list.Nil"

> "Nil"

The difference between both functions is that extern_const returns the smallest
name that is still unique, whereas base_name always strips off all qualifiers.

Read More
Functions about naming are implemented in Pure/General/name_space.ML; functions
about signatures in Pure/sign.ML.

Although types of terms can often be inferred, there are many situations where you
need to construct types manually, especially when defining constants. For example
the function returning a function type is as follows:

fun make_fun_type tau1 tau2 = Type ("fun", [tau1, tau2])

This can be equally written with the combinator --> as:
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fun make_fun_type tau1 tau2 = tau1 --> tau2

A handy function for manipulating terms is map_types : it takes a function and ap-
plies it to every type in a term. You can, for example, change every nat in a term
into an int using the function:

fun nat_to_int t =

(case t of

@{typ nat} => @{typ int}

| Type (s, ts) => Type (s, map nat_to_int ts)

| _ => t)

Here is an example:

map_types nat_to_int @{term "a = (1::nat)"}

> Const ("op =", "int ⇒ int ⇒ bool")

> $ Free ("a", "int") $ Const ("HOL.one_class.one", "int")

(FIXME: a readmore about types)

2.7 Type-Checking

You can freely construct and manipulate terms and types, since they are just arbi-
trary unchecked trees. However, you eventually want to see if a term is well-formed,
or type-checks, relative to a theory. Type-checking is done via the function cterm_of,
which converts a term into a cterm, a certified term. Unlike terms, which are just
trees, cterms are abstract objects that are guaranteed to be type-correct, and they
can only be constructed via “official interfaces”.

Type-checking is always relative to a theory context. For now we use the @{theory}

antiquotation to get hold of the current theory. For example you can write:

cterm_of @{theory} @{term "(a::nat) + b = c"}

> a + b = c

This can also be written with an antiquotation:

@{cterm "(a::nat) + b = c"}

> a + b = c

Attempting to obtain the certified term for

@{cterm "1 + True"}

> Type unification failed . . .
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yields an error (since the term is not typable). A slightly more elaborate example
that type-checks is:

let

val natT = @{typ "nat"}

val zero = @{term "0::nat"}

in

cterm_of @{theory}

(Const (@{const_name plus}, natT --> natT --> natT) $ zero $ zero)

end

> 0 + 0

In Isabelle not just terms need to be certified, but also types. For example, you obtain
the certified type for the Isabelle type nat ⇒ bool on the ML-level as follows:

ctyp_of @{theory} (@{typ nat} --> @{typ bool})

> nat ⇒ bool

or with the antiquotation:

@{ctyp "nat ⇒ bool"}

> nat ⇒ bool

Read More
For functions related to cterms and ctyps see the file Pure/thm.ML.

Exercise 2.7.1. Check that the function defined in Exercise 2.6.1 returns a result that
type-checks.

Remember Isabelle follows the Church-style typing for terms, i.e., a term contains
enough typing information (constants, free variables and abstractions all have typing
information) so that it is always clear what the type of a term is. Given a well-typed
term, the function type_of returns the type of a term. Consider for example:

type_of (@{term "f::nat ⇒ bool"} $ @{term "x::nat"})

> bool

To calculate the type, this function traverses the whole term and will detect any
typing inconsistency. For example changing the type of the variable x from nat to
int will result in the error message:

type_of (@{term "f::nat ⇒ bool"} $ @{term "x::int"})

> *** Exception- TYPE ("type_of: type mismatch in application" . . .

Since the complete traversal might sometimes be too costly and not necessary, there
is the function fastype_of, which also returns the type of a term.
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fastype_of (@{term "f::nat ⇒ bool"} $ @{term "x::nat"})

> bool

However, efficiency is gained on the expense of skipping some tests. You can see this
in the following example

fastype_of (@{term "f::nat ⇒ bool"} $ @{term "x::int"})

> bool

where no error is detected.

Sometimes it is a bit inconvenient to construct a term with complete typing anno-
tations, especially in cases where the typing information is redundant. A short-cut
is to use the “place-holder” type dummyT and then let type-inference figure out the
complete type. An example is as follows:

let

val c = Const (@{const_name "plus"}, dummyT)

val o = @{term "1::nat"}

val v = Free ("x", dummyT)

in

Syntax.check_term @{context} (c $ o $ v)

end

> Const ("HOL.plus_class.plus", "nat ⇒ nat ⇒ nat") $

> Const ("HOL.one_class.one", "nat") $ Free ("x", "nat")

Instead of giving explicitly the type for the constant plus and the free variable x,
type-inference fills in the missing information.

Read More
See Pure/Syntax/syntax.ML where more functions about reading, checking and pretty-
printing of terms are defined. Functions related to type-inference are implemented in
Pure/type.ML and Pure/type_infer.ML.

(FIXME: say something about sorts)

2.8 Theorems

Just like cterms, theorems are abstract objects of type thm that can only be built
by going through interfaces. As a consequence, every proof in Isabelle is correct by
construction. This follows the tradition of the LCF approach [2].

To see theorems in “action”, let us give a proof on the ML-level for the following
statement:

lemma
assumes assm1: "

∧
(x::nat). P x =⇒ Q x"

and assm2: "P t"

shows "Q t"

The corresponding ML-code is as follows:
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let

val assm1 = @{cprop "
∧
(x::nat). P x =⇒ Q x"}

val assm2 = @{cprop "(P::nat⇒bool) t"}

val Pt_implies_Qt =

assume assm1

|> forall_elim @{cterm "t::nat"};

val Qt = implies_elim Pt_implies_Qt (assume assm2);

in

Qt

|> implies_intr assm2

|> implies_intr assm1

end

> [[
∧
x. P x =⇒ Q x; P t ]] =⇒ Q t

This code-snippet constructs the following proof:

∧
x. P x =⇒ Q x `

∧
x. P x =⇒ Q x

(assume)∧
x. P x =⇒ Q x ` P t =⇒ Q t

(
∧

-elim)
P t ` P t

(assume)∧
x. P x =⇒ Q x, P t ` Q t

(=⇒-elim)∧
x. P x =⇒ Q x ` P t =⇒ Q t

(=⇒-intro)

` [[
∧
x. P x =⇒ Q x; P t ]] =⇒ Q t

(=⇒-intro)

However, while we obtained a theorem as result, this theorem is not yet stored in
Isabelle’s theorem database. So it cannot be referenced later on. How to store
theorems will be explained in Section 2.12.

Read More
For the functions assume, forall_elim etc see [Impl. Man., Sec. 2.3]. The basic functions
for theorems are defined in Pure/thm.ML.

(FIXME: handy functions working on theorems, like ObjectLogic.rulify and so
on)

(FIXME: how to add case-names to goal states - maybe in the next section)

2.9 Setups (TBD)

In the previous section we used setup in order to make a theorem attribute known
to Isabelle. What happens behind the scenes is that setup expects a function of type
theory -> theory : the input theory is the current theory and the output the theory
where the theory attribute has been stored.

This is a fundamental principle in Isabelle. A similar situation occurs for example
with declaring constants. The function that declares a constant on the ML-level is
Sign.add_consts_i. If you write2

2Recall that ML-code needs to be enclosed in ML {* . . . *}.
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Sign.add_consts_i [(@{binding "BAR"}, @{typ "nat"}, NoSyn)] @{theory}

for declaring the constant BAR with type nat and run the code, then you indeed
obtain a theory as result. But if you query the constant on the Isabelle level using
the command term

term "BAR"

> "BAR" :: "’a"

you do not obtain a constant of type nat, but a free variable (printed in blue) of
polymorphic type. The problem is that the ML-expression above did not register the
declaration with the current theory. This is what the command setup is for. The
constant is properly declared with

setup {* Sign.add_consts_i [(@{binding "BAR"}, @{typ "nat"}, NoSyn)] *}

Now

term "BAR"

> "BAR" :: "nat"

returns a (black) constant with the type nat.

A similar command is local setup, which expects a function of type local_theory

-> local_theory. Later on we will also use the commands method setup for in-
stalling methods in the current theory and simproc setup for adding new simprocs
to the current simpset.

2.10 Theorem Attributes

Theorem attributes are [symmetric], [THEN . . . ], [simp] and so on. Such at-
tributes are neither tags nor flags annotated to theorems, but functions that do fur-
ther processing once a theorem is proved. In particular, it is not possible to find out
what are all theorems that have a given attribute in common, unless of course the
function behind the attribute stores the theorems in a retrievable data structure.

If you want to print out all currently known attributes a theorem can have, you can
use the Isabelle command

print attributes
> COMP: direct composition with rules (no lifting)

> HOL.dest: declaration of Classical destruction rule

> HOL.elim: declaration of Classical elimination rule

> . . .

The theorem attributes fall roughly into two categories: the first category manip-
ulates the proved theorem (for example [symmetric] and [THEN . . . ]), and the
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second stores the proved theorem somewhere as data (for example [simp], which
adds the theorem to the current simpset).

To explain how to write your own attribute, let us start with an extremely simple
version of the attribute [symmetric]. The purpose of this attribute is to produce the
“symmetric” version of an equation. The main function behind this attribute is

val my_symmetric = Thm.rule_attribute (fn _ => fn thm => thm RS @{thm sym})

where the function Thm.rule_attribute expects a function taking a context (which
we ignore in the code above) and a theorem (thm), and returns another theorem
(namely thm resolved with the theorem sym : s = t =⇒ t = s).3 The function
Thm.rule_attribute then returns an attribute.

Before we can use the attribute, we need to set it up. This can be done using the
Isabelle command attribute setup as follows:

attribute setup my_sym = {* Scan.succeed my_symmetric *}

"applying the sym rule"

Inside the {* . . . *}, we have to specify a parser for the theorem attribute. Since the
attribute does not expect any further arguments (unlike [THEN . . . ], for example),
we use the parser Scan.succeed. Later on we will also consider attributes taking
further arguments. An example for the attribute [my_sym] is the proof

lemma test[my_sym]: "2 = Suc (Suc 0)" by simp

which stores the theorem Suc (Suc 0) = 2 under the name test. You can see this,
if you query the lemma:

thm test

> Suc (Suc 0) = 2

We can also use the attribute when referring to this theorem:

thm test[my_sym]

> 2 = Suc (Suc 0)

An alternative for setting up an attribute is the function Attrib.setup. So instead
of using attribute setup, you can also set up the attribute as follows:

Attrib.setup @{binding "my_sym"} (Scan.succeed my_symmetric)

"applying the sym rule"

This gives a function from Context.theory -> Context.theory, which can be used
for example with setup.

3The function RS is explained later on in Section 4.2.
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As an example of a slightly more complicated theorem attribute, we implement our
own version of [THEN . . . ]. This attribute will take a list of theorems as argument
and resolve the proved theorem with this list (one theorem after another). The code
for this attribute is

fun MY_THEN thms =

Thm.rule_attribute (fn _ => fn thm => foldl ((op RS) o swap) thm thms)

where swap swaps the components of a pair. The setup of this theorem attribute
uses the parser Attrib.thms, which parses a list of theorems.

attribute setup MY_THEN = {* Attrib.thms >> MY_THEN *}

"resolving the list of theorems with the proved theorem"

You can, for example, use this theorem attribute to turn an equation into a meta-
equation:

thm test[MY_THEN eq_reflection]

> Suc (Suc 0) ≡ 2

If you need the symmetric version as a meta-equation, you can write

thm test[MY_THEN sym eq_reflection]

> 2 ≡ Suc (Suc 0)

It is also possible to combine different theorem attributes, as in:

thm test[my_sym, MY_THEN eq_reflection]

> 2 ≡ Suc (Suc 0)

However, here also a weakness of the concept of theorem attributes shows through:
since theorem attributes can be arbitrary functions, they do not in general commute.
If you try

thm test[MY_THEN eq_reflection, my_sym]

> exception THM 1 raised: RSN: no unifiers

you get an exception indicating that the theorem sym does not resolve with meta-
equations.

The purpose of Thm.rule_attribute is to directly manipulate theorems. Another
usage of theorem attributes is to add and delete theorems from stored data. For
example the theorem attribute [simp] adds or deletes a theorem from the current
simpset. For these applications, you can use Thm.declaration_attribute. To illus-
trate this function, let us introduce a reference containing a list of theorems.
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val my_thms = ref ([] : thm list)

The purpose of this reference is that we are going to add and delete theorems to the
referenced list. However, a word of warning: such references must not be used in
any code that is meant to be more than just for testing purposes! Here it is only used
to illustrate matters. We will show later how to store data properly without using
references.

We need to provide two functions that add and delete theorems from this list. For
this we use the two functions:

fun my_thm_add thm ctxt =

(my_thms := Thm.add_thm thm (!my_thms); ctxt)

fun my_thm_del thm ctxt =

(my_thms := Thm.del_thm thm (!my_thms); ctxt)

These functions take a theorem and a context and, for what we are explaining here
it is sufficient that they just return the context unchanged. They change however the
reference my_thms, whereby the function Thm.add_thm adds a theorem if it is not
already included in the list, and Thm.del_thm deletes one (both functions use the
predicate Thm.eq_thm_prop, which compares theorems according to their proved
propositions modulo alpha-equivalence).

You can turn functions my_thm_add and my_thm_del into attributes with the code

val my_add = Thm.declaration_attribute my_thm_add

val my_del = Thm.declaration_attribute my_thm_del

and set up the attributes as follows

attribute setup my_thms = {* Attrib.add_del my_add my_del *}

"maintaining a list of my_thms - rough test only!"

The parser Attrib.add_del is a pre-defined parser for adding and deleting lemmas.
Now if you prove the next lemma and attach to it the attribute [my_thms]

lemma trueI_2[my_thms]: "True" by simp

then you can see it is added to the initially empty list.

!my_thms

> ["True"]

You can also add theorems using the command declare.

declare test[my_thms] trueI_2[my_thms add]

With this attribute, the add operation is the default and does not need to be explicitly
given. These three declarations will cause the theorem list to be updated as:
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!my_thms

> ["True", "Suc (Suc 0) = 2"]

The theorem trueI_2 only appears once, since the function Thm.add_thm tests for
duplicates, before extending the list. Deletion from the list works as follows:

declare test[my_thms del]

After this, the theorem list is again:

!my_thms

> ["True"]

We used in this example two functions declared as Thm.declaration_attribute,
but there can be any number of them. We just have to change the parser for reading
the arguments accordingly.

However, as said at the beginning of this example, using references for storing the-
orems is not the received way of doing such things. The received way is to start a
“data slot”, below called MyThmsData, generated by the functor GenericDataFun :

structure MyThmsData = GenericDataFun

(type T = thm list

val empty = []

val extend = I

fun merge _ = Thm.merge_thms)

The type T of this data slot is thm list.4 To use this data slot, you only have to
change my_thm_add and my_thm_del to:

val my_thm_add = MyThmsData.map o Thm.add_thm

val my_thm_del = MyThmsData.map o Thm.del_thm

where MyThmsData.map updates the data appropriately. The corresponding theorem
addtributes are

val my_add = Thm.declaration_attribute my_thm_add

val my_del = Thm.declaration_attribute my_thm_del

and the setup is as follows

attribute setup my_thms2 = {* Attrib.add_del my_add my_del *}

"properly maintaining a list of my_thms"

Initially, the data slot is empty

4FIXME: give a pointer to where data slots are explained properly.
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MyThmsData.get (Context.Proof @{context})

> []

but if you prove

lemma three[my_thms2]: "3 = Suc (Suc (Suc 0))" by simp

then the lemma is recorded.

MyThmsData.get (Context.Proof @{context})

> ["3 = Suc (Suc (Suc 0))"]

With theorem attribute my_thms2 you can also nicely see why it is important to store
data in a “data slot” and not in a reference. Backtrack to the point just before the
lemma three was proved and check the the content of MyThmsData : it should be
empty. The addition has been properly retracted. Now consider the proof:

lemma four[my_thms]: "4 = Suc (Suc (Suc (Suc 0)))" by simp

Checking the content of my_thms gives

!my_thms

> ["4 = Suc (Suc (Suc (Suc 0)))", "True"]

as expected, but if you backtrack before the lemma four, the content of my_thms is
unchanged. The backtracking mechanism of Isabelle is completely oblivious about
what to do with references, but properly treats “data slots”!

Since storing theorems in a list is such a common task, there is the special functor
NamedThmsFun, which does most of the work for you. To obtain a named theorem
lists, you just declare

structure FooRules = NamedThmsFun

(val name = "foo"

val description = "Rules for foo")

and set up the FooRules with the command

setup {* FooRules.setup *}

This code declares a data slot where the theorems are stored, an attribute foo (with
the add and del options for adding and deleting theorems) and an internal ML
interface to retrieve and modify the theorems.

Furthermore, the facts are made available on the user-level under the dynamic fact
name foo. For example you can declare three lemmas to be of the kind foo by:

lemma rule1[foo]: "A" sorry
lemma rule2[foo]: "B" sorry
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lemma rule3[foo]: "C" sorry

and undeclare the first one by:

declare rule1[foo del]

and query the remaining ones with:

thm foo

> ?C

> ?B

On the ML-level the rules marked with foo can be retrieved using the function
FooRules.get :

FooRules.get @{context}

> ["?C","?B"]

Read More
For more information see Pure/Tools/named_thms.ML and also the recipe in Section ??
about storing arbitrary data.

(FIXME What are: theory_attributes, proof_attributes?)

Read More
FIXME: Pure/more_thm.ML; parsers for attributes is in Pure/Isar/attrib.ML...also ex-
plained in the chapter about parsing.

2.11 Theories, Contexts and Local Theories (TBD)

There are theories, proof contexts and local theories (in this order, if you want to
order them).

In contrast to an ordinary theory, which simply consists of a type signature, as well as
tables for constants, axioms and theorems, a local theory contains additional context
information, such as locally fixed variables and local assumptions that may be used
by the package. The type local_theory is identical to the type of proof contexts
Proof.context, although not every proof context constitutes a valid local theory.

2.12 Storing Theorems (TBD)

PureThy.add_thms_dynamic
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2.13 Pretty-Printing (TBD)

Isabelle has a pretty sphisticated pretty printing module.

Loosely based on D. C. Oppen, ”Pretty Printing”, ACM Transactions on Programming
Languages and Systems (1980), 465-483.

Fixme

Pretty.T

Transforming a string into a pretty

fun rep n str = implode (replicate n str)

val test_str = rep 10 "fooooooooooooooobaaaaaaaaaaaar "

fun pprint prt = writeln (Pretty.string_of prt)

fun pprint2 prt = priority (Pretty.string_of prt)

pprint (Pretty.str test_str)

string of (English) and breaks at each space

Pretty.blk

integer is indent for the second and later lines

fun p_strs str = Pretty.breaks (map Pretty.str (space_explode " " str))

pprint (Pretty.blk (0, p_strs test_str))

pprint (Pretty.blk (3, p_strs test_str))

Pretty.indent

pprint (Pretty.indent 10 (Pretty.blk (3, p_strs test_str)))
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string_of_int

pprint (Pretty.block (Pretty.commas (map (Pretty.str o string_of_int) (1

upto 20))))

fun and_list [] = []

| and_list [x] = [x]

| and_list xs =

let val (front,last) = split_last xs

in

(Pretty.commas front) @ [Pretty.brk 1, Pretty.str "and", Pretty.brk

1, last]

end

pprint (Pretty.block (and_list (map (Pretty.str o string_of_int) (1 upto

20))))

Pretty.enum "l" "r" "sep"

chunks = one ptr above the othere

pprint (Pretty.chunks ([(Pretty.str (rep 3 "foo "))] @ [(Pretty.str (rep 4

"bar "))]))

pprint2 (Pretty.str "foo"); pprint2 (Pretty.str "bar")

types, terms and text

term "min (Suc 0)"

fastype_of

fun tell_type ctxt t =

pprint (Pretty.blk (0, (p_strs "The term ")

@ [Pretty.quote (Syntax.pretty_term ctxt t)]

@ p_strs " has type "

@ [Pretty.quote (Syntax.pretty_typ ctxt

(fastype_of t)), Pretty.str "."]))
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tell_type @{context} @{term "min (Suc 0)"}

tell_type @{context} @{term "(op =) ((op =) ((op =) ((op =) ((op =) (op

=)))))"}

does not break inside the term or type

Pretty.big_list, Pretty.block, Pretty.chunks

2.14 Misc (TBD)

DatatypePackage.get_datatype @{theory} "List.list"
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Chapter 3

Parsing

Isabelle distinguishes between outer and inner syntax. Commands, such as defini-
tion, inductive and so on, belong to the outer syntax, whereas terms, types and so
on belong to the inner syntax. For parsing inner syntax, Isabelle uses a rather gen-
eral and sophisticated algorithm, which is driven by priority grammars. Parsers for
outer syntax are built up by functional parsing combinators. These combinators are
a well-established technique for parsing, which has, for example, been described in
Paulson’s classic ML-book [4]. Isabelle developers are usually concerned with writ-
ing these outer syntax parsers, either for new definitional packages or for calling
methods with specific arguments.

Read More
The library for writing parser combinators is split up, roughly, into two parts. The
first part consists of a collection of generic parser combinators defined in the struc-
ture Scan in the file Pure/General/scan.ML. The second part of the library consists
of combinators for dealing with specific token types, which are defined in the struc-
ture OuterParse in the file Pure/Isar/outer_parse.ML. Specific parsers for packages
are defined in Pure/Isar/spec_parse.ML. Parsers for method arguments are defined in
Pure/Isar/args.ML.

3.1 Building Generic Parsers

Let us first have a look at parsing strings using generic parsing combinators. The
function $$ takes a string as argument and will “consume” this string from a given
input list of strings. “Consume” in this context means that it will return a pair con-
sisting of this string and the rest of the input list. For example:

($$ "h") (Symbol.explode "hello")

> ("h", ["e", "l", "l", "o"])

($$ "w") (Symbol.explode "world")

> ("w", ["o", "r", "l", "d"])

The function $$ will either succeed (as in the two examples above) or raise the
exception FAIL if no string can be consumed. For example trying to parse
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($$ "x") (Symbol.explode "world")

> Exception FAIL raised

will raise the exception FAIL. There are three exceptions used in the parsing combi-
nators:

• FAIL is used to indicate that alternative routes of parsing might be explored.

• MORE indicates that there is not enough input for the parser. For example in
($$ "h") [].

• ABORT is the exception that is raised when a dead end is reached. It is used for
example in the function !! (see below).

However, note that these exceptions are private to the parser and cannot be accessed
by the programmer (for example to handle them).

In the examples above we use the function Symbol.explode, instead of the more
standard library function explode, for obtaining an input list for the parser. The
reason is that Symbol.explode is aware of character sequences, for example \<foo>,
that have a special meaning in Isabelle. To see the difference consider

let

val input = "\<foo> bar"

in

(explode input, Symbol.explode input)

end

> (["\", "<", "f", "o", "o", ">", " ", "b", "a", "r"],

> ["\<foo>", " ", "b", "a", "r"])

Slightly more general than the parser $$ is the function Scan.one, in that it takes a
predicate as argument and then parses exactly one item from the input list satisfying
this predicate. For example the following parser either consumes an "h" or a "w" :

let

val hw = Scan.one (fn x => x = "h" orelse x = "w")

val input1 = Symbol.explode "hello"

val input2 = Symbol.explode "world"

in

(hw input1, hw input2)

end

> (("h", ["e", "l", "l", "o"]),("w", ["o", "r", "l", "d"]))

Two parsers can be connected in sequence by using the function --. For example
parsing h, e and l (in this order) you can achieve by:
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($$ "h" -- $$ "e" -- $$ "l") (Symbol.explode "hello")

> ((("h", "e"), "l"), ["l", "o"])

Note how the result of consumed strings builds up on the left as nested pairs.

If, as in the previous example, you want to parse a particular string, then you should
use the function Scan.this_string :

Scan.this_string "hell" (Symbol.explode "hello")

> ("hell", ["o"])

Parsers that explore alternatives can be constructed using the function ||. The parser
(p || q) returns the result of p, in case it succeeds, otherwise it returns the result
of q. For example:

let

val hw = $$ "h" || $$ "w"

val input1 = Symbol.explode "hello"

val input2 = Symbol.explode "world"

in

(hw input1, hw input2)

end

> (("h", ["e", "l", "l", "o"]), ("w", ["o", "r", "l", "d"]))

The functions |-- and --| work like the sequencing function for parsers, except
that they discard the item being parsed by the first (respectively second) parser. For
example:

let

val just_e = $$ "h" |-- $$ "e"

val just_h = $$ "h" --| $$ "e"

val input = Symbol.explode "hello"

in

(just_e input, just_h input)

end

> (("e", ["l", "l", "o"]), ("h", ["l", "l", "o"]))

The parser Scan.optional p x returns the result of the parser p, if it succeeds;
otherwise it returns the default value x. For example:

let

val p = Scan.optional ($$ "h") "x"

val input1 = Symbol.explode "hello"

val input2 = Symbol.explode "world"

in

(p input1, p input2)

end

> (("h", ["e", "l", "l", "o"]), ("x", ["w", "o", "r", "l", "d"]))
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The function Scan.option works similarly, except no default value can be given.
Instead, the result is wrapped as an option -type. For example:

let

val p = Scan.option ($$ "h")

val input1 = Symbol.explode "hello"

val input2 = Symbol.explode "world"

in

(p input1, p input2)

end

> ((SOME "h", ["e", "l", "l", "o"]), (NONE, ["w", "o", "r", "l", "d"]))

The function !! helps to produce appropriate error messages for parsing. For exam-
ple if you want to parse p immediately followed by q, or start a completely different
parser r, you might write:

(p -- q) || r

However, this parser is problematic for producing an appropriate error message, if
the parsing of (p -- q) fails. Because in that case you lose the information that p
should be followed by q. To see this assume that p is present in the input, but it is
not followed by q. That means (p -- q) will fail and hence the alternative parser
r will be tried. However, in many circumstances this will be the wrong parser for
the input “p -followed-by-something” and therefore will also fail. The error message
is then caused by the failure of r, not by the absence of q in the input. This kind of
situation can be avoided when using the function !!. This function aborts the whole
process of parsing in case of a failure and prints an error message. For example if
you invoke the parser

!! (fn _ => "foo") ($$ "h")

on "hello", the parsing succeeds

(!! (fn _ => "foo") ($$ "h")) (Symbol.explode "hello")

> ("h", ["e", "l", "l", "o"])

but if you invoke it on "world"

(!! (fn _ => "foo") ($$ "h")) (Symbol.explode "world")

> Exception ABORT raised

then the parsing aborts and the error message foo is printed. In order to see the
error message properly, you need to prefix the parser with the function Scan.error.
For example:
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Scan.error (!! (fn _ => "foo") ($$ "h"))

> Exception Error "foo" raised

This “prefixing” is usually done by wrappers such as OuterSyntax.local_theory

(see Section 3.7 which explains this function in more detail).

