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Chapter 1

Introduction

“My thesis is that programming is not at the bottom of the intellectual
pyramid, but at the top. It’s creative design of the highest order. It
isn’t monkey or donkey work; rather, as Edsger Dijkstra famously
claimed, it’s amongst the hardest intellectual tasks ever attempted.”

Richard Bornat, In Defence of Programming. [1]

If your next project requires you to program on the ML-level of Isabelle, then this tu-
torial is for you. It will guide you through the first steps of Isabelle programming, and
also explain tricks of the trade. We also hope the tutorial will encourage researchers
to play with Isabelle and implement new ideas. The source code of Isabelle can
look intimidating, but beginners can get by with knowledge of only a small number
functions and a few basic coding conventions.

The best way to get to know the ML-level of Isabelle is by experimenting with the
many code examples included in the tutorial. The code is as far as possible checked
against the Isabelle distribution.! If something does not work, then please let us
know. It is impossible for us to know every environment, operating system or editor
in which Isabelle is used. If you have comments, criticism or like to add to the
tutorial, please feel free—you are most welcome! The tutorial is meant to be gentle
and comprehensive. To achieve this we need your help and feedback.

1.1 Intended Audience and Prior Knowledge

This tutorial targets readers who already know how to use Isabelle for writing the-
ories and proofs. We also assume that readers are familiar with the functional pro-
gramming language ML, the language in which most of Isabelle is implemented.
If you are unfamiliar with either of these two subjects, then you should first work
through the Isabelle/HOL tutorial [4] or Paulson’s book on ML [5].

!sabelle repository snapshot f1456d045151 (06-Mar-2010)
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1.2 Existing Documentation

The following documentation about Isabelle programming already exists (and is part
of the distribution of Isabelle):

The Isabelle/Isar Implementation Manual describes Isabelle from a high-level per-
spective, documenting some of the underlying concepts and interfaces.

The Isabelle Reference Manual is an older document that used to be the main ref-
erence of Isabelle at a time when all proof scripts were written on the ML-level.
Many parts of this manual are outdated now, but some parts, particularly the
chapters on tactics, are still useful.

The Isar Reference Manual provides specification material (like grammars, exam-
ples and so on) about Isar and its implementation.

Then of course there are:

The Isabelle sources. They are the ultimate reference for how things really work.
Therefore you should not hesitate to look at the way things are actually imple-
mented. More importantly, it is often good to look at code that does similar
things as you want to do and learn from it. This tutorial contains frequently
pointers to the Isabelle sources. Still, the UNIX command grep -R is often your
best friend while programming with Isabelle.? To understand the sources, it is
often also necessary to track the change history of a file or files. The Mercurial
repository® for Isabelle provides convenient interfaces to query the history of
files and “change sets”.

1.3 Typographic Conventions

All ML-code in this tutorial is typeset in shaded boxes, like the following simple
ML-expression:

ML {*
3+ 4
*}

These boxes correspond to how code can be processed inside the interactive envi-
ronment of Isabelle. It is therefore easy to experiment with the code that is given in
this tutorial. However, for better readability we will drop the enclosing ML {* ...
*} and just write:

20r hypersearch if you program using jEdit under MacOSX.
3http://isabelle.in.tum.de/repos/isabelle/
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3+ 4

Whenever appropriate we also show the response the code generates when evalu-
ated. This response is prefixed with a ">", like:

3+ 4
> 7

The user-level commands of Isabelle (i.e., the non-ML code) are written in bold face
(e.g., lemma, apply, foobar and so on). We use $ ... to indicate that a command
needs to be run in a UNIX-shell, for example:

$ grep -R ThyOutput *

Pointers to further information and Isabelle files are typeset in italic and highlighted
as follows:

Read More
Further information or pointers to files.

The pointers to Isabelle files are hyperlinked to the tip of the Mercurial repository at
http://isabelle.in.tum.de/repos/isabelle/, not the latest release of Isabelle.