Let us now return to our example of parsing (p -- q) || r. If you want to generate
the correct error message for p -followed-by-q, then you have to write:

fun p_followed_by_q p q r =

let

val err_msg = fn _ => p ^ " is not followed by " ^ q

in

($$ p -- (!! err_msg ($$ q))) || ($$ r -- $$ r)

end

Running this parser with the arguments "h", "e" and "w", and the input "holle"

Scan.error (p_followed_by_q "h" "e" "w") (Symbol.explode "holle")

> Exception ERROR "h is not followed by e" raised

produces the correct error message. Running it with

Scan.error (p_followed_by_q "h" "e" "w") (Symbol.explode "wworld")

> (("w", "w"), ["o", "r", "l", "d"])

yields the expected parsing.

The function Scan.repeat p will apply a parser p as often as it succeeds. For exam-
ple:

Scan.repeat ($$ "h") (Symbol.explode "hhhhello")

> (["h", "h", "h", "h"], ["e", "l", "l", "o"])

Note that Scan.repeat stores the parsed items in a list. The function Scan.repeat1

is similar, but requires that the parser p succeeds at least once.

Also note that the parser would have aborted with the exception MORE, if you had
run it only on just "hhhh". This can be avoided by using the wrapper Scan.finite
and the “stopper-token” Symbol.stopper. With them you can write:

Scan.finite Symbol.stopper (Scan.repeat ($$ "h")) (Symbol.explode "hhhh")

> (["h", "h", "h", "h"], [])

Symbol.stopper is the “end-of-input” indicator for parsing strings; other stoppers
need to be used when parsing, for example, tokens. However, this kind of manually
wrapping is often already done by the surrounding infrastructure.

The function Scan.repeat can be used with Scan.one to read any string as in
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let

val p = Scan.repeat (Scan.one Symbol.not_eof)

val input = Symbol.explode "foo bar foo"

in

Scan.finite Symbol.stopper p input

end

> (["f", "o", "o", " ", "b", "a", "r", " ", "f", "o", "o"], [])

where the function Symbol.not_eof ensures that we do not read beyond the end of
the input string (i.e. stopper symbol).

The function Scan.unless p q takes two parsers: if the first one can parse the
input, then the whole parser fails; if not, then the second is tried. Therefore

Scan.unless ($$ "h") ($$ "w") (Symbol.explode "hello")

> Exception FAIL raised

fails, while

Scan.unless ($$ "h") ($$ "w") (Symbol.explode "world")

> ("w",["o", "r", "l", "d"])

succeeds.

The functions Scan.repeat and Scan.unless can be combined to read any input
until a certain marker symbol is reached. In the example below the marker symbol
is a "*".

let

val p = Scan.repeat (Scan.unless ($$ "*") (Scan.one Symbol.not_eof))

val input1 = Symbol.explode "fooooo"

val input2 = Symbol.explode "foo*ooo"

in

(Scan.finite Symbol.stopper p input1,

Scan.finite Symbol.stopper p input2)

end

> ((["f", "o", "o", "o", "o", "o"], []),

> (["f", "o", "o"], ["*", "o", "o", "o"]))

After parsing is done, you almost always want to apply a function to the parsed
items. One way to do this is the function (p >> f), which runs first the parser p and
upon successful completion applies the function f to the result. For example

let

fun double (x, y) = (x ^ x, y ^ y)

in

(($$ "h") -- ($$ "e") >> double) (Symbol.explode "hello")

end

> (("hh", "ee"), ["l", "l", "o"])
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doubles the two parsed input strings; or

let

val p = Scan.repeat (Scan.one Symbol.not_eof)

val input = Symbol.explode "foo bar foo"

in

Scan.finite Symbol.stopper (p >> implode) input

end

> ("foo bar foo",[])

where the single-character strings in the parsed output are transformed back into
one string.

(FIXME: move to an earlier place)

The function Scan.ahead parses some input, but leaves the original input unchanged.
For example:

Scan.ahead (Scan.this_string "foo") (Symbol.explode "foo")

> ("foo", ["f", "o", "o"])

The function Scan.lift takes a parser and a pair as arguments. This function ap-
plies the given parser to the second component of the pair and leaves the first com-
ponent untouched. For example

Scan.lift ($$ "h" -- $$ "e") (1, Symbol.explode "hello")

> (("h", "e"), (1, ["l", "l", "o"]))

(FIXME: In which situations is this useful? Give examples.)

Exercise 3.1.1. Write a parser that parses an input string so that any comment en-
closed within (* . . . *) is replaced by the same comment but enclosed within (** . . . **)
in the output string. To enclose a string, you can use the function enclose s1 s2 s

which produces the string s1 ^ s ^ s2. Hint: To simplify the task ignore the proper
nesting of comments.

3.2 Parsing Theory Syntax

Most of the time, however, Isabelle developers have to deal with parsing tokens, not
strings. These token parsers have the type:

type ’a parser = OuterLex.token list -> ’a * OuterLex.token list

The reason for using token parsers is that theory syntax, as well as the parsers for
the arguments of proof methods, use the type OuterLex.token.
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Read More
The parser functions for the theory syntax are contained in the structure OuterParse

defined in the file Pure/Isar/outer_parse.ML. The definition for tokens is in the file
Pure/Isar/outer_lex.ML.

The structure OuterLex defines several kinds of tokens (for example Ident for iden-
tifiers, Keyword for keywords and Command for commands). Some token parsers take
into account the kind of tokens. The first example shows how to generate a token
list out of a string using the function OuterSyntax.scan. It is given the argument
Position.none since, at the moment, we are not interested in generating precise
error messages. The following code1

OuterSyntax.scan Position.none "hello world"

> [Token ( . . . ,(Ident, "hello"), . . . ),
> Token ( . . . ,(Space, " "), . . . ),
> Token ( . . . ,(Ident, "world"), . . . )]

produces three tokens where the first and the last are identifiers, since "hello" and
"world" do not match any other syntactic category. The second indicates a space.

We can easily change what is recognised as a keyword with OuterKeyword.keyword.
For example calling this function

val _ = OuterKeyword.keyword "hello"

then lexing "hello world" will produce

OuterSyntax.scan Position.none "hello world"

> [Token ( . . . ,(Keyword, "hello"), . . . ),
> Token ( . . . ,(Space, " "), . . . ),
> Token ( . . . ,(Ident, "world"), . . . )]

Many parsing functions later on will require white space, comments and the like to
have already been filtered out. So from now on we are going to use the functions
filter and OuterLex.is_proper to do this. For example:

let

val input = OuterSyntax.scan Position.none "hello world"

in

filter OuterLex.is_proper input

end

> [Token ( . . . ,(Ident, "hello"), . . . ), Token ( . . . ,(Ident, "world"), . . . )]

For convenience we define the function:

1Note that because of a possible bug in the PolyML runtime system, the result is printed as "?",
instead of the tokens.
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fun filtered_input str =

filter OuterLex.is_proper (OuterSyntax.scan Position.none str)

If you now parse

filtered_input "inductive | for"

> [Token ( . . . ,(Command, "inductive"), . . . ),
> Token ( . . . ,(Keyword, "|"), . . . ),
> Token ( . . . ,(Keyword, "for"), . . . )]

you obtain a list consisting of only one command and two keyword tokens. If you
want to see which keywords and commands are currently known to Isabelle, type:

let

val (keywords, commands) = OuterKeyword.get_lexicons ()

in

(Scan.dest_lexicon commands, Scan.dest_lexicon keywords)

end

> (["}", "{", . . . ], ["⇀↽", "↽", . . . ])

You might have to adjust the print_depth in order to see the complete list.

The parser OuterParse.$$$ parses a single keyword. For example:

let

val input1 = filtered_input "where for"

val input2 = filtered_input "| in"

in

(OuterParse.$$$ "where" input1, OuterParse.$$$ "|" input2)

end

> (("where", . . . ), ("|", . . . ))

Any non-keyword string can be parsed with the function OuterParse.reserved. For
example:

let

val p = OuterParse.reserved "bar"

val input = filtered_input "bar"

in

p input

end

> ("bar",[])

Like before, you can sequentially connect parsers with --. For example:
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let

val input = filtered_input "| in"

in

(OuterParse.$$$ "|" -- OuterParse.$$$ "in") input

end

> (("|", "in"), [])

The parser OuterParse.enum s p parses a possibly empty list of items recognised
by the parser p, where the items being parsed are separated by the string s. For
example:

let

val input = filtered_input "in | in | in foo"

in

(OuterParse.enum "|" (OuterParse.$$$ "in")) input

end

> (["in", "in", "in"], [ . . . ])

OuterParse.enum1 works similarly, except that the parsed list must be non-empty.
Note that we had to add a string "foo" at the end of the parsed string, otherwise the
parser would have consumed all tokens and then failed with the exception MORE. Like
in the previous section, we can avoid this exception using the wrapper Scan.finite.
This time, however, we have to use the “stopper-token” OuterLex.stopper. We can
write:

let

val input = filtered_input "in | in | in"

in

Scan.finite OuterLex.stopper

(OuterParse.enum "|" (OuterParse.$$$ "in")) input

end

> (["in", "in", "in"], [])

The following function will help to run examples.

fun parse p input = Scan.finite OuterLex.stopper (Scan.error p) input

The function OuterParse.!!! can be used to force termination of the parser in
case of a dead end, just like Scan.!! (see previous section). Except that the error
message of OuterParse.!!! is fixed to be "Outer syntax error" together with a
relatively precise description of the failure. For example:

let

val input = filtered_input "in |"

val parse_bar_then_in = OuterParse.$$$ "|" -- OuterParse.$$$ "in"

in
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parse (OuterParse.!!! parse_bar_then_in) input

end

> Exception ERROR "Outer syntax error: keyword "|" expected,

> but keyword in was found" raised

Exercise 3.2.1. (FIXME) A type-identifier, for example ’a, is a token of kind Keyword.
It can be parsed using the function OuterParse.type_ident.

(FIXME: or give parser for numbers)

Whenever there is a possibility that the processing of user input can fail, it is a
good idea to give all available information about where the error occurred. For this
Isabelle can attach positional information to tokens and then thread this information
up the processing chain. To see this, modify the function filtered_input described
earlier to

fun filtered_input’ str =

filter OuterLex.is_proper (OuterSyntax.scan (Position.line 7) str)

where we pretend the parsed string starts on line 7. An example is

filtered_input’ "foo \n bar"

> [Token (("foo", ({line=7, end_line=7}, {line=7})), (Ident, "foo"), . . . ),
> Token (("bar", ({line=8, end_line=8}, {line=8})), (Ident, "bar"), . . . )]

in which the "\n" causes the second token to be in line 8.

By using the parser OuterParse.position you can access the token position and
return it as part of the parser result. For example

let

val input = filtered_input’ "where"

in

parse (OuterParse.position (OuterParse.$$$ "where")) input

end

> (("where", {line=7, end_line=7}), [])

Read More
The functions related to positions are implemented in the file Pure/General/position.ML.

(FIXME: there are also handy parsers for ML-expressions and ML-files)

3.3 Context Parser (TBD)

Used for example in attribute setup and method setup.
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3.4 Argument and Attribute Parsers (TBD)

3.5 Parsing Inner Syntax

There is usually no need to write your own parser for parsing inner syntax, that is
for terms and types: you can just call the pre-defined parsers. Terms can be parsed
using the function OuterParse.term. For example:

let

val input = OuterSyntax.scan Position.none "foo"

in

OuterParse.term input

end

> ("\^E\^Ftoken\^Efoo\^E\^F\^E", [])

The function OuterParse.prop is similar, except that it gives a different error mes-
sage, when parsing fails. As you can see, the parser not just returns the parsed
string, but also some encoded information. You can decode the information with the
function YXML.parse. For example

YXML.parse "\^E\^Ftoken\^Efoo\^E\^F\^E"

> XML.Elem ("token", [], [XML.Text "foo"])

The result of the decoding is an XML-tree. You can see better what is going on if you
replace Position.none by Position.line 42, say:

let

val input = OuterSyntax.scan (Position.line 42) "foo"

in

YXML.parse (fst (OuterParse.term input))

end

> XML.Elem ("token", [("line", "42"), ("end_line", "42")], [XML.Text "foo"])

The positional information is stored as part of an XML-tree so that code called later
on will be able to give more precise error messages.

Read More
The functions to do with input and output of XML and YXML are defined in
Pure/General/xml.ML and Pure/General/yxml.ML.

3.6 Parsing Specifications

There are a number of special purpose parsers that help with parsing specifications
of function definitions, inductive predicates and so on. In Chapter 5, for example,
we will need to parse specifications for inductive predicates of the form:
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simple inductive
even and odd

where
even0: "even 0"

| evenS: "odd n =⇒ even (Suc n)"

| oddS: "even n =⇒ odd (Suc n)"

For this we are going to use the parser:

val spec_parser =1

OuterParse.fixes --2

Scan.optional3

(OuterParse.$$$ "where" |--4

OuterParse.!!!5

(OuterParse.enum1 "|"6

(SpecParse.opt_thm_name ":" -- OuterParse.prop))) []7

Note that the parser must not parse the keyword simple inductive, even if it is
meant to process definitions as shown above. The parser of the keyword will be
given by the infrastructure that will eventually call spec_parser.

To see what the parser returns, let us parse the string corresponding to the definition
of even and odd :

let

val input = filtered_input

("even and odd " ^

"where " ^

" even0[intro]: \"even 0\" " ^

"| evenS[intro]: \"odd n =⇒ even (Suc n)\" " ^

"| oddS[intro]: \"even n =⇒ odd (Suc n)\"")

in

parse spec_parser input

end

> (([(even, NONE, NoSyn), (odd, NONE, NoSyn)],

> [((even0, . . . ), "\^E\^Ftoken\^Eeven 0\^E\^F\^E"),

> ((evenS, . . . ), "\^E\^Ftoken\^Eodd n =⇒ even (Suc n)\^E\^F\^E"),

> ((oddS, . . . ), "\^E\^Ftoken\^Eeven n =⇒ odd (Suc n)\^E\^F\^E")]), [])

As you see, the result is a pair consisting of a list of variables with optional type-
annotation and syntax-annotation, and a list of rules where every rule has optionally
a name and an attribute.

The function OuterParse.fixes in Line 2 of the parser reads an and-separated list
of variables that can include optional type annotations and syntax translations. For
example:2

2Note that in the code we need to write \"int ⇒ bool\" in order to properly escape the double
quotes in the compound type.
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let

val input = filtered_input

"foo::\"int ⇒ bool\" and bar::nat (\"BAR\" 100) and blonk"

in

parse OuterParse.fixes input

end

> ([(foo, SOME "\^E\^Ftoken\^Eint ⇒ bool\^E\^F\^E", NoSyn),

> (bar, SOME "\^E\^Ftoken\^Enat\^E\^F\^E", Mixfix ("BAR", [], 100)),

> (blonk, NONE, NoSyn)],[])

Whenever types are given, they are stored in the SOMEs. The types are not yet used to
type the variables: this must be done by type-inference later on. Since types are part
of the inner syntax they are strings with some encoded information (see previous
section). If a mixfix-syntax is present for a variable, then it is stored in the Mixfix

data structure; no syntax translation is indicated by NoSyn.

Read More
The data structure for mixfix annotations is defined in Pure/Syntax/mixfix.ML.

Lines 3 to 7 in the function spec_parser implement the parser for a list of intro-
duction rules, that is propositions with theorem annotations such as rule names
and attributes. The introduction rules are propositions parsed by OuterParse.prop.
However, they can include an optional theorem name plus some attributes. For ex-
ample

let

val input = filtered_input "foo_lemma[intro,dest!]:"

val ((name, attrib), _) = parse (SpecParse.thm_name ":") input

in

(name, map Args.dest_src attrib)

end

> (foo_lemma, [(("intro", []), . . . ), (("dest", [ . . . ]), . . . )])

The function opt_thm_name is the “optional” variant of thm_name. Theorem names
can contain attributes. The name has to end with ":"—see the argument of the
function SpecParse.opt_thm_name in Line 7.

Read More
Attributes and arguments are implemented in the files Pure/Isar/attrib.ML and
Pure/Isar/args.ML.

Exercise 3.6.1. Have a look at how the parser SpecParse.where_alt_specs is implemented
in file Pure/Isar/spec_parse.ML. This parser corresponds to the “where-part” of the intro-
duction rules given above. Below we paraphrase the code of SpecParse.where_alt_specs

adapted to our purposes.
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val spec_parser’ =1

OuterParse.fixes --2

Scan.optional3

(OuterParse.$$$ "where" |--4

OuterParse.!!!5

(OuterParse.enum1 "|"6

((SpecParse.opt_thm_name ":" -- OuterParse.prop) --|7

Scan.option (Scan.ahead (OuterParse.name ||8

OuterParse.$$$ "[") --9

OuterParse.!!! (OuterParse.$$$ "|"))))) []10

Both parsers accept the same input, but if you look closely, you can notice an additional “tail”
(Lines 8 to 10) in spec_parser’. What is the purpose of this additional “tail”?

(FIXME: OuterParse.type_args, OuterParse.typ, OuterParse.opt_mixfix)

3.7 New Commands and Keyword Files

Often new commands, for example for providing new definitional principles, need to
be implemented. While this is not difficult on the ML-level, new commands, in order
to be useful, need to be recognised by ProofGeneral. This results in some subtle
configuration issues, which we will explain in this section.

To keep things simple, let us start with a “silly” command that does nothing at all.
We shall name this command foobar. On the ML-level it can be defined as:

let

val do_nothing = Scan.succeed (LocalTheory.theory I)

val kind = OuterKeyword.thy_decl

in

OuterSyntax.local_theory "foobar" "description of foobar" kind do_nothing

end

The crucial function OuterSyntax.local_theory expects a name for the command,
a short description, a kind indicator (which we will explain later more thoroughly)
and a parser producing a local theory transition (its purpose will also explained
later).

While this is everything you have to do on the ML-level, you need a keyword file that
can be loaded by ProofGeneral. This is to enable ProofGeneral to recognise foobar
as a command. Such a keyword file can be generated with the command-line:

$ isabelle keywords -k foobar some_log_files

The option -k foobar indicates which postfix the name of the keyword file will be
assigned. In the case above the file will be named isar-keywords-foobar.el. This
command requires log files to be present (in order to extract the keywords from
them). To generate these log files, you first need to package the code above into a
separate theory file named Command.thy, say—see Figure 3.1 for the complete code.
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theory Command

imports Main
begin
ML {*

let

val do_nothing = Scan.succeed (LocalTheory.theory I)

val kind = OuterKeyword.thy_decl

in

OuterSyntax.local_theory "foobar" "description of foobar" kind do_nothing

end

*}

end

Figure 3.1: This file can be used to generate a log file. This log file in turn can be
used to generate a keyword file containing the command foobar.

For our purposes it is sufficient to use the log files of the theories Pure, HOL and
Pure-ProofGeneral, as well as the log file for the theory Command.thy, which con-
tains the new foobar-command. If you target other logics besides HOL, such as
Nominal or ZF, then you need to adapt the log files appropriately.

Pure and HOL are usually compiled during the installation of Isabelle. So log files
for them should be already available. If not, then they can be conveniently compiled
with the help of the build-script from the Isabelle distribution.

$ ./build -m "Pure"

$ ./build -m "HOL"

The Pure-ProofGeneral theory needs to be compiled with:

$ ./build -m "Pure-ProofGeneral" "Pure"

For the theory Command.thy, you first need to create a “managed” subdirectory with:

$ isabelle mkdir FoobarCommand

This generates a directory containing the files:

./IsaMakefile

./FoobarCommand/ROOT.ML

./FoobarCommand/document

./FoobarCommand/document/root.tex

You need to copy the file Command.thy into the directory FoobarCommand and add
the line

no_document use_thy "Command";
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to the file ./FoobarCommand/ROOT.ML. You can now compile the theory by just typ-
ing:

$ isabelle make

If the compilation succeeds, you have finally created all the necessary log files. They
are stored in the directory

~/.isabelle/heaps/Isabelle2009/polyml-5.2.1_x86-linux/log

or something similar depending on your Isabelle distribution and architecture. One
quick way to assign a shell variable to this directory is by typing

$ ISABELLE_LOGS="$(isabelle getenv -b ISABELLE_OUTPUT)"/log

on the Unix prompt. If you now type ls $ISABELLE_LOGS, then the directory should
include the files:

Pure.gz

HOL.gz

Pure-ProofGeneral.gz

HOL-FoobarCommand.gz

From them you can create the keyword files. Assuming the name of the directory is
in $ISABELLE_LOGS, then the Unix command for creating the keyword file is:

$ isabelle keywords -k foobar

$ISABELLE_LOGS/{Pure.gz,HOL.gz,Pure-ProofGeneral.gz,HOL-FoobarCommand.gz}

The result is the file isar-keywords-foobar.el. It should contain the string foobar

twice.3 This keyword file needs to be copied into the directory ~/.isabelle/etc.
To make ProofGeneral aware of this keyword file, you have to start Isabelle with the
option -k foobar, that is:

$ isabelle emacs -k foobar a_theory_file

If you now build a theory on top of Command.thy, then the command foobar can
be used. Similarly with any other new command, and also any new keyword that is
introduced with

val _ = OuterKeyword.keyword "blink"

At the moment the command foobar is not very useful. Let us refine it a bit next
by letting it take a proposition as argument and printing this proposition inside the
tracing buffer.

3To see whether things are fine, check that grep foobar on this file returns something non-empty.
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The crucial part of a command is the function that determines the behaviour of the
command. In the code above we used a “do-nothing”-function, which because of
Scan.succeed does not parse any argument, but immediately returns the simple
function LocalTheory.theory I. We can replace this code by a function that first
parses a proposition (using the parser OuterParse.prop), then prints out the tracing
information (using a new function trace_prop) and finally does nothing. For this
you can write:

let

fun trace_prop str =

LocalTheory.theory (fn lthy => (tracing str; lthy))

val trace_prop_parser = OuterParse.prop >> trace_prop

val kind = OuterKeyword.thy_decl

in

OuterSyntax.local_theory "foobar" "traces a proposition"

kind trace_prop_parser

end

Now you can type

foobar "True ∧ False"

> "True ∧ False"

and see the proposition in the tracing buffer.

Note that so far we used thy_decl as the kind indicator for the command. This
means that the command finishes as soon as the arguments are processed. Examples
of this kind of commands are definition and declare. In other cases, commands are
expected to parse some arguments, for example a proposition, and then “open up”
a proof in order to prove the proposition (for example lemma) or prove some other
properties (for example function). To achieve this kind of behaviour, you have to
use the kind indicator thy_goal and the function local_theory_to_proof to set
up the command. Note, however, once you change the “kind” of a command from
thy_decl to thy_goal then the keyword file needs to be re-created!

Below we change foobar so that it takes a proposition as argument and then starts
a proof in order to prove it. Therefore in Line 13, we set the kind indicator to
thy_goal.

let1

fun prove_prop str lthy =2

let3

val prop = Syntax.read_prop lthy str4

in5

Proof.theorem_i NONE (K I) [[(prop,[])]] lthy6

end;7

8

val prove_prop_parser = OuterParse.prop >> prove_prop9

val kind = OuterKeyword.thy_goal10
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in11

OuterSyntax.local_theory_to_proof "foobar" "proving a proposition"12

kind prove_prop_parser13

end14

The function prove_prop in Lines 2 to 7 takes a string (the proposition to be proved)
and a context as argument. The context is necessary in order to be able to use
Syntax.read_prop, which converts a string into a proper proposition. In Line 6
the function Proof.theorem_i starts the proof for the proposition. Its argument
NONE stands for a locale (which we chose to omit); the argument (K I) stands for
a function that determines what should be done with the theorem once it is proved
(we chose to just forget about it). Line 9 contains the parser for the proposition.

If you now type foobar "True ∧ True", you obtain the following proof state

foobar "True ∧ True"

goal (1 subgoal):

1. True ∧ True

and you can build the following proof

foobar "True ∧ True"

apply(rule conjI)

apply(rule TrueI)+

done

(FIXME: read a name and show how to store theorems; see LocalTheory.note)

3.8 Methods (TBD)

(FIXME: maybe move to after the tactic section)

Methods are central to Isabelle. They are the ones you use for example in apply. To
print out all currently known methods you can use the Isabelle command:

print methods
> methods:

> -: do nothing (insert current facts only)

> HOL.default: apply some intro/elim rule (potentially classical)

> ...

An example of a very simple method is:

method setup foo =

{* Scan.succeed

(K (SIMPLE_METHOD ((etac @{thm conjE} THEN’ rtac @{thm conjI}) 1))) *}

"foo method for conjE and conjI"
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It defines the method foobar, which takes no arguments (therefore the parser Scan.succeed)
and only applies a single tactic, namely the tactic which applies conjE and then
conjI. The function SIMPLE_METHOD turns such a tactic into a method. The method
foobar can be used as follows

lemma shows "A ∧ B =⇒ C ∧ D"

apply(foo)

where it results in the goal state
goal (2 subgoals):

1. [[A; B ]] =⇒ C 2. [[A; B ]] =⇒ D

(FIXME: explain a version of rule-tac)
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Chapter 4

Tactical Reasoning

One of the main reason for descending to the ML-level of Isabelle is to be able to
implement automatic proof procedures. Such proof procedures usually lessen con-
siderably the burden of manual reasoning, for example, when introducing new defi-
nitions. These proof procedures are centred around refining a goal state using tactics.
This is similar to the apply-style reasoning at the user-level, where goals are modi-
fied in a sequence of proof steps until all of them are solved. However, there are also
more structured operations available on the ML-level that help with the handling of
variables and assumptions.

4.1 Basics of Reasoning with Tactics

To see how tactics work, let us first transcribe a simple apply-style proof into ML.
Suppose the following proof.

lemma disj_swap: "P ∨ Q =⇒ Q ∨ P"

apply(erule disjE)

apply(rule disjI2)

apply(assumption)
apply(rule disjI1)

apply(assumption)
done

This proof translates to the following ML-code.

let

val ctxt = @{context}

val goal = @{prop "P ∨ Q =⇒ Q ∨ P"}

in

Goal.prove ctxt ["P", "Q"] [] goal

(fn _ =>

etac @{thm disjE} 1

THEN rtac @{thm disjI2} 1

THEN atac 1

THEN rtac @{thm disjI1} 1

THEN atac 1)

end
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> ?P ∨ ?Q =⇒ ?Q ∨ ?P

To start the proof, the function Goal.prove ctxt xs As C tac sets up a goal state
for proving the goal C (that is P ∨ Q =⇒ Q ∨ P in the proof at hand) under the
assumptions As (happens to be empty) with the variables xs that will be generalised
once the goal is proved (in our case P and Q). The tac is the tactic that proves the
goal; it can make use of the local assumptions (there are none in this example). The
tactics etac, rtac and atac in the code above correspond roughly to erule, rule
and assumption, respectively. The operator THEN strings the tactics together.

Read More
To learn more about the function Goal.prove see [Impl. Man., Sec. 4.3] and the file
Pure/goal.ML. See Pure/tactic.ML and Pure/tctical.ML for the code of basic tactics
and tactic combinators; see also Chapters 3 and 4 in the old Isabelle Reference Manual, and
Chapter 3 in the Isabelle/Isar Implementation Manual.

Note that in the code above we use antiquotations for referencing the theorems.
Many theorems also have ML-bindings with the same name. Therefore, we could also
just have written etac disjE 1, or in case where there is no ML-binding obtain the
theorem dynamically using the function thm ; for example etac (thm "disjE") 1 .
Both ways however are considered bad style! The reason is that the binding for
disjE can be re-assigned by the user and thus one does not have complete control
over which theorem is actually applied. This problem is nicely prevented by using
antiquotations, because then the theorems are fixed statically at compile-time.

During the development of automatic proof procedures, you will often find it neces-
sary to test a tactic on examples. This can be conveniently done with the command
apply(tactic {* . . . *}). Consider the following sequence of tactics

val foo_tac =

(etac @{thm disjE} 1

THEN rtac @{thm disjI2} 1

THEN atac 1

THEN rtac @{thm disjI1} 1

THEN atac 1)

and the Isabelle proof:

lemma "P ∨ Q =⇒ Q ∨ P"

apply(tactic {* foo_tac *})

done

By using tactic {* . . . *} you can call from the user-level of Isabelle the tactic
foo_tac or any other function that returns a tactic.

The tactic foo_tac is just a sequence of simple tactics stringed together by THEN. As
can be seen, each simple tactic in foo_tac has a hard-coded number that stands for
the subgoal analysed by the tactic (1 stands for the first, or top-most, subgoal). This
hard-coding of goals is sometimes wanted, but usually it is not. To avoid the explicit
numbering, you can write
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val foo_tac’ =

(etac @{thm disjE}

THEN’ rtac @{thm disjI2}

THEN’ atac

THEN’ rtac @{thm disjI1}

THEN’ atac)

where THEN’ is used instead of THEN. With foo_tac’ you can give the number for
the subgoal explicitly when the tactic is called. So in the next proof you can first
discharge the second subgoal, and subsequently the first.

lemma "P1 ∨ Q1 =⇒ Q1 ∨ P1"

and "P2 ∨ Q2 =⇒ Q2 ∨ P2"

apply(tactic {* foo_tac’ 2 *})

apply(tactic {* foo_tac’ 1 *})

done

This kind of addressing is more difficult to achieve when the goal is hard-coded
inside the tactic. For most operators that combine tactics (THEN is only one such
operator) a “primed” version exists.

The tactics foo_tac and foo_tac’ are very specific for analysing goals being only of
the form P ∨ Q =⇒ Q ∨ P. If the goal is not of this form, then these tactics return
the error message:

*** empty result sequence -- proof command failed

*** At command "apply".

This means they failed.1 The reason for this error message is that tactics are functions
mapping a goal state to a (lazy) sequence of successor states. Hence the type of a
tactic is:

type tactic = thm -> thm Seq.seq

By convention, if a tactic fails, then it should return the empty sequence. Therefore,
if you write your own tactics, they should not raise exceptions willy-nilly; only in
very grave failure situations should a tactic raise the exception THM.

The simplest tactics are no_tac and all_tac. The first returns the empty sequence
and is defined as

fun no_tac thm = Seq.empty

which means no_tac always fails. The second returns the given theorem wrapped
in a single member sequence; it is defined as

1To be precise tactics do not produce this error message, the it originates from the apply wrapper.
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fun all_tac thm = Seq.single thm

which means all_tac always succeeds, but also does not make any progress with
the proof.

The lazy list of possible successor goal states shows through at the user-level of
Isabelle when using the command back. For instance in the following proof there
are two possibilities for how to apply foo_tac’ : either using the first assumption or
the second.

lemma " [[P ∨ Q; P ∨ Q ]] =⇒ Q ∨ P"

apply(tactic {* foo_tac’ 1 *})

back
done

By using back, we construct the proof that uses the second assumption. While in the
proof above, it does not really matter which assumption is used, in more interesting
cases provability might depend on exploring different possibilities.

Read More
See Pure/General/seq.ML for the implementation of lazy sequences. In day-to-day
Isabelle programming, however, one rarely constructs sequences explicitly, but uses the pre-
defined tactics and tactic combinators instead.

It might be surprising that tactics, which transform one goal state to the next, are
functions from theorems to theorem (sequences). The surprise resolves by knowing
that every goal state is indeed a theorem. To shed more light on this, let us modify
the code of all_tac to obtain the following tactic

fun my_print_tac ctxt thm =

let

val _ = writeln (str_of_thm_no_vars ctxt thm)

in

Seq.single thm

end

which prints out the given theorem (using the string-function defined in Section 2.2)
and then behaves like all_tac. With this tactic we are in the position to inspect
every goal state in a proof. Consider now the proof in Figure 4.1: as can be seen,
internally every goal state is an implication of the form

A1 =⇒ . . . =⇒ An =⇒ (C)

where C is the goal to be proved and the A i are the subgoals. So after setting up the
lemma, the goal state is always of the form C =⇒ (C) ; when the proof is finished
we are left with (C).2 Since the goal C can potentially be an implication, there
is a “protector” wrapped around it (the wrapper is the outermost constant Const

2This only applies to single statements. If the lemma contains more than one statement, then one
has more such implications.
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lemma shows " [[A; B ]] =⇒ A ∧ B"

apply(tactic {* my_print_tac @{context} *})

goal (1 subgoal):

1. [[A; B ]] =⇒ A ∧ B

internal goal state:
( [[A; B ]] =⇒ A ∧ B) =⇒ ( [[A; B ]] =⇒ A ∧ B)

apply(rule conjI)

apply(tactic {* my_print_tac @{context} *})

goal (2 subgoals):

1. [[A; B ]] =⇒ A

2. [[A; B ]] =⇒ B

internal goal state:
( [[A; B ]] =⇒ A) =⇒ ( [[A; B ]] =⇒ B) =⇒ ( [[A; B ]] =⇒ A ∧ B)

apply(assumption)
apply(tactic {* my_print_tac @{context} *})

goal (1 subgoal):

1. [[A; B ]] =⇒ B

internal goal state:
( [[A; B ]] =⇒ B) =⇒ ( [[A; B ]] =⇒ A ∧ B)

apply(assumption)
apply(tactic {* my_print_tac @{context} *})

No subgoals!

internal goal state:
[[A; B ]] =⇒ A ∧ B

done

Figure 4.1: The figure shows a proof where each intermediate goal state is printed
by the Isabelle system and by my_print_tac. The latter shows the goal state as
represented internally (highlighted boxes). This tactic shows that every goal state in
Isabelle is represented by a theorem: when you start the proof of [[A; B ]] =⇒ A ∧ B

the theorem is ( [[A; B ]] =⇒ A ∧ B) =⇒ ( [[A; B ]] =⇒ A ∧ B) ; when you finish
the proof the theorem is [[A; B ]] =⇒ A ∧ B.
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("prop", bool ⇒ bool) ; however this constant is invisible in the figure). This
wrapper prevents that premises of C are misinterpreted as open subgoals. While
tactics can operate on the subgoals (the A i above), they are expected to leave the
conclusion C intact, with the exception of possibly instantiating schematic variables.
If you use the predefined tactics, which we describe in the next section, this will
always be the case.

Read More
For more information about the internals of goals see [Impl. Man., Sec. 3.1].

4.2 Simple Tactics

Let us start with explaining the simple tactic print_tac, which is quite useful for
low-level debugging of tactics. It just prints out a message and the current goal
state. Unlike my_print_tac shown earlier, it prints the goal state as the user would
see it. For example, processing the proof

lemma shows "False =⇒ True"

apply(tactic {* print_tac "foo message" *})

gives:

foo message

False =⇒ True

1. False =⇒ True

A simple tactic for easy discharge of any proof obligations is SkipProof.cheat_tac.
This tactic corresponds to the Isabelle command sorry and is sometimes useful dur-
ing the development of tactics.

lemma shows "False" and "Goldbach_conjecture"

apply(tactic {* SkipProof.cheat_tac @{theory} *})

No subgoals!

This tactic works however only if the quick-and-dirty mode of Isabelle is switched
on.

Another simple tactic is the function atac, which, as shown in the previous section,
corresponds to the assumption command.

lemma shows "P =⇒ P"

apply(tactic {* atac 1 *})

No subgoals!

Similarly, rtac, dtac, etac and ftac correspond (roughly) to rule, drule, erule
and frule, respectively. Each of them take a theorem as argument and attempt to
apply it to a goal. Below are three self-explanatory examples.

lemma shows "P ∧ Q"

apply(tactic {* rtac @{thm conjI} 1 *})
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goal (2 subgoals):

1. P

2. Q

lemma shows "P ∧ Q =⇒ False"

apply(tactic {* etac @{thm conjE} 1 *})

goal (1 subgoal):

1. [[P; Q ]] =⇒ False

lemma shows "False ∧ True =⇒ False"

apply(tactic {* dtac @{thm conjunct2} 1 *})

goal (1 subgoal):

1. True =⇒ False

The function resolve_tac is similar to rtac, except that it expects a list of theorems
as arguments. From this list it will apply the first applicable theorem (later theorems
that are also applicable can be explored via the lazy sequences mechanism). Given
the code

val resolve_xmp_tac = resolve_tac [@{thm impI}, @{thm conjI}]

an example for resolve_tac is the following proof where first an outermost impli-
cation is analysed and then an outermost conjunction.

lemma shows "C −→ (A ∧ B)" and "(A −→ B) ∧ C"

apply(tactic {* resolve_xmp_tac 1 *})

apply(tactic {* resolve_xmp_tac 2 *})

goal (3 subgoals):

1. C =⇒ A ∧ B

2. A −→ B

3. C

Similar versions taking a list of theorems exist for the tactics dtac (dresolve_tac),
etac (eresolve_tac) and so on.

Another simple tactic is cut_facts_tac. It inserts a list of theorems into the assump-
tions of the current goal state. For example

lemma shows "True 6= False"

apply(tactic {* cut_facts_tac [@{thm True_def}, @{thm False_def}] 1 *})

produces the goal state

goal (1 subgoal):

1. [[True ≡ (λx. x) = (λx. x); False ≡ ∀ P. P ]] =⇒ True 6= False

Since rules are applied using higher-order unification, an automatic proof procedure
might become too fragile, if it just applies inference rules as shown above. The rea-
son is that a number of rules introduce meta-variables into the goal state. Consider
for example the proof

lemma shows "∀ x∈A. P x =⇒ Q x"

apply(tactic {* dtac @{thm bspec} 1 *})
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goal (2 subgoals):

1. ?x ∈ A

2. P ?x =⇒ Q x

where the application of rule bspec generates two subgoals involving the meta-
variable ?x. Now, if you are not careful, tactics applied to the first subgoal might
instantiate this meta-variable in such a way that the second subgoal becomes un-
provable. If it is clear what the ?x should be, then this situation can be avoided by
introducing a more constrained version of the bspec -rule. Such constraints can be
given by pre-instantiating theorems with other theorems. One function to do this is
RS

@{thm disjI1} RS @{thm conjI}

> [[?P1; ?Q ]] =⇒ (?P1 ∨ ?Q1) ∧ ?Q

which in the example instantiates the first premise of the conjI -rule with the rule
disjI1. If the instantiation is impossible, as in the case of

@{thm conjI} RS @{thm mp}

> *** Exception- THM ("RSN: no unifiers", 1,

> [" [[?P; ?Q ]] =⇒ ?P ∧ ?Q", " [[?P −→ ?Q; ?P ]] =⇒ ?Q"]) raised

then the function raises an exception. The function RSN is similar to RS, but takes
an additional number as argument that makes explicit which premise should be
instantiated.

To improve readability of the theorems we shall produce below, we will use the func-
tion no_vars from Section 2.2, which transforms schematic variables into free ones.
Using this function for the first RS -expression above produces the more readable
result:

no_vars @{context} (@{thm disjI1} RS @{thm conjI})

> [[P; Q ]] =⇒ (P ∨ Qa) ∧ Q

If you want to instantiate more than one premise of a theorem, you can use the
function MRS :

no_vars @{context} ([@{thm disjI1}, @{thm disjI2}] MRS @{thm conjI})

> [[P; Q ]] =⇒ (P ∨ Qa) ∧ (Pa ∨ Q)

If you need to instantiate lists of theorems, you can use the functions RL and MRL.
For example in the code below, every theorem in the second list is instantiated with
every theorem in the first.
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map (no_vars @{context})

([@{thm impI}, @{thm disjI2}] RL [@{thm conjI}, @{thm disjI1}])

> [ [[P =⇒ Q; Qa ]] =⇒ (P −→ Q) ∧ Qa,

> [[Q; Qa ]] =⇒ (P ∨ Q) ∧ Qa,

> (P =⇒ Q) =⇒ (P −→ Q) ∨ Qa,

> Q =⇒ (P ∨ Q) ∨ Qa]

Read More
The combinators for instantiating theorems are defined in Pure/drule.ML.

Often proofs on the ML-level involve elaborate operations on assumptions and
∧

-
quantified variables. To do such operations using the basic tactics shown so far is
very unwieldy and brittle. Some convenience and safety is provided by SUBPROOF.
This tactic fixes the parameters and binds the various components of a goal state to a
record. To see what happens, assume the function defined in Figure 4.2, which takes
a record and just prints out the content of this record (using the string transformation
functions from in Section 2.2). Consider now the proof:

lemma shows "
∧
x y. A x y =⇒ B y x −→ C (?z y) x"

apply(tactic {* SUBPROOF sp_tac @{context} 1 *})?

The tactic produces the following printout:

params: x, y
schematics: z

assumptions: A x y

conclusion: B y x −→ C (z y) x

premises: A x y

Notice in the actual output the brown colour of the variables x and y. Although they
are parameters in the original goal, they are fixed inside the subproof. By convention
these fixed variables are printed in brown colour. Similarly the schematic variable z.
The assumption, or premise, A x y is bound as cterm to the record-variable asms,
but also as thm to prems.

Notice also that we had to append "?" to the apply-command. The reason is that
SUBPROOF normally expects that the subgoal is solved completely. Since in the
function sp_tac we returned the tactic no_tac, the subproof obviously fails. The
question-mark allows us to recover from this failure in a graceful manner so that the
output messages are not overwritten by an “empty sequence” error message.

If we continue the proof script by applying the impI -rule

apply(rule impI)

apply(tactic {* SUBPROOF sp_tac @{context} 1 *})?

then the tactic prints out:

params: x, y
schematics: z

assumptions: A x y, B y x

conclusion: C (z y) x

premises: A x y, B y x
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fun sp_tac {prems, params, asms, concl, context, schematics} =

let

val str_of_params = str_of_cterms context params

val str_of_asms = str_of_cterms context asms

val str_of_concl = str_of_cterm context concl

val str_of_prems = str_of_thms_no_vars context prems

val str_of_schms = str_of_cterms context (snd schematics)

val _ = (writeln ("params: " ^ str_of_params);

writeln ("schematics: " ^ str_of_schms);

writeln ("assumptions: " ^ str_of_asms);

writeln ("conclusion: " ^ str_of_concl);

writeln ("premises: " ^ str_of_prems))

in

no_tac

end

Figure 4.2: A function that prints out the various parameters provided by the tactic
SUBPROOF. It uses the functions defined in Section 2.2 for extracting strings from
cterms and thms.

Now also B y x is an assumption bound to asms and prems.

One convenience of SUBPROOF is that we can apply the assumptions using the usual
tactics, because the parameter prems contains them as theorems. With this you can
easily implement a tactic that behaves almost like atac :

val atac’ = SUBPROOF (fn {prems, ...} => resolve_tac prems 1)

If you apply atac’ to the next lemma

lemma shows " [[B x y; A x y; C x y ]] =⇒ A x y"

apply(tactic {* atac’ @{context} 1 *})

it will produce

No subgoals!

The restriction in this tactic which is not present in atac is that it cannot instan-
tiate any schematic variables. This might be seen as a defect, but it is actually an
advantage in the situations for which SUBPROOF was designed: the reason is that, as
mentioned before, instantiation of schematic variables can affect several goals and
can render them unprovable. SUBPROOF is meant to avoid this.

Notice that atac’ inside SUBPROOF calls resolve_tac with the subgoal number 1

and also the outer call to SUBPROOF in the apply-step uses 1. This is another ad-
vantage of SUBPROOF : the addressing inside it is completely local to the tactic inside
the subproof. It is therefore possible to also apply atac’ to the second goal by just
writing:

lemma shows "True" and " [[B x y; A x y; C x y ]] =⇒ A x y"

66



apply(tactic {* atac’ @{context} 2 *})

apply(rule TrueI)

done

Read More
The function SUBPROOF is defined in Pure/subgoal.ML and also described in [Impl. Man.,
Sec. 4.3].

Similar but less powerful functions than SUBPROOF are SUBGOAL and CSUBGOAL. They
allow you to inspect a given subgoal (the former presents the subgoal as a term,
while the latter as a cterm). With this you can implement a tactic that applies a rule
according to the topmost logic connective in the subgoal (to illustrate this we only
analyse a few connectives). The code of the tactic is as follows.

fun select_tac (t, i) =1

case t of2

@{term "Trueprop"} $ t’ => select_tac (t’, i)3

| @{term "op =⇒"} $ _ $ t’ => select_tac (t’, i)4

| @{term "op ∧"} $ _ $ _ => rtac @{thm conjI} i5

| @{term "op −→"} $ _ $ _ => rtac @{thm impI} i6

| @{term "Not"} $ _ => rtac @{thm notI} i7

| Const (@{const_name "All"}, _) $ _ => rtac @{thm allI} i8

| _ => all_tac9

The input of the function is a term representing the subgoal and a number speci-
fying the subgoal of interest. In Line 3 you need to descend under the outermost
Trueprop in order to get to the connective you like to analyse. Otherwise goals like
A ∧ B are not properly analysed. Similarly with meta-implications in the next line.
While for the first five patterns we can use the @term -antiquotation to construct the
patterns, the pattern in Line 8 cannot be constructed in this way. The reason is that
an antiquotation would fix the type of the quantified variable. So you really have
to construct the pattern using the basic term-constructors. This is not necessary in
other cases, because their type is always fixed to function types involving only the
type bool. (See Section 2.6 about constructing terms manually.) For the catch-all
pattern, we chose to just return all_tac. Consequently, select_tac never fails.

Let us now see how to apply this tactic. Consider the four goals:

lemma shows "A ∧ B" and "A −→ B −→C" and "∀ x. D x" and "E =⇒ F"

apply(tactic {* SUBGOAL select_tac 4 *})

apply(tactic {* SUBGOAL select_tac 3 *})

apply(tactic {* SUBGOAL select_tac 2 *})

apply(tactic {* SUBGOAL select_tac 1 *})

goal (5 subgoals):

1. A

2. B

3. A =⇒ B −→ C

4.
∧
x. D x

5. E =⇒ F

where in all but the last the tactic applied an introduction rule. Note that we applied
the tactic to the goals in “reverse” order. This is a trick in order to be independent
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from the subgoals that are produced by the rule. If we had applied it in the other
order

lemma shows "A ∧ B" and "A −→ B −→C" and "∀ x. D x" and "E =⇒ F"

apply(tactic {* SUBGOAL select_tac 1 *})

apply(tactic {* SUBGOAL select_tac 3 *})

apply(tactic {* SUBGOAL select_tac 4 *})

apply(tactic {* SUBGOAL select_tac 5 *})

then we have to be careful to not apply the tactic to the two subgoals produced by
the first goal. To do this can result in quite messy code. In contrast, the “reverse
application” is easy to implement.

Of course, this example is contrived: there are much simpler methods available in
Isabelle for implementing a tactic analysing a goal according to its topmost connec-
tive. These simpler methods use tactic combinators, which we will explain in the
next section.

4.3 Tactic Combinators

The purpose of tactic combinators is to build compound tactics out of smaller tactics.
In the previous section we already used THEN, which just strings together two tactics
in a sequence. For example:

lemma shows "(Foo ∧ Bar) ∧ False"

apply(tactic {* rtac @{thm conjI} 1 THEN rtac @{thm conjI} 1 *})

goal (3 subgoals):

1. Foo

2. Bar

3. False

If you want to avoid the hard-coded subgoal addressing, then, as seen earlier, you
can use the “primed” version of THEN. For example:

lemma shows "(Foo ∧ Bar) ∧ False"

apply(tactic {* (rtac @{thm conjI} THEN’ rtac @{thm conjI}) 1 *})

goal (3 subgoals):

1. Foo

2. Bar

3. False

Here you have to specify the subgoal of interest only once and it is consistently ap-
plied to the component tactics. For most tactic combinators such a “primed” version
exists and in what follows we will usually prefer it over the “unprimed” one.

If there is a list of tactics that should all be tried out in sequence, you can use the
combinator EVERY’. For example the function foo_tac’ from page 59 can also be
written as:

val foo_tac’’ = EVERY’ [etac @{thm disjE}, rtac @{thm disjI2},

atac, rtac @{thm disjI1}, atac]
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There is even another way of implementing this tactic: in automatic proof procedures
(in contrast to tactics that might be called by the user) there are often long lists of
tactics that are applied to the first subgoal. Instead of writing the code above and
then calling foo_tac’’ 1, you can also just write

val foo_tac1 = EVERY1 [etac @{thm disjE}, rtac @{thm disjI2},

atac, rtac @{thm disjI1}, atac]

and call foo_tac1.

With the combinators THEN’, EVERY’ and EVERY1 it must be guaranteed that all
component tactics successfully apply; otherwise the whole tactic will fail. If you
rather want to try out a number of tactics, then you can use the combinator ORELSE’
for two tactics, and FIRST’ (or FIRST1) for a list of tactics. For example, the tactic

val orelse_xmp_tac = rtac @{thm disjI1} ORELSE’ rtac @{thm conjI}

will first try out whether rule disjI applies and in case of failure will try conjI. To
see this consider the proof

lemma shows "True ∧ False" and "Foo ∨ Bar"

apply(tactic {* orelse_xmp_tac 2 *})

apply(tactic {* orelse_xmp_tac 1 *})

which results in the goal state
goal (3 subgoals):

1. True

2. False

3. Foo

Using FIRST’ we can simplify our select_tac from Page 67 as follows:

val select_tac’ = FIRST’ [rtac @{thm conjI}, rtac @{thm impI},

rtac @{thm notI}, rtac @{thm allI}, K all_tac]

Since we like to mimic the behaviour of select_tac as closely as possible, we must
include all_tac at the end of the list, otherwise the tactic will fail if no rule applies
(we also have to wrap all_tac using the K -combinator, because it does not take a
subgoal number as argument). You can test the tactic on the same goals:

lemma shows "A ∧ B" and "A −→ B −→C" and "∀ x. D x" and "E =⇒ F"

apply(tactic {* select_tac’ 4 *})

apply(tactic {* select_tac’ 3 *})

apply(tactic {* select_tac’ 2 *})

apply(tactic {* select_tac’ 1 *})

goal (5 subgoals):

1. A

2. B

3. A =⇒ B −→ C

4.
∧
x. D x

5. E =⇒ F
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Since such repeated applications of a tactic to the reverse order of all subgoals is
quite common, there is the tactic combinator ALLGOALS that simplifies this. Using
this combinator you can simply write:

lemma shows "A ∧ B" and "A −→ B −→C" and "∀ x. D x" and "E =⇒ F"

apply(tactic {* ALLGOALS select_tac’ *})

goal (5 subgoals):

1. A

2. B

3. A =⇒ B −→ C

4.
∧
x. D x

5. E =⇒ F

Remember that we chose to implement select_tac’ so that it always succeeds by
adding all_tac at the end of the tactic list. The same can be achieved with the
tactic combinator TRY. For example:

val select_tac’’ = TRY o FIRST’ [rtac @{thm conjI}, rtac @{thm impI},

rtac @{thm notI}, rtac @{thm allI}]

This tactic behaves in the same way as select_tac’ : it tries out one of the given
tactics and if none applies leaves the goal state unchanged. This, however, can be
potentially very confusing when visible to the user, for example, in cases where the
goal is the form

lemma shows "E =⇒ F"

apply(tactic {* select_tac’ 1 *})

goal (1 subgoal):

1. E =⇒ F

In this case no rule applies, but because of TRY or the inclusion of all_tac the
tactics do not fail. The problem with this is that for the user there is little chance to
see whether or not progress in the proof has been made. By convention therefore,
tactics visible to the user should either change something or fail.