A few exercises are scattered around the text. Their solutions are given in Ap-
pendix B. Of course, you learn most, if you first try to solve the exercises on your
own, and then look at the solutions.

1.4 Aaaaargh! My Code Does not Work Anymore

One unpleasant aspect of any code development inside a larger system is that one has
to aim at a “moving target”. Isabelle is no exception. Every update lets potentially
all hell break loose, because other developers have changed code you are relying on.
Cursing is somewhat helpful in such situations, but taking the view that incompatible
code changes are a fact of life might be more gratifying. Isabelle is a research project.
In most circumstances it is just impossible to make research backward compatible
(imagine Darwin attempting to make the Theory of Evolution backward compatible).

However, there are a few steps you can take to mitigate unwanted interferences with
code changes from other developers. First, you can base your code on the latest sta-
ble release of Isabelle (it is aimed to have one such release at least once every year).
This might cut you off from the latest feature implemented in Isabelle, but at least
you do not have to track side-steps or dead-ends in the Isabelle development. Of
course this means also you have to synchronise your code at the next stable release.
If you do not synchronise, be warned that code seems to “rot” very quickly. Another
possibility is to get your code into the Isabelle distribution. For this you have to
convince other developers that your code or project is of general interest. If you
managed to do this, then the problem of the moving target goes away, because when


http://isabelle.in.tum.de/repos/isabelle/

4 CHAPTER 1. INTRODUCTION

checking in new code, developers are strongly urged to test it against Isabelle’s code
base. If your project is part of that code base, then maintenance is done by others.
Unfortunately, this might not be a helpful advice for all types of projects. A lower
threshold for inclusion has the Archive of Formalised Proofs, short AFP.% This archive
has been created mainly for formalisations that are interesting but not necessarily of
general interest. If you have ML-code as part of a formalisation, then this might be
the right place for you. There is no problem with updating your code after submis-
sion. At the moment developers are not as diligent with checking their code against
the AFP than with checking agains the distribution, but generally problems will be
caught and the developer, who caused them, is expected to fix them. So also in this
case code maintenance is done for you.

1.5 Some Naming Conventions in the Isabelle Sources

There are a few naming conventions in the Isabelle code that might aid reading and
writing code. (Remember that code is written once, but read many times.) The most
important conventions are:

t, u, trm for (raw) terms; ML-type: term

e ct, cu for certified terms; ML-type: cterm

e ty, T, U for (raw) types; ML-type: typ

e S for sorts; ML-type: sort

e th, thm for theorems; ML-type: thm

e foo_tac for tactics; ML-type: tactic

e thy for theories; ML-type: theory

e ctxt for proof contexts; ML-type: Proof.context
e 1thy for local theories; ML-type: local_theory

e context for generic contexts; ML-type Context.generic
e mx for mixfix syntax annotations; ML-type mixfix

e prt for pretty printing; ML-type Pretty.T

“http://afp.sourceforge.net/
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Chapter 2

First Steps

“We will most likely never realize the full importance of painting the Tower,
that it is the essential element in the conservation of metal works and the
more meticulous the paint job, the longer the tower shall endure.”

Gustave FEiffel, In his book The 300-Meter Tower.}

Isabelle programming is done in ML. Just like lemmas and proofs, ML-code for
Isabelle must be part of a theory. If you want to follow the code given in this chapter,
we assume you are working inside the theory starting with

theory FirstSteps
imports Main
begin

We also generally assume you are working with the logic HOL. The examples that
will be given might need to be adapted if you work in a different logic.