To comply with this convention, we could simply delete the K all_tac from the end
of the theorem list. As a result select_tac’ would only succeed on goals where it
can make progress. But for the sake of argument, let us suppose that this deletion is
not an option. In such cases, you can use the combinator CHANGED to make sure the
subgoal has been changed by the tactic. Because now

lemma shows "E =⇒ F"

apply(tactic {* CHANGED (select_tac’ 1) *})

gives the error message:

*** empty result sequence -- proof command failed

*** At command "apply".

We can further extend select_tac’ so that it not just applies to the topmost connec-
tive, but also to the ones immediately “underneath”, i.e. analyse the goal completely.
For this you can use the tactic combinator REPEAT. As an example suppose the fol-
lowing tactic
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val repeat_xmp_tac = REPEAT (CHANGED (select_tac’ 1))

which applied to the proof

lemma shows "((¬A) ∧ (∀ x. B x)) ∧ (C −→ D)"

apply(tactic {* repeat_xmp_tac *})

produces
goal (3 subgoals):

1. A =⇒ False

2. ∀ x. B x

3. C −→ D

Here it is crucial that select_tac’ is prefixed with CHANGED, because otherwise
REPEAT runs into an infinite loop (it applies the tactic as long as it succeeds). The
function REPEAT1 is similar, but runs the tactic at least once (failing if this is not
possible).

If you are after the “primed” version of repeat_xmp_tac, then you can implement it
as

val repeat_xmp_tac’ = REPEAT o CHANGED o select_tac’

since there are no “primed” versions of REPEAT and CHANGED.

If you look closely at the goal state above, then you see the tactics repeat_xmp_tac
and repeat_xmp_tac’ are not yet quite what we are after: the problem is that goals
2 and 3 are not analysed. This is because the tactic is applied repeatedly only to the
first subgoal. To analyse also all resulting subgoals, you can use the tactic combinator
REPEAT_ALL_NEW. Suppose the tactic

val repeat_all_new_xmp_tac = REPEAT_ALL_NEW (CHANGED o select_tac’)

you see that the following goal

lemma shows "((¬A) ∧ (∀ x. B x)) ∧ (C −→ D)"

apply(tactic {* repeat_all_new_xmp_tac 1 *})

goal (3 subgoals):

1. A =⇒ False

2.
∧
x. B x

3. C =⇒ D

is completely analysed according to the theorems we chose to include in select_tac’.

Recall that tactics produce a lazy sequence of successor goal states. These states can
be explored using the command back. For example

lemma " [[P1 ∨ Q1; P2 ∨ Q2 ]] =⇒ R"

apply(tactic {* etac @{thm disjE} 1 *})

applies the rule to the first assumption yielding the goal state:
goal (2 subgoals):

1. [[P2 ∨ Q2; P1 ]] =⇒ R

2. [[P2 ∨ Q2; Q1 ]] =⇒ R
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After typing

back

the rule now applies to the second assumption.
goal (2 subgoals):

1. [[P1 ∨ Q1; P2 ]] =⇒ R

2. [[P1 ∨ Q1; Q2 ]] =⇒ R

Sometimes this leads to confusing behaviour of tactics and also has the potential to
explode the search space for tactics. These problems can be avoided by prefixing the
tactic with the tactic combinator DETERM.

lemma " [[P1 ∨ Q1; P2 ∨ Q2 ]] =⇒ R"

apply(tactic {* DETERM (etac @{thm disjE} 1) *})

goal (2 subgoals):

1. [[P2 ∨ Q2; P1 ]] =⇒ R

2. [[P2 ∨ Q2; Q1 ]] =⇒ R

This combinator will prune the search space to just the first successful application.
Attempting to apply back in this goal states gives the error message:

*** back: no alternatives

*** At command "back".

Recall that we implemented select_tac’ on Page 69 specifically so that it always
succeeds. We achieved this by adding at the end the tactic all_tac. We can achieve
this also by using the combinator TRY. Suppose, for example the tactic

val select_tac’’ = FIRST’ [rtac @{thm conjI}, rtac @{thm impI},

rtac @{thm notI}, rtac @{thm allI}]

which will fail if none of the rules applies. However, if you prefix it as follows

val select_tac’’’ = TRY o select_tac’’

then the tactic select_tac’’ will be tried out and any failure is harnessed. We again
have to use the construction with TRY o ... since there is no primed version of TRY.
The tactic combinator TRYALL will try out a tactic on all subgoals. For example the
tactic

val triv_tac = TRYALL (rtac @{thm TrueI} ORELSE’ etac @{thm FalseE})

will solve all trivial subgoals involving True or False.

(FIXME: say something about COND and COND’)

Read More
Most tactic combinators described in this section are defined in Pure/tctical.ML. Some
combinators for the purpose of proof search are implemented in Pure/search.ML.

72

http://isabelle.in.tum.de/repos/isabelle/raw-file/tip/src/Pure/tctical.ML
http://isabelle.in.tum.de/repos/isabelle/raw-file/tip/src/Pure/search.ML


4.4 Simplifier Tactics

A lot of convenience in the reasoning with Isabelle derives from its powerful sim-
plifier. The power of the simplifier is a strength and a weakness at the same time,
because you can easily make the simplifier run into a loop and in general its be-
haviour can be difficult to predict. There is also a multitude of options that you can
configure to control the behaviour of the simplifier. We describe some of them in this
and the next section.

There are the following five main tactics behind the simplifier (in parentheses is their
user-level counterpart):

simp_tac (simp (no_asm))

asm_simp_tac (simp (no_asm_simp))

full_simp_tac (simp (no_asm_use))

asm_lr_simp_tac (simp (asm_lr))

asm_full_simp_tac (simp)

All of the tactics take a simpset and an integer as argument (the latter as usual to
specify the goal to be analysed). So the proof

lemma "Suc (1 + 2) < 3 + 2"

apply(simp)
done

corresponds on the ML-level to the tactic

lemma "Suc (1 + 2) < 3 + 2"

apply(tactic {* asm_full_simp_tac @{simpset} 1 *})

done

If the simplifier cannot make any progress, then it leaves the goal unchanged, i.e.,
does not raise any error message. That means if you use it to unfold a definition for
a constant and this constant is not present in the goal state, you can still safely apply
the simplifier.

When using the simplifier, the crucial information you have to provide is the simpset.
If this information is not handled with care, then the simplifier can easily run into
a loop. Therefore a good rule of thumb is to use simpsets that are as minimal as
possible. It might be surprising that a simpset is more complex than just a simple
collection of theorems used as simplification rules. One reason for the complexity is
that the simplifier must be able to rewrite inside terms and should also be able to
rewrite according to rules that have preconditions.

The rewriting inside terms requires congruence rules, which are meta-equalities typ-
ical of the form

t1 ≡ s1 . . . tn ≡ sn

constr t1. . . tn ≡ constr s1. . . sn

with constr being a constant, like If or Let. Every simpset contains only one con-
gruence rule for each term-constructor, which however can be overwritten. The user
can declare lemmas to be congruence rules using the attribute [cong]. In HOL, the
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user usually states these lemmas as equations, which are then internally transformed
into meta-equations.

The rewriting with rules involving preconditions requires what is in Isabelle called a
subgoaler, a solver and a looper. These can be arbitrary tactics that can be installed
in a simpset and which are called at various stages during simplification. However,
simpsets also include simprocs, which can produce rewrite rules on demand (see
next section). Another component are split-rules, which can simplify for example the
“then” and “else” branches of if-statements under the corresponding preconditions.

Read More
For more information about the simplifier see Pure/meta_simplifier.ML and
Pure/simplifier.ML. The simplifier for HOL is set up in HOL/Tools/simpdata.ML. The
generic splitter is implemented in Provers/splitter.ML.

Read More
FIXME: Find the right place: Discrimination nets are implemented in Pure/net.ML.

The most common combinators to modify simpsets are:

addsimps delsimps

addcongs delcongs

addsimprocs delsimprocs

(FIXME: What about splitters? addsplits, delsplits)

To see how they work, consider the function in Figure 4.3, which prints out some
parts of a simpset. If you use it to print out the components of the empty simpset,
i.e., empty_ss

print_ss @{context} empty_ss

> Simplification rules:

> Congruences rules:

> Simproc patterns:

you can see it contains nothing. This simpset is usually not useful, except as a
building block to build bigger simpsets. For example you can add to empty_ss the
simplification rule Diff_Int as follows:

val ss1 = empty_ss addsimps [@{thm Diff_Int} RS @{thm eq_reflection}]

Printing then out the components of the simpset gives:

print_ss @{context} ss1

> Simplification rules:

> ??.unknown: A - B ∩ C ≡ A - B ∪ (A - C)

> Congruences rules:

> Simproc patterns:
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fun print_ss ctxt ss =

let

val {simps, congs, procs, ...} = Simplifier.dest_ss ss

fun name_thm (nm, thm) =

" " ^ nm ^ ": " ^ (str_of_thm_no_vars ctxt thm)

fun name_ctrm (nm, ctrm) =

" " ^ nm ^ ": " ^ (str_of_cterms ctxt ctrm)

val s = ["Simplification rules:"] @ map name_thm simps @

["Congruences rules:"] @ map name_thm congs @

["Simproc patterns:"] @ map name_ctrm procs

in

s |> cat_lines

|> writeln

end

Figure 4.3: The function Simplifier.dest_ss returns a record containing all print-
able information stored in a simpset. We are here only interested in the simplification
rules, congruence rules and simprocs.

(FIXME: Why does it print out ??.unknown)

Adding also the congruence rule UN_cong

val ss2 = ss1 addcongs [@{thm UN_cong} RS @{thm eq_reflection}]

gives

print_ss @{context} ss2

> Simplification rules:

> ??.unknown: A - B ∩ C ≡ A - B ∪ (A - C)

> Congruences rules:

> UNION: [[A = B;
∧
x. x ∈ B =⇒ C x = D x ]] =⇒

⋃
x∈A. C x ≡

⋃
x∈B. D x

> Simproc patterns:

Notice that we had to add these lemmas as meta-equations. The empty_ss expects
this form of the simplification and congruence rules. However, even when adding
these lemmas to empty_ss we do not end up with anything useful yet.

In the context of HOL, the first really useful simpset is HOL_basic_ss. While printing
out the components of this simpset

print_ss @{context} HOL_basic_ss

> Simplification rules:

> Congruences rules:

> Simproc patterns:
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also produces “nothing”, the printout is misleading. In fact the HOL_basic_ss is
setup so that it can solve goals of the form

True, t = t, t ≡ t and False =⇒ P;

and also resolve with assumptions. For example:

lemma
"True" and "t = t" and "t ≡ t" and "False =⇒ Foo" and " [[A; B; C ]] =⇒ A"

apply(tactic {* ALLGOALS (simp_tac HOL_basic_ss) *})

done

This behaviour is not because of simplification rules, but how the subgoaler, solver
and looper are set up in HOL_basic_ss.

The simpset HOL_ss is an extension of HOL_basic_ss containing already many use-
ful simplification and congruence rules for the logical connectives in HOL.

print_ss @{context} HOL_ss

> Simplification rules:

> Pure.triv_forall_equality: (
∧
x. PROP V) ≡ PROP V

> HOL.the_eq_trivial: THE x. x = y ≡ y

> HOL.the_sym_eq_trivial: THE ya. y = ya ≡ y

> . . .
> Congruences rules:

> HOL.simp_implies: . . .
> =⇒ (PROP P =simp=> PROP Q) ≡ (PROP P’ =simp=> PROP Q’)

> op -->: [[P ≡ P’; P’ =⇒ Q ≡ Q’ ]] =⇒ P −→ Q ≡ P’ −→ Q’

> Simproc patterns:

> . . .

The simplifier is often used to unfold definitions in a proof. For this the simplifier
implements the tactic rewrite_goals_tac.3 Suppose for example the definition

definition "MyTrue ≡ True"

then in the following proof we can unfold this constant

lemma shows "MyTrue =⇒ True ∧ True"

apply(rule conjI)

apply(tactic {* rewrite_goals_tac @{thms MyTrue_def} *})

producing the goal state
goal (2 subgoals):

1. True =⇒ True

2. True =⇒ True

As you can see, the tactic unfolds the definitions in all subgoals.

The simplifier is often used in order to bring terms into a normal form. Unfortunately,
often the situation arises that the corresponding simplification rules will cause the
simplifier to run into an infinite loop. Consider for example the simple theory about

3FIXME: see LocalDefs infrastructure.
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types prm = "(nat × nat) list"

consts perm :: "prm ⇒ ’a ⇒ ’a" ("_ · _" [80,80] 80)

overloading
perm_nat ≡ "perm :: prm ⇒ nat ⇒ nat"

perm_prod ≡ "perm :: prm ⇒ (’a×’b) ⇒ (’a×’b)"
perm_list ≡ "perm :: prm ⇒ ’a list ⇒ ’a list"

begin

fun swap::"nat ⇒ nat ⇒ nat ⇒ nat"

where
"swap a b c = (if c=a then b else (if c=b then a else c))"

primrec perm_nat

where
"perm_nat [] c = c"

| "perm_nat (ab#pi) c = swap (fst ab) (snd ab) (perm_nat pi c)"

fun perm_prod

where
"perm_prod pi (x, y) = (pi ·x, pi ·y)"

primrec perm_list

where
"perm_list pi [] = []"

| "perm_list pi (x#xs) = (pi ·x)#(perm_list pi xs)"

end

lemma perm_append[simp]:

fixes c::"nat" and pi1 pi2::"prm"

shows "((pi1@pi2) ·c) = (pi1·(pi2·c))"
by (induct pi1) (auto)

lemma perm_bij[simp]:

fixes c d::"nat" and pi::"prm"

shows "(pi ·c = pi ·d) = (c = d)"

by (induct pi) (auto)

lemma perm_rev[simp]:

fixes c::"nat" and pi::"prm"

shows "pi ·((rev pi) ·c) = c"

by (induct pi arbitrary: c) (auto)

lemma perm_compose:

fixes c::"nat" and pi1 pi2::"prm"

shows "pi1·(pi2·c) = (pi1·pi2) ·(pi1·c)"
by (induct pi2) (auto)

Figure 4.4: A simple theory about permutations over nats. The point is that the
lemma perm_compose cannot be directly added to the simplifier, as it would cause
the simplifier to loop. It can still be used as a simplification rule if the permutation
in the right-hand side is sufficiently protected.
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permutations over natural numbers shown in Figure 4.4. The purpose of the lemmas
is to push permutations as far inside as possible, where they might disappear by
Lemma perm_rev. However, to fully normalise all instances, it would be desirable to
add also the lemma perm_compose to the simplifier for pushing permutations over
other permutations. Unfortunately, the right-hand side of this lemma is again an
instance of the left-hand side and so causes an infinite loop. There seems to be no
easy way to reformulate this rule and so one ends up with clunky proofs like:

lemma
fixes c d::"nat" and pi1 pi2::"prm"

shows "pi1·(c, pi2·((rev pi1) ·d)) = (pi1·c, (pi1·pi2) ·d)"
apply(simp)
apply(rule trans)

apply(rule perm_compose)

apply(simp)
done

It is however possible to create a single simplifier tactic that solves such proofs. The
trick is to introduce an auxiliary constant for permutations and split the simplifica-
tion into two phases (below actually three). Let assume the auxiliary constant is

definition
perm_aux :: "prm ⇒ ’a ⇒ ’a" ("_ ·aux _" [80,80] 80)

where
"pi ·aux c ≡ pi · c"

Now the two lemmas

lemma perm_aux_expand:

fixes c::"nat" and pi1 pi2::"prm"

shows "pi1·(pi2·c) = pi1 ·aux (pi2·c)"
unfolding perm_aux_def by (rule refl)

lemma perm_compose_aux:

fixes c::"nat" and pi1 pi2::"prm"

shows "pi1·(pi2·aux c) = (pi1·pi2) ·aux (pi1·c)"
unfolding perm_aux_def by (rule perm_compose)

are simple consequence of the definition and perm_compose. More importantly, the
lemma perm_compose_aux can be safely added to the simplifier, because now the
right-hand side is not anymore an instance of the left-hand side. In a sense it freezes
all redexes of permutation compositions after one step. In this way, we can split
simplification of permutations into three phases without the user noticing anything
about the auxiliary constant. We first freeze any instance of permutation compo-
sitions in the term using lemma "perm_aux_expand" (Line 9); then simplify all
other permutations including pushing permutations over other permutations by rule
perm_compose_aux (Line 10); and finally “unfreeze” all instances of permutation
compositions by unfolding the definition of the auxiliary constant.

val perm_simp_tac =1

let2

val thms1 = [@{thm perm_aux_expand}]3

val thms2 = [@{thm perm_append}, @{thm perm_bij}, @{thm perm_rev},4
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@{thm perm_compose_aux}] @ @{thms perm_prod.simps} @5

@{thms perm_list.simps} @ @{thms perm_nat.simps}6

val thms3 = [@{thm perm_aux_def}]7

in8

simp_tac (HOL_basic_ss addsimps thms1)9

THEN’ simp_tac (HOL_basic_ss addsimps thms2)10

THEN’ simp_tac (HOL_basic_ss addsimps thms3)11

end12

For all three phases we have to build simpsets adding specific lemmas. As is sufficient
for our purposes here, we can add these lemmas to HOL_basic_ss in order to obtain
the desired results. Now we can solve the following lemma

lemma
fixes c d::"nat" and pi1 pi2::"prm"

shows "pi1·(c, pi2·((rev pi1) ·d)) = (pi1·c, (pi1·pi2) ·d)"
apply(tactic {* perm_simp_tac 1 *})

done

in one step. This tactic can deal with most instances of normalising permutations. In
order to solve all cases we have to deal with corner-cases such as the lemma being an
exact instance of the permutation composition lemma. This can often be done easier
by implementing a simproc or a conversion. Both will be explained in the next two
chapters.

(FIXME: Is it interesting to say something about op =simp=>?)

(FIXME: What are the second components of the congruence rules—something to
do with weak congruence constants?)

(FIXME: Anything interesting to say about Simplifier.clear_ss?)

(FIXME: ObjectLogic.full_atomize_tac, ObjectLogic.rulify_tac)

(FIXME: what are mksimps_pairs ; used in Nominal.thy)

4.5 Simprocs

In Isabelle you can also implement custom simplification procedures, called simprocs.
Simprocs can be triggered by the simplifier on a specified term-pattern and rewrite
a term according to a theorem. They are useful in cases where a rewriting rule must
be produced on “demand” or when rewriting by simplification is too unpredictable
and potentially loops.

To see how simprocs work, let us first write a simproc that just prints out the pattern
which triggers it and otherwise does nothing. For this you can use the function:

fun fail_simproc simpset redex =1

let2

val ctxt = Simplifier.the_context simpset3

val _ = writeln ("The redex: " ^ (str_of_cterm ctxt redex))4

in5

NONE6

end7
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This function takes a simpset and a redex (a cterm) as arguments. In Lines 3 and 4,
we first extract the context from the given simpset and then print out a message
containing the redex. The function returns NONE (standing for an optional thm)
since at the moment we are not interested in actually rewriting anything. We want
that the simproc is triggered by the pattern Suc n. This can be done by adding the
simproc to the current simpset as follows

simproc setup fail ("Suc n") = {* K fail_simproc *}

where the second argument specifies the pattern and the right-hand side contains the
code of the simproc (we have to use K since we are ignoring an argument about mor-
phisms. After this, the simplifier is aware of the simproc and you can test whether it
fires on the lemma:

lemma shows "Suc 0 = 1"

apply(simp)

> The redex: Suc 0

> The redex: Suc 0

This will print out the message twice: once for the left-hand side and once for the
right-hand side. The reason is that during simplification the simplifier will at some
point reduce the term 1 to Suc 0, and then the simproc “fires” also on that term.

We can add or delete the simproc from the current simpset by the usual declare-
statement. For example the simproc will be deleted with the declaration

declare [[simproc del: fail]]

If you want to see what happens with just this simproc, without any interference
from other rewrite rules, you can call fail as follows:

lemma shows "Suc 0 = 1"

apply(tactic {* simp_tac (HOL_basic_ss addsimprocs [@{simproc fail}]) 1*})

Now the message shows up only once since the term 1 is left unchanged.

Setting up a simproc using the command simproc setup will always add automat-
ically the simproc to the current simpset. If you do not want this, then you have
to use a slightly different method for setting up the simproc. First the function
fail_simproc needs to be modified to

fun fail_simproc’ simpset redex =

let

val ctxt = Simplifier.the_context simpset

val _ = writeln ("The redex: " ^ (Syntax.string_of_term ctxt redex))

in

NONE

end
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Here the redex is given as a term, instead of a cterm (therefore we printing it out us-
ing the function string_of_term). We can turn this function into a proper simproc
using the function Simplifier.simproc_i :

val fail’ =

let

val thy = @{theory}

val pat = [@{term "Suc n"}]

in

Simplifier.simproc_i thy "fail_simproc’" pat (K fail_simproc’)

end

Here the pattern is given as term (instead of cterm). The function also takes a list of
patterns that can trigger the simproc. Now the simproc is set up and can be explicitly
added using addsimprocs to a simpset whenever needed.

Simprocs are applied from inside to outside and from left to right. You can see this
in the proof

lemma shows "Suc (Suc 0) = (Suc 1)"

apply(tactic {* simp_tac (HOL_basic_ss addsimprocs [fail’]) 1*})

The simproc fail’ prints out the sequence

> Suc 0

> Suc (Suc 0)

> Suc 1

To see how a simproc applies a theorem, let us implement a simproc that rewrites
terms according to the equation:

lemma plus_one:

shows "Suc n ≡ n + 1" by simp

Simprocs expect that the given equation is a meta-equation, however the equation
can contain preconditions (the simproc then will only fire if the preconditions can be
solved). To see that one has relatively precise control over the rewriting with sim-
procs, let us further assume we want that the simproc only rewrites terms “greater”
than Suc 0. For this we can write

fun plus_one_simproc ss redex =

case redex of

@{term "Suc 0"} => NONE

| _ => SOME @{thm plus_one}

and set up the simproc as follows.

val plus_one =

let

val thy = @{theory}

val pat = [@{term "Suc n"}]
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in

Simplifier.simproc_i thy "sproc +1" pat (K plus_one_simproc)

end

Now the simproc is set up so that it is triggered by terms of the form Suc n, but
inside the simproc we only produce a theorem if the term is not Suc 0. The result
you can see in the following proof

lemma shows "P (Suc (Suc (Suc 0))) (Suc 0)"

apply(tactic {* simp_tac (HOL_basic_ss addsimprocs [plus_one]) 1*})

where the simproc produces the goal state
goal (1 subgoal):

1. P (Suc 0 + 1 + 1) (Suc 0)

As usual with rewriting you have to worry about looping: you already have a loop
with plus_one, if you apply it with the default simpset (because the default simpset
contains a rule which just does the opposite of plus_one, namely rewriting "+ 1" to
a successor). So you have to be careful in choosing the right simpset to which you
add a simproc.

Next let us implement a simproc that replaces terms of the form Suc n with the
number n increased by one. First we implement a function that takes a term and
produces the corresponding integer value.

fun dest_suc_trm ((Const (@{const_name "Suc"}, _)) $ t) = 1 + dest_suc_trm t

| dest_suc_trm t = snd (HOLogic.dest_number t)

It uses the library function dest_number that transforms (Isabelle) terms, like 0, 1,
2 and so on, into integer values. This function raises the exception TERM, if the term
is not a number. The next function expects a pair consisting of a term t (containing
Sucs) and the corresponding integer value n.

fun get_thm ctxt (t, n) =1

let2

val num = HOLogic.mk_number @{typ "nat"} n3

val goal = Logic.mk_equals (t, num)4

in5

Goal.prove ctxt [] [] goal (K (Arith_Data.arith_tac ctxt 1))6

end7

From the integer value it generates the corresponding number term, called num (Line
3), and then generates the meta-equation t ≡ num (Line 4), which it proves by the
arithmetic tactic in Line 6.