2.1 Including ML-Code

The easiest and quickest way to include code in a theory is by using the ML-command.
For example:

ML {*
3+ 4
*}
> 7

Like normal Isabelle scripts, ML-commands can be evaluated by using the advance
and undo buttons of your Isabelle environment. The code inside the ML-command
can also contain value and function bindings, for example

!The Eiffel Tower has been re-painted 18 times since its initial construction, an average of once
every seven years. It takes more than one year for a team of 25 painters to paint the tower from top to
bottom.
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ML {*
val r = Unsynchronized.ref 0
fun f n =n + 1

*}

and even those can be undone when the proof script is retracted. As mentioned in
the Introduction, we will drop the ML {* ... *} scaffolding whenever we show
code. The lines prefixed with ">" are not part of the code, rather they indicate what
the response is when the code is evaluated. There are also the commands ML_val
and ML _prf for including ML-code. The first evaluates the given code, but any effect
on the theory, in which the code is embedded, is suppressed. The second needs to
be used if ML-code is defined inside a proof. For example

lemma test:

shows "True"

ML_prf {* writeln "Triviall" *}
oops

However, both commands will only play minor roles in this tutorial (we will always
arrange that the ML-code is defined outside proofs).

Once a portion of code is relatively stable, you usually want to export it to a separate
ML-file. Such files can then be included somewhere inside a theory by using the
command use. For example

theory FirstSteps

imports Main

uses ("file_to_be_included.ML") ...
begin

use "file_to_be_included.ML"

The uses-command in the header of the theory is needed in order to indicate the
dependency of the theory on the ML-file. Alternatively, the file can be included by
just writing in the header

theory FirstSteps

imports Main

uses "file_to_be_included.ML" ...
begin

Note that no parentheses are given this time. Note also that the included ML-file
should not contain any use itself. Otherwise Isabelle is unable to record all file
dependencies, which is a nuisance if you have to track down errors.
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2.2 Printing and Debugging

During development you might find it necessary to inspect data in your code. This
can be done in a “quick-and-dirty” fashion using the function writeln. For example

writeln "any string"
> "any string"

will print out "any string" inside the response buffer of Isabelle. This function ex-
pects a string as argument. If you develop under PolyML, then there is a convenient,
though again “quick-and-dirty”, method for converting values into strings, namely
the function makestring:

writeln (PolyML.makestring 1)
> ”1"

However, makestring only works if the type of what is converted is monomorphic
and not a function.

The function writeln should only be used for testing purposes, because any output
this function generates will be overwritten as soon as an error is raised. For printing
anything more serious and elaborate, the function tracing is more appropriate.
This function writes all output into a separate tracing buffer. For example:

tracing "foo"
> "foo"

It is also possible to redirect the “channel” where the string foo is printed to a sepa-
rate file, e.g., in order to prevent ProofGeneral from choking on massive amounts of
trace output. This redirection can be achieved with the code:

val strip_specials =

let
fun strip ("\"A" :: _ :: cs) = strip cs
| strip (c :: ¢cs) = ¢ :: strip cs
| strip [] = [];
in
implode o strip o explode
end

fun redirect_tracing stream =
Output.tracing fn := (fn s =>
(TextIO.output (stream, (strip_specials s));
TextIO.output (stream, "\n");
TextIO.flushOut stream))

Calling now



10 CHAPTER 2. FIRST STEPS

redirect_tracing (TextIO.openOut "foo.bar")

will cause that all tracing information is printed into the file foo. bar.
You can print out error messages with the function error; for example:

if 0=1 then true else (error "foo')
> Exception- ERROR "foo'" raised
> At command "ML".

This function raises the exception ERROR, which will then be displayed by the infras-
tructure.
2

Most often you want to inspect data of Isabelle’s basic data structures, namely
term, typ, cterm, ctyp and thm. Isabelle contains elaborate pretty-printing func-
tions for printing them (see Section 3.9), but for quick-and-dirty solutions they are
a bit unwieldy. One way to transform a term into a string is to use the function
string_of_term from the structure Syntax. For more convenience, we bind this
function to the toplevel.

val string_of_term = Syntax.string_of_term
It can now be used as follows

string_of_term @{context} @{term "1::nat"}
> "\"E\"Fterm\ "E\"E\ Fconst\ Fname=HOL.one_class.one\ E1\"E\"F\"E\"E\"F\"E"

We obtain a string corrsponding to the term 1::nat with some additional informa-
tion encoded in it. The string can be properly printed by using either the function
writeln or tracing:

writeln (string_of_term @{context} @{term "1::nat"})
> lll n

or

tracing (string_of_term @{context} @{term "1::nat"})
> "1”

If there are more than one term to be printed, you can use the function commas to
separate them.