For our purpose at the moment, proving the meta-equation using arith_tac is fine,
but there is also an alternative employing the simplifier with a special simpset. For
the kind of lemmas we want to prove here, the simpset num_ss should suffice.
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fun get_thm_alt ctxt (t, n) =

let

val num = HOLogic.mk_number @{typ "nat"} n

val goal = Logic.mk_equals (t, num)

val num_ss = HOL_ss addsimps [@{thm One_nat_def}, @{thm Let_def}] @

@{thms nat_number} @ @{thms neg_simps} @ @{thms plus_nat.simps}

in

Goal.prove ctxt [] [] goal (K (simp_tac num_ss 1))

end

The advantage of get_thm_alt is that it leaves very little room for something to go
wrong; in contrast it is much more difficult to predict what happens with arith_tac,
especially in more complicated circumstances. The disadvantage of get_thm_alt is
to find a simpset that is sufficiently powerful to solve every instance of the lemmas
we like to prove. This requires careful tuning, but is often necessary in “production
code”.4

Anyway, either version can be used in the function that produces the actual theorem
for the simproc.

fun nat_number_simproc ss t =

let

val ctxt = Simplifier.the_context ss

in

SOME (get_thm ctxt (t, dest_suc_trm t))

handle TERM _ => NONE

end

This function uses the fact that dest_suc_trm might raise an exception TERM. In this
case there is nothing that can be rewritten and therefore no theorem is produced
(i.e. the function returns NONE). To try out the simproc on an example, you can set
it up as follows:

val nat_number =

let

val thy = @{theory}

val pat = [@{term "Suc n"}]

in

Simplifier.simproc_i thy "nat_number" pat (K nat_number_simproc)

end

Now in the lemma

lemma "P (Suc (Suc 2)) (Suc 99) (0::nat) (Suc 4 + Suc 0) (Suc (0 + 0))"

apply(tactic {* simp_tac (HOL_ss addsimprocs [nat_number]) 1*})

you obtain the more legible goal state
goal (1 subgoal):

1. P 4 100 0 (5 + 1) (Suc (0 + 0))

4It would be of great help if there is another way than tracing the simplifier to obtain the lemmas
that are successfully applied during simplification. Alas, there is none.

83



where the simproc rewrites all Sucs except in the last argument. There it cannot
rewrite anything, because it does not know how to transform the term Suc (0 + 0)

into a number. To solve this problem have a look at the next exercise.

Exercise 4.5.1. Write a simproc that replaces terms of the form t1 + t2 by their result.
You can assume the terms are “proper” numbers, that is of the form 0, 1, 2 and so on.

(FIXME: We did not do anything with morphisms. Anything interesting one can say
about them?)

4.6 Conversions

Conversions are a thin layer on top of Isabelle’s inference kernel, and can be viewed
as a controllable, bare-bone version of Isabelle’s simplifier. One difference between
conversions and the simplifier is that the former act on cterms while the latter acts
on thms. However, we will also show in this section how conversions can be applied
to theorems via tactics. The type for conversions is

type conv = cterm -> thm

whereby the produced theorem is always a meta-equality. A simple conversion is the
function Conv.all_conv, which maps a cterm to an instance of the (meta)reflexivity
theorem. For example:

Conv.all_conv @{cterm "Foo ∨ Bar"}

> Foo ∨ Bar ≡ Foo ∨ Bar

Another simple conversion is Conv.no_conv which always raises the exception CTERM.

Conv.no_conv @{cterm True}

> *** Exception- CTERM ("no conversion", []) raised

A more interesting conversion is the function Thm.beta_conversion : it produces a
meta-equation between a term and its beta-normal form. For example

let

val add = @{cterm "λx y. x + (y::nat)"}

val two = @{cterm "2::nat"}

val ten = @{cterm "10::nat"}

in

Thm.beta_conversion true (Thm.capply (Thm.capply add two) ten)

end

> ((λx y. x + y) 2) 10 ≡ 2 + 10
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Note that the actual response in this example is 2 + 10 ≡ 2 + 10, since the pretty-
printer for cterms eta-normalises terms. But how we constructed the term (using the
function Thm.capply, which is the application $ for cterms) ensures that the left-
hand side must contain beta-redexes. Indeed if we obtain the “raw” representation
of the produced theorem, we can see the difference:

let

val add = @{cterm "λx y. x + (y::nat)"}

val two = @{cterm "2::nat"}

val ten = @{cterm "10::nat"}

val thm = Thm.beta_conversion true (Thm.capply (Thm.capply add two) ten)

in

Thm.prop_of thm

end

> Const ("==", . . . ) $

> (Abs ("x", . . . ,Abs ("y", . . . , . . . )) $ . . . $ . . . ) $

> (Const ("HOL.plus_class.plus", . . . ) $ . . . $ . . . )

The argument true in Thm.beta_conversion indicates that the right-hand side
should be fully beta-normalised. If instead false is given, then only a single beta-
reduction is performed on the outer-most level. For example

let

val add = @{cterm "λx y. x + (y::nat)"}

val two = @{cterm "2::nat"}

in

Thm.beta_conversion false (Thm.capply add two)

end

> ((λx y. x + y) 2) ≡ λy. 2 + y

Again, we actually see as output only the fully eta-normalised term.

The main point of conversions is that they can be used for rewriting cterms. To do
this you can use the function Conv.rewr_conv, which expects a meta-equation as an
argument. Suppose we want to rewrite a cterm according to the meta-equation:

lemma true_conj1: "True ∧ P ≡ P" by simp

You can see how this function works in the example rewriting True ∧ (Foo −→
Bar) to Foo −→ Bar.

let

val ctrm = @{cterm "True ∧ (Foo −→ Bar)"}

in

Conv.rewr_conv @{thm true_conj1} ctrm

end

> True ∧ (Foo −→ Bar) ≡ Foo −→ Bar

Note, however, that the function Conv.rewr_conv only rewrites the outer-most level
of the cterm. If the given cterm does not match exactly the left-hand side of the
theorem, then Conv.rewr_conv fails by raising the exception CTERM.
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This very primitive way of rewriting can be made more powerful by combining sev-
eral conversions into one. For this you can use conversion combinators. The simplest
conversion combinator is then_conv, which applies one conversion after another.
For example

let

val conv1 = Thm.beta_conversion false

val conv2 = Conv.rewr_conv @{thm true_conj1}

val ctrm = Thm.capply @{cterm "λx. x ∧ False"} @{cterm "True"}

in

(conv1 then_conv conv2) ctrm

end

> (λx. x ∧ False) True ≡ False

where we first beta-reduce the term and then rewrite according to true_conj1. (Re-
call the problem with the pretty-printer normalising all terms.)

The conversion combinator else_conv tries out the first one, and if it does not apply,
tries the second. For example

let

val conv = Conv.rewr_conv @{thm true_conj1} else_conv Conv.all_conv

val ctrm1 = @{cterm "True ∧ Q"}

val ctrm2 = @{cterm "P ∨ (True ∧ Q)"}

in

(conv ctrm1, conv ctrm2)

end

> (True ∧ Q ≡ Q, P ∨ True ∧ Q ≡ P ∨ True ∧ Q)

Here the conversion of true_conj1 only applies in the first case, but fails in the
second. The whole conversion does not fail, however, because the combinator
Conv.else_conv will then try out Conv.all_conv, which always succeeds.

The conversion combinator Conv.try_conv constructs a conversion which is tried
out on a term, but in case of failure just does nothing. For example

Conv.try_conv (Conv.rewr_conv @{thm true_conj1}) @{cterm "True ∨ P"}

> True ∨ P ≡ True ∨ P

Apart from the function beta_conversion, which is able to fully beta-normalise
a term, the conversions so far are restricted in that they only apply to the outer-
most level of a cterm. In what follows we will lift this restriction. The combinator
Conv.arg_conv will apply the conversion to the first argument of an application,
that is the term must be of the form t1 $ t2 and the conversion is applied to t2.
For example

let

val conv = Conv.rewr_conv @{thm true_conj1}
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val ctrm = @{cterm "P ∨ (True ∧ Q)"}

in

Conv.arg_conv conv ctrm

end

> P ∨ (True ∧ Q) ≡ P ∨ Q

The reason for this behaviour is that (op ∨) expects two arguments. Therefore the
term must be of the form (Const . . . $ t1) $ t2. The conversion is then applied to
t2 which in the example above stands for True ∧ Q. The function Conv.fun_conv

applies the conversion to the first argument of an application.

The function Conv.abs_conv applies a conversion under an abstraction. For exam-
ple:

let

val conv = Conv.rewr_conv @{thm true_conj1}

val ctrm = @{cterm "λP. True ∧ P ∧ Foo"}

in

Conv.abs_conv (K conv) @{context} ctrm

end

> λP. True ∧ P ∧ Foo ≡ λP. P ∧ Foo

Note that this conversion needs a context as an argument. The conversion that
goes under an application is Conv.combination_conv. It expects two conversions as
arguments, each of which is applied to the corresponding “branch” of the application.

We can now apply all these functions in a conversion that recursively descends a
term and applies a “true_conj1”-conversion in all possible positions.

fun all_true1_conv ctxt ctrm =1

case (Thm.term_of ctrm) of2

@{term "op ∧"} $ @{term True} $ _ =>3

(Conv.arg_conv (all_true1_conv ctxt) then_conv4

Conv.rewr_conv @{thm true_conj1}) ctrm5

| _ $ _ => Conv.combination_conv6

(all_true1_conv ctxt) (all_true1_conv ctxt) ctrm7

| Abs _ => Conv.abs_conv (fn (_, ctxt) => all_true1_conv ctxt) ctxt ctrm8

| _ => Conv.all_conv ctrm9

This function “fires” if the terms is of the form True ∧ . . . ; it descends under ap-
plications (Line 6 and 7) and abstractions (Line 8); otherwise it leaves the term
unchanged (Line 9). In Line 2 we need to transform the cterm into a term in order
to be able to pattern-match the term. To see this conversion in action, consider the
following example:

let

val ctxt = @{context}

val ctrm = @{cterm "distinct [1, x] −→ True ∧ 1 6= x"}

in
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all_true1_conv ctxt ctrm

end

> distinct [1, x] −→ True ∧ 1 6= x ≡ distinct [1, x] −→ 1 6= x

To see how much control you have about rewriting by using conversions, let us make
the task a bit more complicated by rewriting according to the rule true_conj1, but
only in the first arguments of Ifs. Then the conversion should be as follows.

fun if_true1_conv ctxt ctrm =

case Thm.term_of ctrm of

Const (@{const_name If}, _) $ _ =>

Conv.arg_conv (all_true1_conv ctxt) ctrm

| _ $ _ => Conv.combination_conv

(if_true1_conv ctxt) (if_true1_conv ctxt) ctrm

| Abs _ => Conv.abs_conv (fn (_, ctxt) => if_true1_conv ctxt) ctxt ctrm

| _ => Conv.all_conv ctrm

Here is an example for this conversion:

let

val ctxt = @{context}

val ctrm =

@{cterm "if P (True ∧ 1 6= 2) then True ∧ True else True ∧ False"}

in

if_true1_conv ctxt ctrm

end

> if P (True ∧ 1 6= 2) then True ∧ True else True ∧ False

> ≡ if P (1 6= 2) then True ∧ True else True ∧ False

So far we only applied conversions to cterms. Conversions can, however, also work
on theorems using the function Conv.fconv_rule. As an example, consider the
conversion all_true1_conv and the lemma:

lemma foo_test: "P ∨ (True ∧ ¬P)" by simp

Using the conversion you can transform this theorem into a new theorem as follows

Conv.fconv_rule (all_true1_conv @{context}) @{thm foo_test}

> ?P ∨ ¬ ?P

Finally, conversions can also be turned into tactics and then applied to goal states.
This can be done with the help of the function CONVERSION, and also some predefined
conversion combinators that traverse a goal state. The combinators for the goal state
are: Conv.params_conv for converting under parameters (i.e. where goals are of
the form

∧
x. P =⇒ Q); the function Conv.prems_conv for applying a conversion

to all premises of a goal, and Conv.concl_conv for applying a conversion to the
conclusion of a goal.
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Assume we want to apply all_true1_conv only in the conclusion of the goal, and
if_true1_conv should only apply to the premises. Here is a tactic doing exactly
that:

fun true1_tac ctxt =

CONVERSION

(Conv.params_conv ~1 (fn ctxt =>

(Conv.prems_conv ~1 (if_true1_conv ctxt) then_conv

Conv.concl_conv ~1 (all_true1_conv ctxt))) ctxt)

We call the conversions with the argument ~1. This is to analyse all parameters,
premises and conclusions. If we call them with a non-negative number, say n, then
these conversions will only be called on n premises (similar for parameters and
conclusions). To test the tactic, consider the proof

lemma
"if True ∧ P then P else True ∧ False =⇒
(if True ∧ Q then True ∧ Q else P) −→ True ∧ (True ∧ Q)"

apply(tactic {* true1_tac @{context} 1 *})

where the tactic yields the goal state
goal (1 subgoal):

1. if P then P else True ∧ False =⇒ (if Q then Q else P) −→ Q

As you can see, the premises are rewritten according to if_true1_conv, while the
conclusion according to all_true1_conv.

To sum up this section, conversions are more general than the simplifier or simprocs,
but you have to do more work yourself. Also conversions are often much less efficient
than the simplifier. The advantage of conversions, however, that they provide much
less room for non-termination.

Exercise 4.6.1. Write a tactic that does the same as the simproc in exercise 4.5.1, but
is based in conversions. That means replace terms of the form t1 + t2 by their result.
You can make the same assumptions as in 4.5.1.

Exercise 4.6.2. Compare your solutions of Exercises 4.5.1 and 4.6.1, and try to deter-
mine which way of rewriting such terms is faster. For this you might have to construct
quite large terms. Also see Recipe A.3 for information about timing.

Read More
See Pure/conv.ML for more information about conversion combinators. Some basic con-
versions are defined in Pure/thm.ML, Pure/drule.ML and Pure/meta_simplifier.ML.

(FIXME: check whether Pattern.match_rew and Pattern.rewrite_term are of any
use/efficient)

4.7 Declarations (TBD)

4.8 Structured Proofs (TBD)

TBD
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lemma True

proof

{
fix A B C

assume r: "A & B =⇒ C"

assume A B

then have "A & B" ..
then have C by (rule r)

}

{
fix A B C

assume r: "A & B =⇒ C"

assume A B

note conjI [OF this]

note r [OF this]

}
oops

val ctxt0 = @{context};

val ctxt = ctxt0;

val (_, ctxt) = Variable.add_fixes ["A", "B", "C"] ctxt;

val ([r], ctxt) = Assumption.add_assumes [@{cprop "A & B =⇒ C"}] ctxt

val (this, ctxt) = Assumption.add_assumes [@{cprop "A"}, @{cprop "B"}]

ctxt;

val this = [@{thm conjI} OF this];

val this = r OF this;

val this = Assumption.export false ctxt ctxt0 this

val this = Variable.export ctxt ctxt0 [this]
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Chapter 5

How to Write a Definitional
Package

“My thesis is that programming is not at the bottom of the intellectual
pyramid, but at the top. It’s creative design of the highest order. It
isn’t monkey or donkey work; rather, as Edsger Dijkstra famously

claimed, it’s amongst the hardest intellectual tasks ever attempted.”

Richard Bornat, In Defence of Programming [1]

HOL is based on just a few primitive constants, like equality and implication, whose
properties are described by axioms. All other concepts, such as inductive predicates,
datatypes or recursive functions, are defined in terms of those primitives, and the
desired properties, for example induction theorems or recursion equations, are de-
rived from the definitions by a formal proof. Since it would be very tedious for a user
to define complex inductive predicates or datatypes “by hand” just using the primi-
tive operators of higher order logic, definitional packages have been implemented to
automate such work. Thanks to those packages, the user can give a high-level spec-
ification, for example a list of introduction rules or constructors, and the package
then does all the low-level definitions and proofs behind the scenes. In this chapter
we explain how such a package can be implemented.

As the running example we have chosen a rather simple package for defining induc-
tive predicates. To keep things really simple, we will not use the general Knaster-
Tarski fixpoint theorem on complete lattices, which forms the basis of Isabelle/HOL’s
standard inductive definition package. Instead, we will describe a simpler impredica-
tive (i.e. involving quantification on predicate variables) encoding of inductive predi-
cates. Due to its simplicity, this package will necessarily have a reduced functionality.
It does neither support introduction rules involving arbitrary monotonic operators,
nor does it prove case analysis rules (also called inversion rules). Moreover, it only
proves a weaker form of the induction principle for inductive predicates.
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5.1 Preliminaries

The user will just give a specification of inductive predicate(s) and expects from the
package to produce a convenient reasoning infrastructure. This infrastructure needs
to be derived from the definition that correspond to the specified predicate(s). Be-
fore we start with explaining all parts of the package, let us first give some examples
showing how to define inductive predicates and then also how to generate a reason-
ing infrastructure for them. From the examples we will figure out a general method
for defining inductive predicates. The aim in this section is not to write proofs that
are as beautiful as possible, but as close as possible to the ML-implementation we
will develop in later sections.

We first consider the transitive closure of a relation R. The “pencil-and-paper” speci-
fication for the transitive closure is:

trcl R x x [[R x y; trcl R y z ]] =⇒ trcl R x z

The package has to make an appropriate definition for trcl. Since an inductively
defined predicate is the least predicate closed under a collection of introduction
rules, the predicate trcl R x y can be defined so that it holds if and only if P x

y holds for every predicate P closed under the rules above. This gives rise to the
definition

definition "trcl ≡
λR x y. ∀ P. (∀ x. P x x)

−→ (∀ x y z. R x y −→ P y z −→ P x z) −→ P x y"

We have to use the object implication −→ and object quantification ∀ for stating this
definition (there is no other way for definitions in HOL). However, the introduction
rules and induction principles associated with the transitive closure should use the
meta-connectives, since they simplify the reasoning for the user.

With this definition, the proof of the induction principle for trcl is almost immedi-
ate. It suffices to convert all the meta-level connectives in the lemma to object-level
connectives using the proof method atomize (Line 4 below), expand the definition
of trcl (Line 5 and 6), eliminate the universal quantifier contained in it (Line 7),
and then solve the goal by assumption (Line 8).

lemma trcl_induct:1

assumes "trcl R x y"2

shows "(
∧
x. P x x) =⇒ (

∧
x y z. R x y =⇒ P y z =⇒ P x z) =⇒ P x y"3

apply(atomize (full))4

apply(cut_tac prems)5

apply(unfold trcl_def)6

apply(drule spec[where x=P])7

apply(assumption)8

done9

The proofs for the introduction rules are slightly more complicated. For the first one,
we need to prove the following lemma:

lemma trcl_base:1

shows "trcl R x x"2

apply(unfold trcl_def)3
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apply(rule allI impI)+4

apply(drule spec)5

apply(assumption)6

done7

We again unfold first the definition and apply introduction rules for ∀ and −→ as
often as possible (Lines 3 and 4). We then end up in the goal state:

goal (1 subgoal):

1.
∧
P. [[∀ x. P x x; ∀ x y z. R x y −→ P y z −→ P x z ]] =⇒ P x x

The two assumptions come from the definition of trcl and correspond to the intro-
duction rules. Thus, all we have to do is to eliminate the universal quantifier in front
of the first assumption (Line 5), and then solve the goal by assumption (Line 6).

Next we have to show that the second introduction rule also follows from the defini-
tion. Since this rule has premises, the proof is a bit more involved. After unfolding
the definitions and applying the introduction rules for ∀ and −→
lemma trcl_step:

shows "R x y =⇒ trcl R y z =⇒ trcl R x z"

apply (unfold trcl_def)

apply (rule allI impI)+

we obtain the goal state

goal (1 subgoal):

1.
∧
P. [[R x y;

∀ P. (∀ x. P x x) −→ (∀ x y z. R x y −→ P y z −→ P x z) −→ P y z;

∀ x. P x x; ∀ x y z. R x y −→ P y z −→ P x z ]]
=⇒ P x z

To see better where we are, let us explicitly name the assumptions by starting a
subproof.

proof -

case (goal1 P)

have p1: "R x y" by fact

have p2: "∀ P. (∀ x. P x x)

−→ (∀ x y z. R x y −→ P y z −→ P x z) −→ P y z" by fact

have r1: "∀ x. P x x" by fact

have r2: "∀ x y z. R x y −→ P y z −→ P x z" by fact

show "P x z"

The assumptions p1 and p2 correspond to the premises of the second introduction
rule (unfolded); the assumptions r1 and r2 come from the definition of trcl. We
apply r2 to the goal P x z. In order for this assumption to be applicable as a rule,
we have to eliminate the universal quantifier and turn the object-level implications
into meta-level ones. This can be accomplished using the rule_format attribute. So
we continue the proof with:

apply (rule r2[rule_format])

This gives us two new subgoals
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goal (2 subgoals):

1. R x ?y

2. P ?y z

which can be solved using assumptions p1 and p2. The latter involves a quantifier
and implications that have to be eliminated before it can be applied. To avoid poten-
tial problems with higher-order unification, we explicitly instantiate the quantifier to
P and also match explicitly the implications with r1 and r2. This gives the proof:

apply(rule p1)

apply(rule p2[THEN spec[where x=P], THEN mp, THEN mp, OF r1, OF r2])

done
qed

Now we are done. It might be surprising that we are not using the automatic tactics
available in Isabelle/HOL for proving this lemmas. After all blast would easily
dispense of it.

lemma trcl_step_blast:

shows "R x y =⇒ trcl R y z =⇒ trcl R x z"

apply(unfold trcl_def)

apply(blast)
done

Experience has shown that it is generally a bad idea to rely heavily on blast, auto
and the like in automated proofs. The reason is that you do not have precise control
over them (the user can, for example, declare new intro- or simplification rules that
can throw automatic tactics off course) and also it is very hard to debug proofs
involving automatic tactics whenever something goes wrong. Therefore if possible,
automatic tactics should be avoided or be constrained sufficiently.

The method of defining inductive predicates by impredicative quantification also
generalises to mutually inductive predicates. The next example defines the predi-
cates even and odd given by

even 0 odd n =⇒ even (Suc n) even n =⇒ odd (Suc n)

Since the predicates even and odd are mutually inductive, each corresponding defi-
nition must quantify over both predicates (we name them below P and Q).

definition "even ≡
λn. ∀ P Q. P 0 −→ (∀ m. Q m −→ P (Suc m))

−→ (∀ m. P m −→ Q (Suc m)) −→ P n"

definition "odd ≡
λn. ∀ P Q. P 0 −→ (∀ m. Q m −→ P (Suc m))

−→ (∀ m. P m −→ Q (Suc m)) −→ Q n"

For proving the induction principles, we use exactly the same technique as in the
transitive closure example, namely:

lemma even_induct:

assumes "even n"

shows "P 0 =⇒ (
∧
m. Q m =⇒ P (Suc m)) =⇒ (

∧
m. P m =⇒ Q (Suc m)) =⇒ P n"
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apply(atomize (full))

apply(cut_tac prems)

apply(unfold even_def)

apply(drule spec[where x=P])

apply(drule spec[where x=Q])

apply(assumption)
done

The only difference with the proof trcl_induct is that we have to instantiate here
two universal quantifiers. We omit the other induction principle that has even n as
premise and Q n as conclusion. The proofs of the introduction rules are also very
similar to the ones in the trcl -example. We only show the proof of the second
introduction rule.

lemma evenS:1

shows "odd m =⇒ even (Suc m)"2

apply (unfold odd_def even_def)3

apply (rule allI impI)+4

proof -5

case (goal1 P Q)6

have p1: "∀ P Q. P 0 −→ (∀ m. Q m −→ P (Suc m))7

−→ (∀ m. P m −→ Q (Suc m)) −→ Q m" by fact8

have r1: "P 0" by fact9

have r2: "∀ m. Q m −→ P (Suc m)" by fact10

have r3: "∀ m. P m −→ Q (Suc m)" by fact11

show "P (Suc m)"12

apply(rule r2[rule_format])13

apply(rule p1[THEN spec[where x=P], THEN spec[where x=Q],14

THEN mp, THEN mp, THEN mp, OF r1, OF r2, OF r3])15

done16

qed17

The interesting lines are 7 to 15. The assumptions fall into two categories: p1 corre-
sponds to the premise of the introduction rule; r1 to r3 come from the definition of
even. In Line 13, we apply the assumption r2 (since we prove the second introduc-
tion rule). In Lines 14 and 15 we apply assumption p1 (if the second introduction
rule had more premises we have to do that for all of them). In order for this as-
sumption to be applicable, the quantifiers need to be instantiated and then also the
implications need to be resolved with the other rules.

Next we define the accessible part of a relation R given by the single rule:

∧
y. R y x =⇒ accpart R y

accpart R x

The definition of accpart is:

definition "accpart ≡ λR x. ∀ P. (∀ x. (∀ y. R y x −→ P y) −→ P x) −→ P x"

The proof of the induction principle is again straightforward and omitted. Proving
the introduction rule is a little more complicated, because the quantifier and the
implication in the premise. The proof is as follows.

lemma accpartI:1
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shows "(
∧
y. R y x =⇒ accpart R y) =⇒ accpart R x"2

apply (unfold accpart_def)3

apply (rule allI impI)+4

proof -5

case (goal1 P)6

have p1: "
∧
y. R y x =⇒7

(∀ P. (∀ x. (∀ y. R y x −→ P y) −→ P x) −→ P y)" by fact8

have r1: "∀ x. (∀ y. R y x −→ P y) −→ P x" by fact9

show "P x"10

apply(rule r1[rule_format])11

proof -12

case (goal1 y)13

have r1_prem: "R y x" by fact14

show "P y"15

apply(rule p1[OF r1_prem, THEN spec[where x=P], THEN mp, OF r1])16

done17

qed18

qed19

As you can see, there are now two subproofs. The assumptions fall again into two
categories (Lines 7 to 9). In Line 11, applying the assumption r1 generates a goal
state with the new local assumption R y x, named r1_prem in the second subproof
(Line 14). This local assumption is used to solve the goal P y with the help of
assumption p1.

Exercise 5.1.1. Give the definition for the freshness predicate for lambda-terms. The
rules for this predicate are:

a 6= b =⇒ fresh a (Var b) [[fresh a t; fresh a s ]] =⇒ fresh a (App t s)

fresh a (Lam a t) [[a 6= b; fresh a t ]] =⇒ fresh a (Lam b t)

From the definition derive the induction principle and the introduction rules.

The point of all these examples is to get a feeling what the automatic proofs should
do in order to solve all inductive definitions we throw at them. This is usually the
first step in writing a package. We next explain the parsing and typing part of the
package.

5.2 Parsing and Typing the Specification

To be able to write down the specifications or inductive predicates, we have to intro-
duce a new command (see Section 3.7). As the keyword for the new command we
chose simple inductive. Examples of specifications we expect the user gives for the
inductive predicates from the previous section are shown in Figure 5.1. The general
syntax we will parse is specified in the railroad diagram shown in Figure 5.2. This
diagram more or less translates directly into the parser:
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simple inductive
trcl :: "(’a ⇒ ’a ⇒ bool) ⇒ ’a ⇒ ’a ⇒ bool"

where
base: "trcl R x x"

| step: "trcl R x y =⇒ R y z =⇒ trcl R x z"

simple inductive
even and odd

where
even0: "even 0"

| evenS: "odd n =⇒ even (Suc n)"

| oddS: "even n =⇒ odd (Suc n)"

simple inductive
accpart :: "(’a ⇒ ’a ⇒ bool) ⇒ ’a ⇒ bool"

where
accpartI: "(

∧
y. R y x =⇒ accpart R y) =⇒ accpart R x"

simple inductive
fresh :: "string ⇒ trm ⇒ bool"

where
fresh_var: "a 6=b =⇒ fresh a (Var b)"

| fresh_app: " [[fresh a t; fresh a s ]] =⇒ fresh a (App t s)"

| fresh_lam1: "fresh a (Lam a t)"

| fresh_lam2: " [[a 6=b; fresh a t ]] =⇒ fresh a (Lam b t)"

Figure 5.1: Specification given by the user for the inductive predicates trcl, even
and odd, accpart and fresh.

simple inductive
�� �
�

� target

�



�

�

� fixes �
� where

�� �
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� thmdecl

�



prop�
� |

���


�



�



Figure 5.2: A railroad diagram describing the syntax of simple inductive. The target
indicates an optional locale; the fixes are an and-separated list of names for the
inductive predicates (they can also contain typing- and syntax annotations); prop
stands for a introduction rule with an optional theorem declaration (thmdecl).
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val spec_parser =

OuterParse.fixes --

Scan.optional

(OuterParse.$$$ "where" |--

OuterParse.!!!

(OuterParse.enum1 "|"

(SpecParse.opt_thm_name ":" -- OuterParse.prop))) []

which we explained in Section 3.6. However, if you look closely, there is no code for
parsing the target given optionally after the keyword. This is an “advanced” feature
which we will inherit for “free” from the infrastructure on which we shall build the
package. The target stands for a locale and allows us to specify
locale rel =

fixes R :: "’a ⇒ ’a ⇒ bool"

and then define the transitive closure and the accessible part of this locale as follows:
simple inductive ( in rel)

trcl’

where
base: "trcl’ x x"

| step: "trcl’ x y =⇒ R y z =⇒ trcl’ x z"

simple inductive ( in rel)

accpart’

where
accpartI: "(

∧
y. R y x =⇒ accpart’ y) =⇒ accpart’ x"

Note that in these definitions the parameter R, standing for the relation, is left im-
plicit. For the moment we will ignore this kind of implicit parameters and rely on the
fact that the infrastructure will deal with them. Later, however, we will come back
to them.

If we feed into the parser the string that corresponds to our definition of even and
odd

let

val input = filtered_input

("even and odd " ^

"where " ^

" even0[intro]: \"even 0\" " ^

"| evenS[intro]: \"odd n =⇒ even (Suc n)\" " ^

"| oddS[intro]: \"even n =⇒ odd (Suc n)\"")

in

parse spec_parser input

end

> (([(even, NONE, NoSyn), (odd, NONE, NoSyn)],

> [((even0, . . . ), "\^E\^Ftoken\^Eeven 0\^E\^F\^E"),

> ((evenS, . . . ), "\^E\^Ftoken\^Eodd n =⇒ even (Suc n)\^E\^F\^E"),

> ((oddS, . . . ), "\^E\^Ftoken\^Eeven n =⇒ odd (Suc n)\^E\^F\^E")]), [])

then we get back the specifications of the predicates (with type and syntax anno-
tations), and specifications of the introduction rules. This is all the information we
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need for calling the package and setting up the keyword. The latter is done in Lines
5 to 7 in the code below.1

val specification =1

spec_parser >>2

(fn (pred_specs, rule_specs) => add_inductive_cmd pred_specs rule_specs)3

4

val _ = OuterSyntax.local_theory "simple_inductive2"5

"definition of simple inductive predicates"6

OuterKeyword.thy_decl specification7

We call local_theory with the kind-indicator thy_decl since the package does not
need to open up any proof (see Section 3.7). The auxiliary function specification

in Lines 1 to 3 gathers the information from the parser to be processed further by
the function add_inductive_cmd, which we describe below.

Note that the predicates when they come out of the parser are just some “naked”
strings: they have no type yet (even if we annotate them with types) and they are
also not defined constants yet (which the predicates eventually will be). Also the in-
troduction rules are just strings. What we have to do first is to transform the parser’s
output into some internal datastructures that can be processed further. For this we
can use the function read_spec. This function takes some strings (with possible
typing annotations) and some rule specifications, and attempts to find a typing ac-
cording to the given type constraints given by the user and the type constraints by
the “ambient” theory. It returns the type for the predicates and also returns typed
terms for the introduction rules. So at the heart of the function add_inductive_cmd

is a call to read_spec.

fun add_inductive_cmd pred_specs rule_specs lthy =

let

val ((pred_specs’, rule_specs’), _) =

Specification.read_spec pred_specs rule_specs lthy

in

add_inductive pred_specs’ rule_specs’ lthy

end

Once we have the input data as some internal datastructure, we call the function
add_inductive. This function does the heavy duty lifting in the package: it gener-
ates definitions for the predicates and derives from them corresponding induction
principles and introduction rules. The description of this function will span over the
next two sections.

5.3 The Code in a Nutshell

The inductive package will generate the reasoning infrastructure for mutually recur-
sive predicates pred1. . . predn. In what follows we will have the convention that

1FIXME: Is there a way to state here simple_inductive?
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various, possibly empty collections of “things” (lists, nested implications and so on)
are indicated either by adding an "s" or by adding a superscript "∗". The shorthand
for the predicates will therefore be preds or pred∗. In the case of the predicates
there must be, of course, at least a single one in order to obtain a meaningful defini-
tion.

The input for the inductive package will be some preds with possible typing and
syntax annotations, and also some introduction rules. We call below the introduction
rules short as rules. Borrowing some idealised Isabelle notation, one such rule is
assumed to be of the form

rule ::=
∧
xs. As︸︷︷︸

non-recursive premises

=⇒ (
∧
ys. Bs =⇒ pred ss)∗︸ ︷︷ ︸

recursive premises

=⇒ pred ts

For the purposes here, we will assume the rules have this format and omit any
code that actually tests this. Therefore “things” can go horribly wrong, if the rules

are not of this form.2 The As and Bs in a rule stand for formulae not involving
the inductive predicates preds ; the instances pred ss and pred ts can stand for
different predicates, like pred1 ss and pred2 ts ; ss and ts are the arguments
of these predicates. Every formula left of "=⇒ pred ts" is a premise of the rule.
The outermost quantified variables xs are usually omitted in the user’s input. The
quantification for the variables ys is local with respect to one recursive premise and
must be given. Some examples of rules are

a 6= b =⇒ fresh a (Var b)

which has only a single non-recursive premise, whereas

odd n =⇒ even (Suc n)

has a single recursive premise; the rule

(
∧
y. R y x =⇒ accpart R y) =⇒ accpart R x

has a single recursive premise that has a precondition. As usual all rules are stated
without the leading meta-quantification

∧
xs.

The output of the inductive package will be definitions for the predicates, induction
principles and introduction rules. For the definitions we need to have the rules in a
form where the meta-quantifiers and meta-implications are replaced by their object
logic equivalents. Therefore an orule is of the form

orule ::= ∀ xs. As −→ (∀ ys. Bs −→ pred ss)∗ −→ pred ts

A definition for the predicate pred has then the form

def ::= pred ≡ λzs. ∀ preds. orules −→ pred zs

2FIXME: Exercise to test this format.
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The induction principles for every predicate pred are of the form

ind ::= pred ?zs =⇒ rules[preds := ?Ps] =⇒ ?P ?zs

where in the rules every pred is replaced by a fresh meta-variable ?P.

In order to derive an induction principle for the predicate pred, we first transform
ind into the object logic and fix the meta-variables. Hence we have to prove a
formula of the form

pred zs −→ orules[preds := Ps] −→ P zs

If we assume pred zs and unfold its definition, then we have an assumption

∀ preds. orules −→ pred zs

and must prove the goal

orules[preds := Ps] −→ P zs

This can be done by instantiating the ∀ preds -quantification with the Ps. Then we
are done since we are left with a simple identity.

Although the user declares the introduction rules rules, they must also be derived
from the defs. These derivations are a bit involved. Assuming we want to prove the
introduction rule

∧
xs. As =⇒ (

∧
ys. Bs =⇒ pred ss)∗ =⇒ pred ts

then we have assumptions of the form

(i) As

(ii) (
∧
ys. Bs =⇒ pred ss)∗

and must show the goal

pred ts

If we now unfold the definitions for the preds, we have assumptions

(i) As

(ii) (
∧
ys. Bs =⇒ ∀ preds. orules −→ pred ss)∗

(iii) orules

and need to show

pred ts
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In the last step we removed some quantifiers and moved the precondition orules

into the assumtion. The orules stand for all introduction rules that are given by the
user. We apply the orule that corresponds to introduction rule we are proving. After
lifting to the meta-connectives, this introduction rule must necessarily be of the form

As =⇒ (
∧
ys. Bs =⇒ pred ss)∗ =⇒ pred ts

When we apply this rule we end up in the goal state where we have to prove goals
of the form

(a) As

(b) (
∧
ys. Bs =⇒ pred ss)∗

We can immediately discharge the goals As using the assumptions in (i). The goals
in (b) can be discharged as follows: we assume the Bs and prove pred ss. For this
we resolve the Bs with the assumptions in (ii). This gives us the assumptions

(∀ preds. orules −→ pred ss)∗

Instantiating the universal quantifiers and then resolving with the assumptions in
(iii) gives us pred ss, which is the goal we are after. This completes the proof for
introduction rules.

What remains is to implement in Isabelle the reasoning outlined in this section.
We will describe the code in the next section. For building testcases, we use the
shorthands for even/odd, fresh and accpart defined in Figure 5.3.

5.4 The Gory Details

As mentioned before the code falls roughly into three parts: the code that deals with
the definitions, with the induction principles and with the introduction rules. In
addition there are some administrative functions that string everything together.

Definitions

We first have to produce for each predicate the user specifies an appropriate defini-
tion, whose general form is

pred ≡ λzs. ∀ preds. orules −→ pred zs

and then “register” the definition inside a local theory. To do the latter, we use
the following wrapper for the function LocalTheory.define. The wrapper takes a
predicate name, a syntax annotation and a term representing the right-hand side of
the definition.

102



(* even-odd example *)

val eo_defs = [@{thm even_def}, @{thm odd_def}]

val eo_rules =

[@{prop "even 0"},

@{prop "
∧
n. odd n =⇒ even (Suc n)"},

@{prop "
∧
n. even n =⇒ odd (Suc n)"}]

val eo_orules =

[@{prop "even 0"},

@{prop "∀ n. odd n −→ even (Suc n)"},

@{prop "∀ n. even n −→ odd (Suc n)"}]

val eo_preds = [@{term "even::nat⇒bool"}, @{term "odd::nat⇒bool"}]

val eo_prednames = [@{binding "even"}, @{binding "odd"}]

val eo_mxs = [NoSyn, NoSyn]

val eo_arg_tyss = [[@{typ "nat"}], [@{typ "nat"}]]

val e_pred = @{term "even::nat⇒bool"}

val e_arg_tys = [@{typ "nat"}]

(* freshness example *)

val fresh_rules =

[@{prop "
∧
a b. a 6= b =⇒ fresh a (Var b)"},

@{prop "
∧
a s t. fresh a t =⇒ fresh a s =⇒ fresh a (App t s)"},

@{prop "
∧
a t. fresh a (Lam a t)"},

@{prop "
∧
a b t. a 6= b =⇒ fresh a t =⇒ fresh a (Lam b t)"}]

val fresh_orules =

[@{prop "∀ a b. a 6= b −→ fresh a (Var b)"},

@{prop "∀ a s t. fresh a t −→ fresh a s −→ fresh a (App t s)"},

@{prop "∀ a t. fresh a (Lam a t)"},

@{prop "∀ a b t. a 6= b −→ fresh a t −→ fresh a (Lam b t)"}]

val fresh_pred = @{term "fresh::string⇒trm⇒bool"}

val fresh_arg_tys = [@{typ "string"}, @{typ "trm"}]

(* accessible-part example *)

val acc_rules =

[@{prop "
∧
R x. (

∧
y. R y x =⇒ accpart R y) =⇒ accpart R x"}]

val acc_pred = @{term "accpart::(’a ⇒’a⇒bool)⇒’a ⇒bool"}

Figure 5.3: Shorthands for the inductive predicates even -odd, fresh and accpart.
The names of these shorthands follow the convention rules, orules, preds and so
on. The purpose of these shorthands is to simplify the construction of testcases in
Section 5.4.
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fun make_defn ((predname, mx), trm) lthy =1

let2

val arg = ((predname, mx), (Attrib.empty_binding, trm))3

val ((_, (_ , thm)), lthy’) = LocalTheory.define Thm.internalK arg lthy4

in5

(thm, lthy’)6

end7

It returns the definition (as a theorem) and the local theory in which the definition
has been made. In Line 4, internalK is a flag attached to the theorem (others
possibile flags are definitionK and axiomK). These flags just classify theorems and
have no significant meaning, except for tools that, for example, find theorems in the
theorem database.3 We also use empty_binding in Line 3, since the definitions for
our inductive predicates are not meant to be seen by the user and therefore do not
need to have any theorem attributes. A testcase for this function is

local setup {* fn lthy =>

let

val arg = ((@{binding "My_True"}, NoSyn), @{term True})

val (def, lthy’) = make_defn arg lthy

in

writeln (str_of_thm_no_vars lthy’ def); lthy’

end *}

which introduces the definition My_True ≡ True and then prints it out. Since we
are testing the function inside local setup, i.e., make actual changes to the ambient
theory, we can query the definition with the usual command thm:

thm "My_True_def"

> My_True ≡ True

The next two functions construct the right-hand sides of the definitions, which are
terms whose general form is:

λzs. ∀ preds. orules −→ pred zs

When constructing these terms, the variables zs need to be chosen so that they do
not occur in the orules and also be distinct from the preds.

The first function, named defn_aux, constructs the term for one particular predicate
(the argument pred in the code below). The number of arguments of this predi-
cate is determined by the number of argument types given in arg_tys. The other
arguments of the function are the orules and all the preds.

fun defn_aux lthy orules preds (pred, arg_tys) =1

let2

fun mk_all x P = HOLogic.all_const (fastype_of x) $ lambda x P3

3FIXME: put in the section about theorems.
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4

val fresh_args =5

arg_tys6

|> map (pair "z")7

|> Variable.variant_frees lthy (preds @ orules)8

|> map Free9

in10

list_comb (pred, fresh_args)11

|> fold_rev (curry HOLogic.mk_imp) orules12

|> fold_rev mk_all preds13

|> fold_rev lambda fresh_args14

end15

The function mk_all in Line 3 is just a helper function for constructing universal
quantifications. The code in Lines 5 to 9 produces the fresh zs. For this it pairs every
argument type with the string "z" (Line 7); then generates variants for all these
strings so that they are unique w.r.t. to the predicates and orules (Line 8); in Line 9
it generates the corresponding variable terms for the unique strings.

The unique variables are applied to the predicate in Line 11 using the function
list_comb ; then the orules are prefixed (Line 12); in Line 13 we quantify over
all predicates; and in line 14 we just abstract over all the zs, i.e., the fresh argu-
ments of the predicate. A testcase for this function is

local setup{* fn lthy =>

let

val def = defn_aux lthy eo_orules eo_preds (e_pred, e_arg_tys)

in

writeln (Syntax.string_of_term lthy def); lthy

end *}

where we use the shorthands defined in Figure 5.3. The testcase calls defn_aux for
the predicate even and prints out the generated definition. So we obtain as printout

λz. ∀ even odd. (even 0) −→ (∀ n. odd n −→ even (Suc n))

−→ (∀ n. even n −→ odd (Suc n)) −→ even z

If we try out the function with the rules for freshness

local setup{* fn lthy =>

(writeln (Syntax.string_of_term lthy

(defn_aux lthy fresh_orules [fresh_pred] (fresh_pred, fresh_arg_tys)));

lthy) *}

we obtain

λz za.

∀ fresh.
(∀ a b. a 6= b −→ fresh a (Var b)) −→
(∀ a s t. fresh a t −→ fresh a s −→ fresh a (App t s)) −→
(∀ a t. fresh a (Lam a t)) −→
(∀ a b t. a 6= b −→ fresh a t −→ fresh a (Lam b t)) −→ fresh z za
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The second function, named defns, has to iterate the function defn_aux over all
predicates. The argument preds is again the list of predicates as terms; the argu-
ment prednames is the list of binding names of the predicates; mxs are the list of
syntax, or mixfix, annotations for the predicates; arg_tyss is the list of argument-
type-lists.

fun defns rules preds prednames mxs arg_typss lthy =1

let2

val thy = ProofContext.theory_of lthy3

val orules = map (ObjectLogic.atomize_term thy) rules4

val defs = map (defn_aux lthy orules preds) (preds ~~ arg_typss)5

in6

fold_map make_defn (prednames ~~ mxs ~~ defs) lthy7

end8

The user will state the introduction rules using meta-implications and meta-quanti-
fications. In Line 4, we transform these introduction rules into the object logic (since
definitions cannot be stated with meta-connectives). To do this transformation we
have to obtain the theory behind the local theory (Line 3); with this theory we can
use the function ObjectLogic.atomize_term to make the transformation (Line 4).
The call to defn_aux in Line 5 produces all right-hand sides of the definitions. The
actual definitions are then made in Line 7. The result of the function is a list of
theorems and a local theory (the theorems are registered with the local theory). A
testcase for this function is

local setup {* fn lthy =>

let

val (defs, lthy’) =

defns eo_rules eo_preds eo_prednames eo_mxs eo_arg_tyss lthy

in

writeln (str_of_thms_no_vars lthy’ defs); lthy

end *}

where we feed into the function all parameters corresponding to the even -odd ex-
ample. The definitions we obtain are:

even ≡ λz. ∀ even odd. (even 0) −→ (∀ n. odd n −→ even (Suc n))

−→ (∀ n. even n −→ odd (Suc n)) −→ even z,

odd ≡ λz. ∀ even odd. (even 0) −→ (∀ n. odd n −→ even (Suc n))

−→ (∀ n. even n −→ odd (Suc n)) −→ odd z

Note that in the testcase we return the local theory lthy (not the modified lthy’).
As a result the test case has no effect on the ambient theory. The reason is that if we
introduce the definition again, we pollute the name space with two versions of even
and odd.

This completes the code for introducing the definitions. Next we deal with the in-
duction principles.
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Induction Principles

Recall that the manual proof for the induction principle of even was:

lemma manual_ind_prin_even:

assumes prem: "even z"

shows "P 0 =⇒ (
∧
m. Q m =⇒ P (Suc m)) =⇒ (

∧
m. P m =⇒ Q (Suc m)) =⇒ P z"

apply(atomize (full))

apply(cut_tac prem)

apply(unfold even_def)

apply(drule spec[where x=P])

apply(drule spec[where x=Q])

apply(assumption)
done

The code for automating such induction principles has to accomplish two tasks: con-
structing the induction principles from the given introduction rules and then auto-
matically generating proofs for them using a tactic.

The tactic will use the following helper function for instantiating universal quanti-
fiers.

fun inst_spec ctrm =

Drule.instantiate’ [SOME (ctyp_of_term ctrm)] [NONE, SOME ctrm] @{thm spec}

This helper function instantiates the ?x in the theorem ∀ x. ?P x =⇒ ?P ?x with a
given cterm. We call this helper function in the following tactic, called inst_spec_tac .

fun inst_spec_tac ctrms =

EVERY’ (map (dtac o inst_spec) ctrms)

This tactic expects a list of cterms. It allows us in the proof below to instantiate the
three quantifiers in the assumption.

lemma
fixes P::"nat ⇒ nat ⇒ nat ⇒ bool"

shows "∀ x y z. P x y z =⇒ True"

apply (tactic {*

inst_spec_tac [@{cterm "a::nat"},@{cterm "b::nat"},@{cterm "c::nat"}] 1 *})

We obtain the goal state
goal (1 subgoal):

1. P a b c =⇒ True

The complete tactic for proving the induction principles can now be implemented as
follows:

fun ind_tac defs prem insts =1

EVERY1 [ObjectLogic.full_atomize_tac,2

cut_facts_tac prem,3

K (rewrite_goals_tac defs),4

inst_spec_tac insts,5

assume_tac]6
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We have to give it as arguments the definitions, the premise (a list of formulae)
and the instantiations. The premise is even n in lemma manual_ind_prin_even ; in
our code it will always be a list consisting of a single formula. Compare this tactic
with the manual proof for the lemma manual_ind_prin_even : as you can see there
is almost a one-to-one correspondence between the apply-script and the ind_tac.
Two testcases for this tactic are:

lemma automatic_ind_prin_even:

assumes prem: "even z"

shows "P 0 =⇒ (
∧
m. Q m =⇒ P (Suc m)) =⇒ (

∧
m. P m =⇒ Q (Suc m)) =⇒ P z"

by (tactic {* ind_tac eo_defs @{thms prem}

[@{cterm "P::nat⇒bool"}, @{cterm "Q::nat⇒bool"}] *})

lemma automatic_ind_prin_fresh:

assumes prem: "fresh z za"

shows "(
∧
a b. a 6= b =⇒ P a (Var b)) =⇒

(
∧
a t s. [[P a t; P a s ]] =⇒ P a (App t s)) =⇒

(
∧
a t. P a (Lam a t)) =⇒

(
∧
a b t. [[a 6= b; P a t ]] =⇒ P a (Lam b t)) =⇒ P z za"

by (tactic {* ind_tac @{thms fresh_def} @{thms prem}

[@{cterm "P::string⇒trm⇒bool"}] *})

While the tactic for proving the induction principles is relatively simple, it will be a
bit more work to construct the goals from the introduction rules the user provides.
Therefore let us have a closer look at the first proved theorem:

thm automatic_ind_prin_even

> [[even ?z; ?P 0;
∧
m. ?Q m =⇒ ?P (Suc m);

∧
m. ?P m =⇒ ?Q (Suc m) ]] =⇒ ?P ?z

The variables z, P and Q are schematic variables (since they are not quantified in the
lemma). These variables must be schematic, otherwise they cannot be instantiated
by the user. To generate these schematic variables we use a common trick in Isabelle
programming: we first declare them as free, but fixed, and then use the infrastructure
to turn them into schematic variables.

In general we have to construct for each predicate pred a goal of the form

pred ?zs =⇒ rules[preds := ?Ps] =⇒ ?P ?zs

where the predicates preds are replaced in rules by new distinct variables ?Ps. We
also need to generate fresh arguments ?zs for the predicate pred and the ?P in the
conclusion.

We generate these goals in two steps. The first function, named prove_ind, ex-
pects that the introduction rules are already appropriately substituted. The argu-
ment srules stands for these substituted rules; cnewpreds are the certified terms
coresponding to the variables ?Ps ; pred is the predicate for which we prove the in-
duction principle; newpred is its replacement and arg_tys are the argument types
of this predicate.
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fun prove_ind lthy defs srules cnewpreds ((pred, newpred), arg_tys) =1

let2

val zs = replicate (length arg_tys) "z"3

val (newargnames, lthy’) = Variable.variant_fixes zs lthy;4

val newargs = map Free (newargnames ~~ arg_tys)5

6

val prem = HOLogic.mk_Trueprop (list_comb (pred, newargs))7

val goal = Logic.list_implies8

(srules, HOLogic.mk_Trueprop (list_comb (newpred, newargs)))9

in10

Goal.prove lthy’ [] [prem] goal11

(fn {prems, ...} => ind_tac defs prems cnewpreds)12

|> singleton (ProofContext.export lthy’ lthy)13

end14

In Line 3 we produce names zs for each type in the argument type list. Line 4 makes
these names unique and declares them as free, but fixed, variables in the local theory
lthy’. That means they are not schematic variables (yet). In Line 5 we construct the
terms corresponding to these variables. The variables are applied to the predicate
in Line 7 (this corresponds to the first premise pred zs of the induction principle).
In Line 8 and 9, we first construct the term P zs and then add the (substituted)
introduction rules as preconditions. In case that no introduction rules are given, the
conclusion of this implication needs to be wrapped inside a Trueprop, otherwise the
Isabelle’s goal mechanism will fail.4

In Line 11 we set up the goal to be proved; in the next line we call the tactic for prov-
ing the induction principle. As mentioned before, this tactic expects the definitions,
the premise and the (certified) predicates with which the introduction rules have
been substituted. The code in these two lines will return a theorem. However, it is
a theorem proved inside the local theory lthy’, where the variables zs are free, but
fixed (see Line 4). By exporting this theorem from lthy’ (which contains the zs as
free variables) to lthy (which does not), we obtain the desired schematic variables
?zs. A testcase for this function is

local setup{* fn lthy =>

let

val newpreds = [@{term "P::nat⇒bool"}, @{term "Q::nat⇒bool"}]

val cnewpreds = [@{cterm "P::nat⇒bool"}, @{cterm "Q::nat⇒bool"}]

val newpred = @{term "P::nat⇒bool"}

val srules = map (subst_free (eo_preds ~~ newpreds)) eo_rules

val intro =

prove_ind lthy eo_defs srules cnewpreds ((e_pred, newpred), e_arg_tys)

in

writeln (str_of_thm lthy intro); lthy

end *}

This prints out the theorem:

[[even ?z; P 0;
∧
n. Q n =⇒ P (Suc n);

∧
n. P n =⇒ Q (Suc n) ]] =⇒ P ?z

4FIXME: check with Stefan...is this so?
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The export from lthy’ to lthy in Line 13 above has correctly turned the free, but
fixed, z into a schematic variable ?z ; the variables P and Q are not yet schematic.