2FIXME Mention how to work with debug and profiling.
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fun string_of_terms ctxt ts =
commas (map (string_of_term ctxt) ts)

You can also print out terms together with typing information. For this you need to
set the reference show_types to true.

show_types := true
Now string_of_term prints out

tracing (string_of_term @{context} @{term "(1::nat, x)"})
> (1::nat, x::’a)

where 1 and x are displayed with their inferred type. Even more type information
can be printed by setting the reference show_all_types to true. In this case we
obtain

tracing (string_of_term @{context} @{term "(1::nat, x)"})
> (Pair::nat = ’a = nat X ’a) (1::nat) (x::’a)

where Pair is the term-constructor for products. Other references that influence
printing of terms are show_brackets and show_sorts.

A cterm can be transformed into a string by the following function.

fun string_of_cterm ctxt ct =
string_of_term ctxt (term_of ct)

In this example the function term_of extracts the term from a cterm. More than
one cterms can again be printed with commas.

fun string of_cterms ctxt cts =
commas (map (string_of_cterm ctxt) cts)

The easiest way to get the string of a theorem is to transform it into a term using the
function prop_of.

fun string_of_thm ctxt thm =
string_of_term ctxt (prop_of thm)

Theorems include schematic variables, such as ?P, ?Q and so on. They are needed in
Isabelle in order to able to instantiate theorems when they are applied. For example
the theorem conjI shown below can be used for any (typable) instantiation of ?P
and 7q.
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tracing (string_of_thm @{context} @{thm conjI})
> [7P; 7Q] = 7P A 7Q

However, in order to improve the readability when printing theorems, we convert
these schematic variables into free variables using the function import. This is simi-
lar to statements like conjI[no_vars] on Isabelle’s user-level.

fun no_vars ctxt thm =
let
val ((_, [thm’]), _) = Variable.import true [thm] ctxt
in
thm’
end

fun string_of_thm_no_vars ctxt thm =
string_of_term ctxt (prop_of (no_vars ctxt thm))

With this function, theorem conjI is now printed as follows:

tracing (string_of_thm_no_vars @{context} @{thm conjI})
>[P; g = P A Q

Again the function commas helps with printing more than one theorem.

fun string_of_thms ctxt thms =
commas (map (string_of_thm ctxt) thms)

fun string_of_thms_no_vars ctxt thms =
commas (map (string_of_thm_no_vars ctxt) thms)

The printing functions for types are

fun string _of_typ ctxt ty = Syntax.string of_typ ctxt ty
fun string_of_typs ctxt tys = commas (map (string_of_typ ctxt) tys)

respectively ctypes

fun string_of_ctyp ctxt cty = string of_typ ctxt (typ_of cty)
fun string_of_ctyps ctxt ctys = commas (map (string_of_ctyp ctxt) ctys)

Read More

The simple conversion functions from Isabelle’s main datatypes to strings are implemented
in Pure/Syntax/syntax.ML. The references that change the printing information are de-
clared in Pure/Syntax/printer.ML.

Note that for printing out several “parcels” of information that belong together, like
a warning message consisting of a term and its type, you should try to print these
parcels together in a single string. Therefore do not print out information as


http://isabelle.in.tum.de/repos/isabelle/raw-file/tip/src/Pure/Syntax/syntax.ML
http://isabelle.in.tum.de/repos/isabelle/raw-file/tip/src/Pure/Syntax/printer.ML
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tracing "First half,";
tracing "and second half."
> First half,

> and second half.

but as a single string with appropriate formatting. For example

tracing ("First half," =~ "\n" ~ "and second half.")
> First half,
> and second half.

To ease this kind of string manipulations, there are a number of library functions
in Isabelle. For example, the function cat_lines concatenates a list of strings and
inserts newlines in between each element.

tracing (cat_lines ["foo", "bar"])
> foo
> bar

Section 3.9 will explain the infrastructure that Isabelle provides for more elaborate
pretty printing.