We still have to produce the new predicates with which the introduction rules are
substituted and iterate prove_ind over all predicates. This is what the second func-
tion, named inds does.

fun inds rules defs preds arg_tyss lthy =1

let2

val Ps = replicate (length preds) "P"3

val (newprednames, lthy’) = Variable.variant_fixes Ps lthy4

5

val thy = ProofContext.theory_of lthy’6

7

val tyss’ = map (fn tys => tys ---> HOLogic.boolT) arg_tyss8

val newpreds = map Free (newprednames ~~ tyss’)9

val cnewpreds = map (cterm_of thy) newpreds10

val srules = map (subst_free (preds ~~ newpreds)) rules11

12

in13

map (prove_ind lthy’ defs srules cnewpreds)14

(preds ~~ newpreds ~~ arg_tyss)15

|> ProofContext.export lthy’ lthy16

end17

In Line 3, we generate a string "P" for each predicate. In Line 4, we use the same
trick as in the previous function, that is making the Ps fresh and declaring them as
free, but fixed, in the new local theory lthy’. From the local theory we extract the
ambient theory in Line 6. We need this theory in order to certify the new predicates.
In Line 8, we construct the types of these new predicates using the given argument
types. Next we turn them into terms and subsequently certify them (Line 9 and 10).
We can now produce the substituted introduction rules (Line 11) using the function
subst_free. Line 14 and 15 just iterate the proofs for all predicates. From this we
obtain a list of theorems. Finally we need to export the fixed variables Ps to obtain
the schematic variables ?Ps (Line 16).

A testcase for this function is

local setup {* fn lthy =>

let

val ind_thms = inds eo_rules eo_defs eo_preds eo_arg_tyss lthy

in

writeln (str_of_thms lthy ind_thms); lthy

end *}

which prints out

even ?z =⇒ ?P1 0 =⇒
(
∧
m. ?Pa1 m =⇒ ?P1 (Suc m)) =⇒ (

∧
m. ?P1 m =⇒ ?Pa1 (Suc m)) =⇒ ?P1 ?z,

odd ?z =⇒ ?P1 0 =⇒
(
∧
m. ?Pa1 m =⇒ ?P1 (Suc m)) =⇒ (

∧
m. ?P1 m =⇒ ?Pa1 (Suc m)) =⇒ ?Pa1 ?z
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Note that now both, the ?Ps and the ?zs, are schematic variables. The numbers
attached to these variables have been introduced by the pretty-printer and are not
important for the user.

This completes the code for the induction principles. The final peice of reasoning
infrastructure we need are the introduction rules.

Introduction Rules

Constructing the goals for the introduction rules is easy: they are just the rules given
by the user. However, their proofs are quite a bit more involved than the ones for
the induction principles. To explain the general method, our running example will
be the introduction rule∧
a b t. [[a 6= b; fresh a t ]] =⇒ fresh a (Lam b t)

about freshness for lambdas. In order to ease somewhat our work here, we use the
following two helper functions.

val all_elims = fold (fn ct => fn th => th RS inst_spec ct)

val imp_elims = fold (fn th => fn th’ => [th’, th] MRS @{thm mp})

To see what these functions do, let us suppose we have the following three theorems.

lemma all_elims_test:

fixes P::"nat ⇒ nat ⇒ nat ⇒ bool"

shows "∀ x y z. P x y z" sorry

lemma imp_elims_test:

shows "A −→ B −→ C" sorry

lemma imp_elims_test’:

shows "A" "B" sorry

The function all_elims takes a list of (certified) terms and instantiates theorems
of the form all_elims_test. For example we can instantiate the quantifiers in this
theorem with a, b and c as follows:

let

val ctrms = [@{cterm "a::nat"}, @{cterm "b::nat"}, @{cterm "c::nat"}]

val new_thm = all_elims ctrms @{thm all_elims_test}

in

writeln (str_of_thm_no_vars @{context} new_thm)

end

> P a b c

Note the difference with inst_spec_tac from Page 107: inst_spec_tac is a tactic
which operates on a goal state; in contrast all_elims operates on theorems.

Similarly, the function imp_elims eliminates preconditions from implications. For
example we can eliminate the preconditions A and B from imp_elims_test :

111



writeln (str_of_thm_no_vars @{context}

(imp_elims @{thms imp_elims_test’} @{thm imp_elims_test}))

> C

Now we set up the proof for the introduction rule as follows:

lemma fresh_Lam:

shows "
∧
a b t. [[a 6= b; fresh a t ]] =⇒ fresh a (Lam b t)"

The first step in the proof will be to expand the definitions of freshness and then
introduce quantifiers and implications. For this we will use the tactic

fun expand_tac defs =1

ObjectLogic.rulify_tac 12

THEN rewrite_goals_tac defs3

THEN (REPEAT (resolve_tac [@{thm allI}, @{thm impI}] 1))4

The function in Line 2 “rulifies” the lemma. This will turn out to be important later
on. Applying this tactic in our proof of fresh_Lem

apply(tactic {* expand_tac @{thms fresh_def} *})

gives us the goal state

goal (1 subgoal):

1.
∧
a b t fresh.

[[a 6= b;

∀ fresh.
(∀ a b. a 6= b −→ fresh a (Var b)) −→
(∀ a t s. fresh a t −→ fresh a s −→ fresh a (App t s)) −→
(∀ a t. fresh a (Lam a t)) −→
(∀ a b t. a 6= b −→ fresh a t −→ fresh a (Lam b t)) −→ fresh a t;

∀ a b. a 6= b −→ fresh a (Var b);

∀ a t s. fresh a t −→ fresh a s −→ fresh a (App t s);

∀ a t. fresh a (Lam a t);

∀ a b t. a 6= b −→ fresh a t −→ fresh a (Lam b t) ]]
=⇒ fresh a (Lam b t)

As you can see, there are parameters (namely a, b and t) which come from the in-
troduction rule and parameters (in the case above only fresh) which come from the
universal quantification in the definition fresh a (App t s). Similarly, there are
assumptions that come from the premises of the rule (namely the first two) and as-
sumptions from the definition of the predicate (assumption three to six). We need to
treat these parameters and assumptions differently. In the code below we will there-
fore separate them into params1 and params2, respectively prems1 and prems2. To
do this separation, it is best to open a subproof with the tactic SUBPROOF, since this
tactic provides us with the parameters (as list of cterms) and the assumptions (as
list of thms). The problem we have to overcome with SUBPROOF is, however, that
this tactic always expects us to completely discharge the goal (see Section 4.2). This
is inconvenient for our gradual explanation of the proof here. To circumvent this
inconvenience we use the following modified tactic:
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fun SUBPROOF_test tac ctxt = (SUBPROOF tac ctxt 1) ORELSE all_tac

If the tactic inside SUBPROOF fails, then the overall tactic will still succeed. With
this testing tactic, we can gradually implement all necessary proof steps inside a
subproof. Once we are finished, we just have to replace it with SUBPROOF.

First we calculate the values for params1/2 and prems1/2 from params and prems,
respectively. To better see what is going in our example, we will print out these
values using the printing function in Figure 5.4. Since the tactic SUBPROOF will
supply us the params and prems as lists, we can separate them using the function
chop.

fun chop_test_tac preds rules =

SUBPROOF_test (fn {params, prems, context, ...} =>

let

val (params1, params2) = chop (length params - length preds) params

val (prems1, prems2) = chop (length prems - length rules) prems

in

chop_print params1 params2 prems1 prems2 context; no_tac

end)

For the separation we can rely on the fact that Isabelle deterministically produces
parameters and premises in a goal state. The last parameters that were introduced
come from the quantifications in the definitions (see the tactic expand_tac). There-
fore we only have to subtract the number of predicates (in this case only 1) from
the lenghts of all parameters. Similarly with the prems : the last premises in the goal
state come from unfolding the definition of the predicate in the conclusion. So we
can just subtract the number of rules from the number of all premises. Applying this
tactic in our example

apply(tactic {* chop_test_tac [fresh_pred] fresh_rules @{context} *})

gives

Params1 from the rule:

a, b, t

Params2 from the predicate:

fresh

Prems1 from the rule:

a 6= b

∀ fresh.
(∀ a b. a 6= b −→ fresh a (Var b)) −→
(∀ a t s. fresh a t −→ fresh a s −→ fresh a (App t s)) −→
(∀ a t. fresh a (Lam a t)) −→
(∀ a b t. a 6= b −→ fresh a t −→ fresh a (Lam b t)) −→ fresh a t

Prems2 from the predicate:

∀ a b. a 6= b −→ fresh a (Var b)

∀ a t s. fresh a t −→ fresh a s −→ fresh a (App t s)

∀ a t. fresh a (Lam a t)

∀ a b t. a 6= b −→ fresh a t −→ fresh a (Lam b t)
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fun chop_print params1 params2 prems1 prems2 ctxt =

let

val s = ["Params1 from the rule:", str_of_cterms ctxt params1]

@ ["Params2 from the predicate:", str_of_cterms ctxt params2]

@ ["Prems1 from the rule:"] @ (map (str_of_thm ctxt) prems1)

@ ["Prems2 from the predicate:"] @ (map (str_of_thm ctxt) prems2)

in

s |> separate "\n"

|> implode

|> writeln

end

Figure 5.4: A helper function that prints out the parameters and premises that need
to be treated differently.

We now have to select from prems2 the premise that corresponds to the introduction
rule we prove, namely:

∀ a b t. a 6= b −→ fresh a t −→ fresh a (Lam a t)

To use this premise with rtac, we need to instantiate its quantifiers (with params1)
and transform it into rule format (using ObjectLogic.rulify. So we can modify
the subproof as follows:

fun apply_prem_tac i preds rules =1

SUBPROOF_test (fn {params, prems, context, ...} =>2

let3

val (params1, params2) = chop (length params - length preds) params4

val (prems1, prems2) = chop (length prems - length rules) prems5

in6

rtac (ObjectLogic.rulify (all_elims params1 (nth prems2 i))) 17

THEN print_tac ""8

THEN no_tac9

end)10

The argument i corresponds to the number of the introduction we want to prove.
We will later on let it range from 0 to the number of rules - 1. Below we apply
this function with 3, since we are proving the fourth introduction rule.

apply(tactic {* apply_prem_tac 3 [fresh_pred] fresh_rules @{context} *})

Since we print out the goal state just after the application of rtac (Line 8), we can
see the goal state we obtain:

1. a 6= b

2. fresh a t

As expected there are two subgoals, where the first comes from the non-recursive
premise of the introduction rule and the second comes from the recursive one. The

114



first goal can be solved immediately by prems1. The second needs more work. It can
be solved with the other premise in prems1, namely

∀ fresh.
(∀ a b. a 6= b −→ fresh a (Var b)) −→
(∀ a t s. fresh a t −→ fresh a s −→ fresh a (App t s)) −→
(∀ a t. fresh a (Lam a t)) −→
(∀ a b t. a 6= b −→ fresh a t −→ fresh a (Lam b t)) −→ fresh a t

but we have to instantiate it appropriately. These instantiations come from params1

and prems2. We can determine whether we are in the simple or complicated case by
checking whether the topmost connective is an ∀ . The premises in the simple case
cannot have such a quantification, since the first step of expand_tac was to “rulify”
the lemma. The premise of the complicated case must have at least one ∀ coming
from the quantification over the preds. So we can implement the following function

fun prepare_prem params2 prems2 prem =

rtac (case prop_of prem of

_ $ (Const (@{const_name All}, _) $ _) =>

prem |> all_elims params2

|> imp_elims prems2

| _ => prem)

which either applies the premise outright (the default case) or if it has an outermost
universial quantification, instantiates it first with params1 and then prems1. The
following tactic will therefore prove the lemma completely.

fun prove_intro_tac i preds rules =

SUBPROOF (fn {params, prems, ...} =>

let

val (params1, params2) = chop (length params - length preds) params

val (prems1, prems2) = chop (length prems - length rules) prems

in

rtac (ObjectLogic.rulify (all_elims params1 (nth prems2 i))) 1

THEN EVERY1 (map (prepare_prem params2 prems2) prems1)

end)

Note that the tactic is now SUBPROOF, not SUBPROOF_test. The full proof of the
introduction rule is as follows:

lemma fresh_Lam:

shows "
∧
a b t. [[a 6= b; fresh a t ]] =⇒ fresh a (Lam b t)"

apply(tactic {* expand_tac @{thms fresh_def} *})

apply(tactic {* prove_intro_tac 3 [fresh_pred] fresh_rules @{context} 1 *})

done

Phew! ...Unfortunately, not everything is done yet. If you look closely at the general
principle outlined for the introduction rules in Section 5.3, we have not yet dealt
with the case where recursive premises have preconditions. The introduction rule of
the accessible part is such a rule.
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lemma accpartI:

shows "
∧
R x. (

∧
y. R y x =⇒ accpart R y) =⇒ accpart R x"

apply(tactic {* expand_tac @{thms accpart_def} *})

apply(tactic {* chop_test_tac [acc_pred] acc_rules @{context} *})

apply(tactic {* apply_prem_tac 0 [acc_pred] acc_rules @{context} *})

Here chop_test_tac prints out the following values for params1/2 and prems1/2

Params1 from the rule:

x

Params2 from the predicate:

P

Prems1 from the rule:

R ?y x =⇒ ∀ P. (∀ x. (∀ y. R y x −→ P y) −→ P x) −→ P ?y

Prems2 from the predicate:

∀ x. (∀ y. R y x −→ P y) −→ P x

and after application of the introduction rule using apply_prem_tac, we are in the
goal state

1.
∧
y. R y x =⇒ P y

In order to make progress, we have to use the precondition R y x (in general there
can be many of them). The best way to get a handle on these preconditions is to open
up another subproof, since the preconditions will then be bound to prems. Therfore
we modify the function prepare_prem as follows

fun prepare_prem params2 prems2 ctxt prem =1

SUBPROOF (fn {prems, ...} =>2

let3

val prem’ = prems MRS prem4

in5

rtac (case prop_of prem’ of6

_ $ (Const (@{const_name All}, _) $ _) =>7

prem’ |> all_elims params28

|> imp_elims prems29

| _ => prem’) 110

end) ctxt11

In Line 4 we use the prems from the SUBPROOF and resolve them with prem. In the
simple cases, that is where the prem comes from a non-recursive premise of the rule,
prems will be just the empty list and the function MRS does nothing. Similarly, in the
cases where the recursive premises of the rule do not have preconditions. In case
there are preconditions, then Line 4 discharges them. After that we can proceed as
before, i.e., check whether the outermost connective is ∀ .

The function prove_intro_tac only needs to be changed so that it gives the context
to prepare_prem (Line 8). The modified version is below.
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fun prove_intro_tac i preds rules =1

SUBPROOF (fn {params, prems, context, ...} =>2

let3

val (params1, params2) = chop (length params - length preds) params4

val (prems1, prems2) = chop (length prems - length rules) prems5

in6

rtac (ObjectLogic.rulify (all_elims params1 (nth prems2 i))) 17

THEN EVERY1 (map (prepare_prem params2 prems2 context) prems1)8

end)9

With these two functions we can now also prove the introduction rule for the acces-
sible part.

lemma accpartI:

shows "
∧
R x. (

∧
y. R y x =⇒ accpart R y) =⇒ accpart R x"

apply(tactic {* expand_tac @{thms accpart_def} *})

apply(tactic {* prove_intro_tac 0 [acc_pred] acc_rules @{context} 1 *})

done

Finally we need two functions that string everything together. The first function is
the tactic that performs the proofs.

fun intro_tac defs rules preds i ctxt =1

EVERY1 [ObjectLogic.rulify_tac,2

K (rewrite_goals_tac defs),3

REPEAT o (resolve_tac [@{thm allI}, @{thm impI}]),4

prove_intro_tac i preds rules ctxt]5

Lines 2 to 4 in this tactic correspond to the function expand_tac. Some testcases for
this tactic are:

lemma even0_intro:

shows "even 0"

by (tactic {* intro_tac eo_defs eo_rules eo_preds 0 @{context} *})

lemma evenS_intro:

shows "
∧
m. odd m =⇒ even (Suc m)"

by (tactic {* intro_tac eo_defs eo_rules eo_preds 1 @{context} *})

lemma fresh_App:

shows "
∧
a t s. [[fresh a t; fresh a s ]] =⇒ fresh a (App t s)"

by (tactic {*

intro_tac @{thms fresh_def} fresh_rules [fresh_pred] 1 @{context} *})

The second function sets up in Line 4 the goals to be proved (this is easy for the
introduction rules since they are exactly the rules given by the user) and iterates
intro_tac over all introduction rules.

fun intros rules preds defs lthy =1

let2

fun intros_aux (i, goal) =3
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Goal.prove lthy [] [] goal4

(fn {context, ...} => intro_tac defs rules preds i context)5

in6

map_index intros_aux rules7

end8

The iteration is done with the function map_index since we need the introduction
rule together with its number (counted from 0). This completes the code for the
functions deriving the reasoning infrastructure. It remains to implement some ad-
ministrative code that strings everything together.

Administrative Functions

We have produced various theorems (definitions, induction principles and introduc-
tion rules), but apart from the definitions, we have not yet registered them with the
theorem database. This is what the functions LocalTheory.note does.

For convenience, we use the following three wrappers this function:

fun reg_many qname ((name, attrs), thms) =

LocalTheory.note Thm.theoremK

((Binding.qualify false qname name, attrs), thms)

fun reg_single1 qname ((name, attrs), thm) =

reg_many qname ((name, attrs), [thm])

fun reg_single2 name attrs (qname, thm) =

reg_many (Binding.name_of qname) ((name, attrs), [thm])

The function that “holds everything together” is add_inductive. Its arguments are
the specification of the predicates pred_specs and the introduction rules rule_spec.

fun add_inductive pred_specs rule_specs lthy =1

let2

val mxs = map snd pred_specs3

val pred_specs’ = map fst pred_specs4

val prednames = map fst pred_specs’5

val preds = map (fn (p, ty) => Free (Binding.name_of p, ty)) pred_specs’6

val tyss = map (binder_types o fastype_of) preds7

8

val (namesattrs, rules) = split_list rule_specs9

10

val (defs, lthy’) = defns rules preds prednames mxs tyss lthy11

val ind_prins = inds rules defs preds tyss lthy’12

val intro_rules = intros rules preds defs lthy’13

14

val mut_name = space_implode "_" (map Binding.name_of prednames)15

val case_names = map (Binding.name_of o fst) namesattrs16

in17

lthy’ |> reg_many mut_name ((@{binding "intros"}, []), intro_rules)18
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||>> reg_many mut_name ((@{binding "inducts"}, []), ind_prins)19

||>> fold_map (reg_single1 mut_name) (namesattrs ~~ intro_rules)20

||>> fold_map (reg_single2 @{binding "induct"}21

[Attrib.internal (K (RuleCases.case_names case_names)),22

Attrib.internal (K (RuleCases.consumes 1)),23

Attrib.internal (K (Induct.induct_pred ""))])24

(prednames ~~ ind_prins)25

|> snd26

end27

In Line 3 the function extracts the syntax annotations from the predicates. Lines
4 to 6 extract the names of the predicates and generate the variables terms (with
types) corresponding to the predicates. Line 7 produces the argument types for each
predicate.

Line 9 extracts the introduction rules from the specifications and stores also in
namesattrs the names and attributes the user may have attached to these rules.

Line 11 produces the definitions and also registers the definitions in the local theory
lthy’. The next two lines produce the induction principles and the introduction
rules (all of them as theorems). Both need the local theory lthy’ in which the
definitions have been registered.

Lines 15 produces the name that is used to register the introduction rules. It is cos-
tum to collect all introduction rules under string.intros, whereby string stands
for the "_" -separated list of predicate names (for example even_odd. Also by cus-
tom, the case names in intuction proofs correspond to the names of the introduction
rules. These are generated in Line 16.

Lines 18 and 19 now add to lthy’ all the introduction rules und induction prin-
ciples under the name mut_name.intros and mut_name.inducts, respectively (see
previous paragraph).

Line 20 add further every introduction rule under its own name (given by the user).5

Line 21 registers the induction principles. For this we have to use some specific
attributes. The first case_names corresponds to the case names that are used by Isar
to reference the proof obligations in the induction. The second consumes 1 indicates
that the first premise of the induction principle (namely the predicate over which the
induction proceeds) is eliminated.

This completes all the code and fits in with the “front end” described in Section 5.2.6

5.5 Extensions of the Package (TBD)

Things to include at the end:

• include the code for the parameters

• say something about add-inductive to return the rules

5FIXME: what happens if the user did not give any name.
6FIXME: Describe Induct.induct_pred. Why the mut-name? What does Binding.qualify do?
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• say something about the two interfaces for calling packages

Exercise 5.5.1. In Section 5.3 we required that introduction rules must be of the form

rule ::=
∧
xs. As =⇒ (

∧
ys. Bs =⇒ pred ss)∗ =⇒ pred ts

where the As and Bs can be any collection of formulae not containing the preds. This
requirement is important, because if violated, the theory behind the inductive package
does not work and also the proofs break. Write code that tests whether the introduction
rules given by the user fit into the scheme described above. Hint: It is not important in
which order the premises ar given; the As and (

∧
ys. Bs =⇒ pred ss) premises can

occur in any order.

Exercise 5.5.2. If you define even and odd with the standard inductive package

inductive
even_2 and odd_2

where
even0_2: "even_2 0"

| evenS_2: "odd_2 m =⇒ even_2 (Suc m)"

| oddS_2: "even_2 m =⇒ odd_2 (Suc m)"

you will see that the generated induction principle for even’ (namely even_2_odd_2.inducts

has the additional assumptions odd_2 m and even_2 m in the recursive cases. These additional
assumptions can sometimes make “life easier” in proofs. Since more assumptions can be made
when proving properties, these induction principles are called strong inductions principles. How-
ever, it is the case that the “weak” induction principles imply the “strong” ones. Hint: Prove a
property taking a pair (or tuple in case of more than one predicate) as argument: the property
that you originally want to prove and the predicate(s) over which the induction proceeds.
Write code that automates the derivation of the strong induction principles from the weak ones.

Read More
The standard inductive package is based on least fix-points. It allows more gen-
eral introduction rules that can include any monotone operators and also pro-
vides a richer reasoning infrastructure. The code of this package can be found in
HOL/Tools/inductive_package.ML.
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Appendix A

Recipes

Possible topics:

• translations/print translations; ProofContext.print_syntax

• user space type systems (in the form that already exists)

• unification and typing algorithms (Pure/pattern.ML implements HOPU)

• useful datastructures: discrimination nets, association lists

A.1 Useful Document Antiquotations

Problem: How to keep your ML-code inside a document synchronised with the ac-
tual code?

Solution: This can be achieved with document antiquotations.

Document antiquotations can be used for ensuring consistent type-setting of various
entities in a document. They can also be used for sophisticated LATEX-hacking. If you
type on the Isabelle level

print antiquotations

you obtain a list of all currently available document antiquotations and their options.

Below we will give the code for two additional document antiquotations both of
which are intended to typeset ML-code. The crucial point of these document antiquo-
tations is that they not just print the ML-code, but also check whether it compiles.
This will provide a sanity check for the code and also allows you to keep documents
in sync with other code, for example Isabelle.

We first describe the antiquotation ML_checked with the syntax:

@{ML_checked "a_piece_of_code"}

The code is checked by sending the ML-expression "val _ = a_piece_of_code"

to the ML-compiler (i.e. the function ML_Context.eval_in in Line 4 below). The
complete code of the document antiquotation is as follows:
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fun ml_val code_txt = "val _ = " ^ code_txt1

2

fun output_ml {context = ctxt, ...} code_txt =3

(ML_Context.eval_in (SOME ctxt) false Position.none (ml_val code_txt);4

ThyOutput.output (map Pretty.str (space_explode "\n" code_txt)))5

6

val _ = ThyOutput.antiquotation "ML_checked" (Scan.lift Args.name) output_ml7

The parser (Scan.lift Args.name) in Line 7 parses a string, in this case the code,
and then calls the function output_ml. As mentioned before, the parsed code is
sent to the ML-compiler in Line 4 using the function ml_val, which constructs the
appropriate ML-expression, and using eval_in, which calls the compiler. If the code
is “approved” by the compiler, then the output function output in the next line pretty
prints the code. This function expects that the code is a list of (pretty)strings where
each string correspond to a line in the output. Therefore the use of (space_explode
"\n" txt) which produces such a list according to linebreaks. There are a number
of options for antiquotations that are observed by the function output when printing
the code (including [display] and [quotes]). The function antiquotation in
Line 7 sets up the new document antiquotation.

Read More
For more information about options of document antiquotations see [Isar Ref. Man.,
Sec. 5.2]).

Since we used the argument Position.none, the compiler cannot give specific in-
formation about the line number, in case an error is detected. We can improve the
code above slightly by writing

fun output_ml {context = ctxt, ...} (code_txt, pos) =1

(ML_Context.eval_in (SOME ctxt) false pos (ml_val code_txt);2

ThyOutput.output (map Pretty.str (space_explode "\n" code_txt)))3

4

val _ = ThyOutput.antiquotation "ML_checked"5

(Scan.lift (OuterParse.position Args.name)) output_ml6

where in Lines 1 and 2 the positional information is properly treated. The parser
OuterParse.position encodes the positional information in the result.

We can now write @{ML_checked "2 + 3"} in a document in order to obtain 2

+ 3 and be sure that this code compiles until somebody changes the definition of
addition.

The second document antiquotation we describe extends the first by a pattern that
specifies what the result of the ML-code should be and checks the consistency of
the actual result with the given pattern. For this we are going to implement the
document antiquotation:

@{ML_resp "a_piece_of_code" "a_pattern"}

To add some convenience and also to deal with large outputs, the user can give a
partial specification by using ellipses. For example ( . . . , . . . ) for specifying a pair.

122



In order to check consistency between the pattern and the output of the code, we
have to change the ML-expression that is sent to the compiler: in ML_checked we
sent the expression "val _ = a_piece_of_code" to the compiler; now the wildcard
_ must be be replaced by the given pattern. However, we have to remove all ellipses
from it and replace them by "_". The following function will do this:

fun ml_pat (code_txt, pat) =

let val pat’ =

implode (map (fn " . . . " => "_" | s => s) (Symbol.explode pat))

in

"val " ^ pat’ ^ " = " ^ code_txt

end

Next we add a response indicator to the result using:

fun add_resp pat = map (fn s => "> " ^ s) pat

The rest of the code of ML_resp is:

fun output_ml_resp {context = ctxt, ...} ((code_txt, pat), pos) =1

(ML_Context.eval_in (SOME ctxt) false pos (ml_pat (code_txt, pat));2

let3

val code_output = space_explode "\n" code_txt4

val resp_output = add_resp (space_explode "\n" pat)5

in6

ThyOutput.output (map Pretty.str (code_output @ resp_output))7

end)8

9

val _ = ThyOutput.antiquotation "ML_resp"10

(Scan.lift (OuterParse.position (Args.name -- Args.name)))11

output_ml_resp12

In comparison with ML_checked, we only changed the line about the compiler (Line 2),
the lines about the output (Lines 4 to 7) and the parser in the setup (Line 11). Now
you can write

@{ML_resp [display] "true andalso false" "false"}

to obtain

true andalso false

> false

or

@{ML_resp [display] "let val i = 3 in (i * i, "foo") end" "(9, . . . )"}

to obtain
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let val i = 3 in (i * i, "foo") end

> (9, . . . )

In both cases, the check by the compiler ensures that code and result match. A
limitation of this document antiquotation, however, is that the pattern can only be
given for values that can be constructed. This excludes values that are abstract
datatypes, like thms and cterms.

A.2 Restricting the Runtime of a Function

Problem: Your tool should run only a specified amount of time.

Solution: In PolyML 5.2.1 and later, this can be achieved using the function timeLimit.

Assume you defined the Ackermann function on the ML-level.

fun ackermann (0, n) = n + 1

| ackermann (m, 0) = ackermann (m - 1, 1)

| ackermann (m, n) = ackermann (m - 1, ackermann (m, n - 1))

Now the call

ackermann (4, 12)

> . . .

takes a bit of time before it finishes. To avoid this, the call can be encapsulated in a
time limit of five seconds. For this you have to write

TimeLimit.timeLimit (Time.fromSeconds 5) ackermann (4, 12)

handle TimeLimit.TimeOut => ~1

> ~1

where TimeOut is the exception raised when the time limit is reached.

Note that timeLimit is only meaningful when you use PolyML 5.2.1 or later, because
this version of PolyML has the infrastructure for multithreaded programming on
which timeLimit relies.

Read More
The function timeLimit is defined in the structure TimeLimit which can be found in the
file Pure/ML-Systems/multithreading_polyml.ML.

A.3 Measuring Time

Problem: You want to measure the running time of a tactic or function.

Solution: Time can be measured using the function start_timing and end_timing.
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Suppose you defined the Ackermann function on the Isabelle level.

fun
ackermann:: "(nat × nat) ⇒ nat"

where
"ackermann (0, n) = n + 1"

| "ackermann (m, 0) = ackermann (m - 1, 1)"

| "ackermann (m, n) = ackermann (m - 1, ackermann (m, n - 1))"

You can measure how long the simplifier takes to verify a datapoint of this function.
The actual timing is done inside the wrapper function:

fun timing_wrapper tac st =1

let2

val t_start = start_timing ();3

val res = tac st;4

val t_end = end_timing t_start;5

in6

(writeln (#message t_end); res)7

end8

Note that this function, in addition to a tactic, also takes a state st as argument and
applies this state to the tactic (Line 4). The reason is that tactics are lazy functions
and you need to force them to run, otherwise the timing will be meaningless. The
simplifier tactic, amongst others, can be forced to run by just applying the state to
it. But “fully” lazy tactics, such as resolve_tac, need even more “standing-on-ones-
head” to force them to run.

The time between start and finish of the simplifier will be calculated as the end time
minus the start time. An example of the wrapper is the proof

lemma "ackermann (3, 4) = 125"

apply(tactic {*

timing_wrapper (simp_tac (@{simpset} addsimps @{thms "nat_number"}) 1) *})

done

where it returns something on the scale of 3 seconds. We chose to return this infor-
mation as a string, but the timing information is also accessible in number format.

Read More
Basic functions regarding timing are defined in Pure/ML-Systems/polyml_common.ML

(for the PolyML compiler). Some more advanced functions are defined in
Pure/General/output.ML.

A.4 Configuration Options

Problem: You would like to enhance your tool with options that can be changed by
the user without having to resort to the ML-level.

Solution: This can be achieved using configuration values.
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Assume you want to control three values, say bval containing a boolean, ival con-
taining an integer and sval containing a string. These values can be declared on the
ML-level by

val (bval, setup_bval) = Attrib.config_bool "bval" false

val (ival, setup_ival) = Attrib.config_int "ival" 0

val (sval, setup_sval) = Attrib.config_string "sval" "some string"

where each value needs to be given a default. To enable these values, they need to
be set up with

setup {* setup_bval *}

setup {* setup_ival *}

or on the ML-level with

setup_sval @{theory}

The user can now manipulate the values from within Isabelle with the command

declare [[bval = true, ival = 3]]

On the ML-level these values can be retrieved using the function Config.get :

Config.get @{context} bval

> true

Config.get @{context} ival

> 3

The function Config.put manipulates the values. For example

Config.put sval "foo" @{context}; Config.get @{context} sval

> foo

The same can be achieved using the command setup.

setup {* Config.put_thy sval "bar" *}

Now the retrieval of this value yields:

Config.get @{context} sval

> "bar"

We can apply a function to a value using Config.map. For example incrementing
ival can be done by:
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let

val ctxt’ = Config.map ival (fn i => i + 1) @{context}

in

Config.get ctxt’ ival

end

> 4

Read More
For more information see Pure/Isar/attrib.ML and Pure/config.ML.

There are many good reasons to control parameters in this way. One is that no global
reference is needed, which would cause many headaches with the multithreaded
execution of Isabelle.

A.5 Storing Data (TBD)

Problem: Your tool needs to manage data.

Solution: This can be achieved using a generic data slot.

Every generic data slot may keep data of any kind which is stored in the context.

local

structure Data = GenericDataFun

( type T = int Symtab.table

val empty = Symtab.empty

val extend = I

fun merge _ = Symtab.merge (K true)

)

in

val lookup = Symtab.lookup o Data.get

fun update k v = Data.map (Symtab.update (k, v))

end

setup {* Context.theory_map (update "foo" 1) *}

lookup (Context.Proof @{context}) "foo"

> SOME 1

alternatives: TheoryDataFun, ProofDataFun Code: Pure/context.ML
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A.6 Executing an External Application (TBD)

Problem: You want to use an external application.

Solution: The function system_out might be the right thing for you.

This function executes an external command as if printed in a shell. It returns the
output of the program and its return value.

For example, consider running an ordinary shell commands:

system_out "echo Hello world!"

> ("Hello world!\n", 0)

Note that it works also fine with timeouts (see Recipe A.2 on Page 124), i.e. external
applications are killed properly. For example, the following expression takes only
approximately one second:

TimeLimit.timeLimit (Time.fromSeconds 1) system_out "sleep 30"

handle TimeLimit.TimeOut => ("timeout", ~1)

> ("timeout", ~1)

The function system_out can also be used for more reasonable applications, e.g.
coupling external solvers with Isabelle. In that case, one has to make sure that
Isabelle can find the particular executable. One way to ensure this is by adding a
Bash-like variable binding into one of Isabelle’s settings file (prefer the user settings
file usually to be found at $HOME/.isabelle/etc/settings).

For example, assume you want to use the application foo which is here supposed
to be located at /usr/local/bin/. The following line has to be added to one of
Isabelle’s settings file:

FOO=/usr/local/bin/foo

In Isabelle, this application may now be executed by

system_out "$FOO"

> . . .

A.7 Writing an Oracle (TBD)

Problem: You want to use a fast, new decision procedure not based one Isabelle’s
tactics, and you do not care whether it is sound.

Solution: Isabelle provides the oracle mechanisms to bypass the inference kernel.
Note that theorems proven by an oracle carry a special mark to inform the user of
their potential incorrectness.
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Read More
A short introduction to oracles can be found in [isar-ref: no suitable label for section 3.11].
A simple example, which we will slightly extend here, is given in FOL/ex/Iff_Oracle.thy.
The raw interface for adding oracles is add_oracle in Pure/thm.ML.

For our explanation here, we restrict ourselves to decide propositional formulae
which consist only of equivalences between propositional variables, i.e. we want
to decide whether (P = (Q = P)) = Q is a tautology.

Assume, that we have a decision procedure for such formulae, implemented in ML.
Since we do not care how it works, we will use it here as an “external solver”:

use "external_solver.ML"

We do, however, know that the solver provides a function IffSolver.decide. It
takes a string representation of a formula and returns either true if the formula is a
tautology or false otherwise. The input syntax is specified as follows:

formula ::= atom | ( formula <=> formula )

and all token are separated by at least one space.

(FIXME: is there a better way for describing the syntax?)

We will proceed in the following way. We start by translating a HOL formula into the
string representation expected by the solver. The solver’s result is then used to build
an oracle, which we will subsequently use as a core for an Isar method to be able to
apply the oracle in proving theorems.

Let us start with the translation function from Isabelle propositions into the solver’s
string representation. To increase efficiency while building the string, we use func-
tions from the Buffer module.

fun translate t =

let

fun trans t =

(case t of

@{term "op = :: bool ⇒ bool ⇒ bool"} $ t $ u =>

Buffer.add " (" #>

trans t #>

Buffer.add "<=>" #>

trans u #>

Buffer.add ") "

| Free (n, @{typ bool}) =>

Buffer.add " " #>

Buffer.add n #>

Buffer.add " "

| _ => error "inacceptable term")

in Buffer.content (trans t Buffer.empty) end

Here is the string representation of the term p = (q = p) :

translate @{term "p = (q = p)"}

> " ( p <=> ( q <=> p ) ) "

Let us check, what the solver returns when given a tautology:
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IffSolver.decide (translate @{term "p = (q = p) = q"})

> true

And here is what it returns for a formula which is not valid:

IffSolver.decide (translate @{term "p = (q = p)"})

> false

Now, we combine these functions into an oracle. In general, an oracle may be given
any input, but it has to return a certified proposition (a special term which is type-
checked), out of which Isabelle’s inference kernel “magically” makes a theorem.

Here, we take the proposition to be show as input. Note that we have to first extract
the term which is then passed to the translation and decision procedure. If the solver
finds this term to be valid, we return the given proposition unchanged to be turned
then into a theorem:

oracle iff_oracle = {* fn ct =>

if IffSolver.decide (translate (HOLogic.dest_Trueprop (Thm.term_of ct)))

then ct

else error "Proof failed."*}

Here is what we get when applying the oracle:

iff_oracle @{cprop "p = (p::bool)"}

> p = p

(FIXME: is there a better way to present the theorem?)

To be able to use our oracle for Isar proofs, we wrap it into a tactic:

val iff_oracle_tac =

CSUBGOAL (fn (goal, i) =>

(case try iff_oracle goal of

NONE => no_tac

| SOME thm => rtac thm i))

and create a new method solely based on this tactic:

method setup iff_oracle = {*

Scan.succeed (K (Method.SIMPLE_METHOD’ iff_oracle_tac))

*} "Oracle-based decision procedure for chains of equivalences"

Finally, we can test our oracle to prove some theorems:

lemma "p = (p::bool)"

by iff_oracle

lemma "p = (q = p) = q"

by iff_oracle

(FIXME: say something about what the proof of the oracle is ... what do you mean?)

A.8 SAT Solvers

Problem: You like to use a SAT solver to find out whether an Isabelle formula is
satisfiable or not.
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Solution: Isabelle contains a general interface for a number of external SAT solvers
(including ZChaff and Minisat) and also contains a simple internal SAT solver that is
based on the DPLL algorithm.

The SAT solvers expect a propositional formula as input and produce a result indi-
cating that the formula is either satisfiable, unsatisfiable or unknown. The type of
the propositional formula is PropLogic.prop_formula with the usual constructors
such as And, Or and so on.

The function PropLogic.prop_formula_of_term translates an Isabelle term into a
propositional formula. Let us illustrate this function by translating A ∧ ¬ A ∨ B.
The function will return a propositional formula and a table. Suppose

val (pform, table) =

PropLogic.prop_formula_of_term @{term "A ∧ ¬A ∨ B"} Termtab.empty

then the resulting propositional formula pform is

Or (And (BoolVar 1, Not (BoolVar 1)), BoolVar 2)

where indices are assigned for the variables A and B, respectively. This assignment
is recorded in the table that is given to the translation function and also returned
(appropriately updated) in the result. In the case above the input table is empty
(i.e. Termtab.empty) and the output table is

Termtab.dest table

> [(Free ("A", "bool"), 1), (Free ("B", "bool"), 2)]

An index is also produced whenever the translation function cannot find an appro-
priate propositional formula for a term. Attempting to translate ∀ x. P x

val (pform’, table’) =

PropLogic.prop_formula_of_term @{term "∀ x::nat. P x"} Termtab.empty

returns BoolVar 1 for pform’ and the table table’ is:

map (apfst (Syntax.string_of_term @{context})) (Termtab.dest table’)

> (∀ x. P x, 1)

In the print out of the tabel, we used some pretty printing scaffolding to see better
which assignment the table contains.

Having produced a propositional formula, you can now call the SAT solvers with the
function SatSolver.invoke_solver. For example
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SatSolver.invoke_solver "dpll" pform

> SatSolver.SATISFIABLE assg

determines that the formula pform is satisfiable. If we inspect the returned function
assg

let

val SatSolver.SATISFIABLE assg = SatSolver.invoke_solver "dpll" pform

in

(assg 1, assg 2, assg 3)

end

> (SOME true, SOME true, NONE)

we obtain a possible assignment for the variables A and B that makes the formula
satisfiable.

Note that we invoked the SAT solver with the string "dpll". This string specifies
which SAT solver is invoked (in this case the internal one). If instead you invoke the
SAT solver with the string "auto"

SatSolver.invoke_solver "auto" pform

several external SAT solvers will be tried (assuming they are installed). If no external
SAT solver is installed, then the default is "dpll".

There are also two tactics that make use of SAT solvers. One is the tactic sat_tac.
For example

lemma "True"

apply(tactic {* sat.sat_tac 1 *})

done

However, for proving anything more exciting using sat_tac you have to use a SAT
solver that can produce a proof. The internal one is not usuable for this.

Read More
The interface for the external SAT solvers is implemented in HOL/Tools/sat_solver.ML.
This file contains also a simple SAT solver based on the DPLL algorithm. The tactics for
SAT solvers are implemented in HOL/Tools/sat_funcs.ML. Functions concerning propo-
sitional formulas are implemented in HOL/Tools/prop_logic.ML. The tables used in the
translation function are implemented in Pure/General/table.ML.

A.9 User Space Type-Systems (TBD)
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Appendix B

Solutions to Most Exercises

Solution for Exercise 2.6.1.

fun rev_sum t =

let

fun dest_sum (Const (@{const_name plus}, _) $ u $ u’) = u’ :: dest_sum u

| dest_sum u = [u]

in

foldl1 (HOLogic.mk_binop @{const_name plus}) (dest_sum t)

end

Solution for Exercise 2.6.2.

fun make_sum t1 t2 =

HOLogic.mk_nat (HOLogic.dest_nat t1 + HOLogic.dest_nat t2)

Solution for Exercise 3.1.1.

val any = Scan.one (Symbol.not_eof)

val scan_cmt =

let

val begin_cmt = Scan.this_string "(*"

val end_cmt = Scan.this_string "*)"

in

begin_cmt |-- Scan.repeat (Scan.unless end_cmt any) --| end_cmt

>> (enclose "(**" "**)" o implode)

end

val parser = Scan.repeat (scan_cmt || any)

val scan_all =

Scan.finite Symbol.stopper parser >> implode #> fst

By using #> fst in the last line, the function scan_all retruns a string, instead of
the pair a parser would normally return. For example:
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let

val input1 = (explode "foo bar")

val input2 = (explode "foo (*test*) bar (*test*)")

in

(scan_all input1, scan_all input2)

end

> ("foo bar", "foo (**test**) bar (**test**)")

Solution for Exercise 4.5.1.

fun dest_sum term =

case term of

(@{term "(op +):: nat ⇒ nat ⇒ nat"} $ t1 $ t2) =>

(snd (HOLogic.dest_number t1), snd (HOLogic.dest_number t2))

| _ => raise TERM ("dest_sum", [term])

fun get_sum_thm ctxt t (n1, n2) =

let

val sum = HOLogic.mk_number @{typ "nat"} (n1 + n2)

val goal = Logic.mk_equals (t, sum)

in

Goal.prove ctxt [] [] goal (K (Arith_Data.arith_tac ctxt 1))

end

fun add_sp_aux ss t =

let

val ctxt = Simplifier.the_context ss

val t’ = term_of t

in

SOME (get_sum_thm ctxt t’ (dest_sum t’))

handle TERM _ => NONE

end

The setup for the simproc is

simproc setup add_sp ("t1 + t2") = {* K add_sp_aux *}

and a test case is the lemma

lemma "P (Suc (99 + 1)) ((0 + 0)::nat) (Suc (3 + 3 + 3)) (4 + 1)"

apply(tactic {* simp_tac (HOL_basic_ss addsimprocs [@{simproc add_sp}]) 1 *})

where the simproc produces the goal state
goal (1 subgoal):

1. P (Suc 100) 0 (Suc 9) ((4 ::’a) + (1 ::’a))

Solution for Exercise 4.6.1.

The following code assumes the function dest_sum from the previous exercise.
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fun add_simple_conv ctxt ctrm =

let

val trm = Thm.term_of ctrm

in

get_sum_thm ctxt trm (dest_sum trm)

end

fun add_conv ctxt ctrm =

(case Thm.term_of ctrm of

@{term "(op +)::nat ⇒ nat ⇒ nat"} $ _ $ _ =>

(Conv.binop_conv (add_conv ctxt)

then_conv (Conv.try_conv (add_simple_conv ctxt))) ctrm

| _ $ _ => Conv.combination_conv

(add_conv ctxt) (add_conv ctxt) ctrm

| Abs _ => Conv.abs_conv (fn (_, ctxt) => add_conv ctxt) ctxt ctrm

| _ => Conv.all_conv ctrm)

fun add_tac ctxt = CSUBGOAL (fn (goal, i) =>

CONVERSION

(Conv.params_conv ~1 (fn ctxt =>

(Conv.prems_conv ~1 (add_conv ctxt) then_conv

Conv.concl_conv ~1 (add_conv ctxt))) ctxt) i)

A test case for this conversion is as follows

lemma "P (Suc (99 + 1)) ((0 + 0)::nat) (Suc (3 + 3 + 3)) (4 + 1)"

apply(tactic {* add_tac @{context} 1 *})?

where it produces the goal state
goal (1 subgoal):

1. P (Suc 100) 0 (Suc 9) ((4 ::’a) + (1 ::’a))

Solution for Exercise 4.6.1.

We use the timing function timing_wrapper from Recipe A.3. To measure any dif-
ference between the simproc and conversion, we will create mechanically terms in-
volving additions and then set up a goal to be simplified. We have to be careful to set
up the goal so that other parts of the simplifier do not interfere. For this we construct
an unprovable goal which, after simplification, we are going to “prove” with the help
of “sorry”, that is the method SkipProof.cheat_tac

For constructing test cases, we first define a function that returns a complete binary
tree whose leaves are numbers and the nodes are additions.

fun term_tree n =

let

val count = ref 0;

fun term_tree_aux n =

case n of

0 => (count := !count + 1; HOLogic.mk_number @{typ nat} (!count))

| _ => Const (@{const_name "plus"}, @{typ "nat⇒nat⇒nat"})
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$ (term_tree_aux (n - 1)) $ (term_tree_aux (n - 1))

in

term_tree_aux n

end

This function generates for example:

writeln (Syntax.string_of_term @{context} (term_tree 2))

> (1 + 2) + (3 + 4)

The next function constructs a goal of the form P . . . with a term produced by
term_tree filled in.

fun goal n = HOLogic.mk_Trueprop (@{term "P::nat⇒ bool"} $ (term_tree n))

Note that the goal needs to be wrapped in a Trueprop. Next we define two tactics,
c_tac and s_tac, for the conversion and simproc, respectively. The idea is to first
apply the conversion (respectively simproc) and then prove the remaining goal using
cheat_tac.

local

fun mk_tac tac =

timing_wrapper (EVERY1 [tac, K (SkipProof.cheat_tac @{theory})])

in

val c_tac = mk_tac (add_tac @{context})

val s_tac = mk_tac (simp_tac (HOL_basic_ss addsimprocs [@{simproc add_sp}]))

end

This is all we need to let the conversion run against the simproc:

val _ = Goal.prove @{context} [] [] (goal 8) (K c_tac)

val _ = Goal.prove @{context} [] [] (goal 8) (K s_tac)

If you do the exercise, you can see that both ways of simplifying additions perform
relatively similar with perhaps some advantages for the simproc. That means the
simplifier, even if much more complicated than conversions, is quite efficient for
tasks it is designed for. It usually does not make sense to implement general-purpose
rewriting using conversions. Conversions only have clear advantages in special situa-
tions: for example if you need to have control over innermost or outermost rewriting,
or when rewriting rules are lead to non-termination.
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Appendix C

Comments for Authors

• This tutorial can be compiled on the command-line with:

$ isabelle make

You very likely need a recent snapshot of Isabelle in order to compile the tuto-
rial. Some parts of the tutorial also rely on compilation with PolyML.

• You can include references to other Isabelle manuals using the reference names
from those manuals. To do this the following four LATEX commands are defined:

Chapters Sections
Implementation Manual \ichcite{ . . . } \isccite{ . . . }
Isar Reference Manual \rchcite{ . . . } \rsccite{ . . . }

So \ichcite{ch:logic} yields a reference for the chapter about logic in the
implementation manual, namely [Impl. Man., Ch. 2].

• There are various document antiquotations defined for the tutorial. They allow
to check the written text against the current Isabelle code and also allow to
show responses of the ML-compiler. Therefore authors are strongly encouraged
to use antiquotations wherever appropriate.

The following antiquotations are defined:

• @{ML "expr" for vars in structs} should be used for displaying any
ML-expression, because the antiquotation checks whether the expression
is valid ML-code. The for - and in -arguments are optional. The former
is used for evaluating open expressions by giving a list of free variables.
The latter is used to indicate in which structure or structures the ML-
expression should be evaluated. Examples are:

@{ML "1 + 3"} 1 + 3

@{ML "a + b" for a b} produce a + b

@{ML Ident in OuterLex} Ident
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• @{ML_response "expr" "pat"} should be used to display ML-expressions
and their response. The first expression is checked like in the antiquota-
tion @{ML "expr"} ; the second is a pattern that specifies the result the
first expression produces. This pattern can contain " . . . " for parts that
you like to omit. The response of the first expression will be checked
against this pattern. Examples are:

@{ML_response "1+2" "3"}

@{ML_response "(1+2,3)" "(3, . . . )"}

which produce respectively

1+2

> 3

(1+2,3)

> (3, . . . )

Note that this antiquotation can only be used when the result can be
constructed: it does not work when the code produces an exception or
returns an abstract datatype (like thm or cterm).

• @{ML_response_fake "expr" "pat"} works just like the antiquotation
@{ML_response "expr" "pat"} above, except that the result-specification
is not checked. Use this antiquotation when the result cannot be con-
structed or the code generates an exception. Examples are:

@{ML_response_fake "cterm_of @{theory} @{term \"a + b = c\"}"}

"a + b = c"}

@{ML_response_fake "($$ \"x\") (explode \"world\")"

"Exception FAIL raised"}

which produce respectively

cterm_of @{theory} @{term "a + b = c"}

> a + b = c

($$ "x") (explode "world")

> Exception FAIL raised

This output mimics to some extend what the user sees when running the
code.

• @{ML_response_fake_both "expr" "pat"} can be used to show erro-
neous code. Neither the code nor the response will be checked. An exam-
ple is:

@{ML_response_fake_both "@{cterm \"1 + True\"}"

"Type unification failed . . . "}

• @{ML_file "name"} should be used when referring to a file. It checks
whether the file exists. An example is

@{ML_file "Pure/General/basics.ML"}

The listed antiquotations honour options including [display] and [quotes].
For example
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@{ML [quotes] "\"foo\" ^ \"bar\""} produces "foobar"

whereas

@{ML "\"foo\" ^ \"bar\""} produces only foobar

• Functions and value bindings cannot be defined inside antiquotations; they
need to be included inside ML {* . . . *} environments. In this way they are
also checked by the compiler. Some LATEX-hack in the tutorial, however, ensures
that the environment markers are not printed.

• Line numbers can be printed using ML %linenos {* . . . *} for ML-code or
lemma %linenos ... for proofs. The tag is %linenosgray when the num-
bered text should be gray.
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