Read More
Most of the basic string functions of Isabelle are defined in Pure/library.ML.

2.3 Combinators

For beginners perhaps the most puzzling parts in the existing code of Isabelle are
the combinators. At first they seem to greatly obstruct the comprehension of code,
but after getting familiar with them and handled with care, they actually ease the
understanding and also the programming.

The simplest combinator is I, which is just the identity function defined as

fun I x = x

Another simple combinator is X, defined as

fun K x = fn _ => x

K “wraps” a function around x that ignores its argument. As a result, K defines a

constant function always returning x.
The next combinator is reverse application, />, defined as:


http://isabelle.in.tum.de/repos/isabelle/raw-file/tip/src/Pure/library.ML

[ I S O I
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fun x |[> f = f x

While just syntactic sugar for the usual function application, the purpose of this
combinator is to implement functions in a “waterfall fashion”. Consider for example
the function

fun inc_by_five x =
x |[> (fn x => x + 1)
[> (fn x => (x, x))
|> fst
|[> (fn x => x + 4)

which increments its argument x by 5. It does this by first incrementing the ar-
gument by 1 (Line 2); then storing the result in a pair (Line 3); taking the first
component of the pair (Line 4) and finally incrementing the first component by 4
(Line 5). This kind of cascading manipulations of values is quite common when
dealing with theories. The reverse application allows you to read what happens in
a top-down manner. This kind of coding should be familiar, if you have been ex-
posed to Haskell’s do-notation. Writing the function inc_by_five using the reverse
application is much clearer than writing

fun inc_by_five x = fst ((fn x => (x, x)) (x + 1)) + 4

or

fun inc_by_five x
((fn x => x + 4) o fst o (fn x => (x, x)) o (fn x => x + 1)) x

and typographically more economical than

fun inc_by_five x =
let val y1 = x + 1
val y2 = (y1, y1)
val y3 = fst y2
val y4 = y3 + 4
in y4 end

Another reason why the let-bindings in the code above are better to be avoided: it is
more than easy to get the intermediate values wrong, not to mention the nightmares
the maintenance of this code causes!

In Isabelle a “real world” example for a function written in the waterfall fashion
might be the following code:
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fun apply_fresh_args f ctxt =
f |> fastype_of
|> binder_types
[> map (pair "z")
|> Variable.variant_frees ctxt [f]
|> map Free
|> curry list_comb f

This function takes a term and a context as argument. If the term is of function type,
then apply_fresh_args returns the term with distinct variables applied to it. For
example below three variables are applied to the term P::nat = int = unit =
bool:

let
val trm = @{term "P::nat = int = unit = bool"}
val ctxt = @{context}
in
apply_fresh_args trm ctxt
[> string_of_term ctxt
[> tracing
end
> P z za zb

You can read off this behaviour from how apply_fresh_args is coded: in Line 2, the
function fastype_of calculates the type of the term; binder_types in the next line
produces the list of argument types (in the case above the list [nat, int, unit]);
Line 4 pairs up each type with the string z; the function variant_frees generates
for each z a unique name avoiding the given f; the list of name-type pairs is turned
into a list of variable terms in Line 6, which in the last line is applied by the function
list_comb to the original term. In this last step we have to use the function curry,
because 1ist_comb expects the function and the variables list as a pair.

Functions like apply_fresh_args are often needed when constructing terms involv-
ing fresh variables. For this the infrastructure helps tremendously to avoid any name
clashes. Consider for example:

let
val trm = @{term "za::’a = ’b = ’c"}
val ctxt = @{context}
in
apply_fresh_args trm ctxt
[> string_of_term ctxt
[> tracing
end
> za z zb

where the za is correctly avoided.

The combinator #> is the reverse function composition. It can be used to define the
following function
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val inc_by_six =
(fn x => x + 1) #>
(fn x => x + 2) #>
(fn x => x + 3)

which is the function composed of first the increment-by-one function and then
increment-by-two, followed by increment-by-three. Again, the reverse function com-
position allows you to read the code top-down. This combinator is often used for
setup functions inside the setup-command. These functions have to be of type
theory -> theory. More than one such setup function can be composed with #>.
For example

setup {* let
val (ivall, setup_ivall) = Attrib.config_int "ivall" 1
val (ival2, setup_ival2) = Attrib.config_int "ival2" 2
in
setup_ivall #>
setup_ival2
end *}

after this the configuration values ivall and ival2 are known in the current the-
ory and can be manipulated by the user (for more information about configuration
values see Section 2.5, for more about setup functions see Section 4.1).

The remaining combinators we describe in this section add convenience for the “wa-
terfall method” of writing functions. The combinator tap allows you to get hold of
an intermediate result (to do some side-calculations for instance). The function

fun inc_by_three x =
x [> (fn x => x + 1)
[> tap (fn x => tracing (PolyML.makestring x))
[> (fn x => x + 2)

increments the argument first by 1 and then by 2. In the middle (Line 3), however, it
uses tap for printing the “plus-one” intermediate result. The function tap can only
be used for side-calculations, because any value that is computed cannot be merged
back into the “main waterfall”. To do this, you can use the next combinator.

The combinator ¢ (a backtick) is similar to tap, but applies a function to the value
and returns the result together with the value (as a pair). It is defined as
fun ‘f = fn x => (f x, x)

An example for this combinator is the function

fun inc_as_pair x =
x [> ‘(fn x => x + 1)
[> (fn (x, y) => (x, y + 1))
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which takes x as argument, and then increments x, but also keeps x. The intermedi-
ate result is therefore the pair (x + 1, x). After that, the function increments the
right-hand component of the pair. So finally the result will be (x + 1, x + 1).
The combinators />> and | /> are defined for functions manipulating pairs. The first
applies the function to the first component of the pair, defined as

fun (x, y) [>> f = (£ x, y)

and the second combinator to the second component, defined as

fun (x, y) |I> f = (x, fy)

These two functions can, for example, be used to avoid explicit 1ets for intermediate
values in functions that return pairs. As an example, suppose you want to separate
a list of integers into two lists according to a threshold. If the threshold is 5, the list
[1,6,2,5,3,4] should be separated as ([1,2,3,4], [6,5]). Such a function can
be implemented as

fun separate i [] = ([]1, [])
| separate i (x::xs) =

let

val (los, grs) = separate i xs
in

if i <= x then (los, x::grs) else (x::los, grs)
end

where the return value of the recursive call is bound explicitly to the pair (los,
grs). However, this function can be implemented more concisely as

fun separate i [] = ([1, [1)
| separate i (x::xs) =
if i <= x
then separate i xs [[> cons x
else separate i xs [>> cons x

avoiding the explicit 1et. While in this example the gain in conciseness is only small,
in more complicated situations the benefit of avoiding lets can be substantial.

With the combinator [-> you can re-combine the elements from a pair. This combi-
nator is defined as

fun (x, y) |-> f =fxy

and can be used to write the following roundabout version of the double function:
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fun double x =
x [> (fn x => (x, x))
[-> (fn x => fn y => x + y)

The combinator [ />> plays a central role whenever your task is to update a theory
and the update also produces a side-result (for example a theorem). Functions for
such tasks return a pair whose second component is the theory and the fist compo-
nent is the side-result. Using |/>>, you can do conveniently the update and also
accumulate the side-results. Consider the following simple function.

fun acc_incs x =
x [> (fn x => ("", x))
[[>> (fn x => (x, x + 1))
[[>> (fn x => (x, x + 1))
[[>> (fn x => (x, x + 1))

The purpose of Line 2 is to just pair up the argument with a dummy value (since
| |>> operates on pairs). Each of the next three lines just increment the value by
one, but also nest the intermediate results to the left. For example

acc_incs 1

> (, 1), 2), 3), 4)
You can continue this chain with:

acc_incs 1 [[>> (fn x => (x, x + 2))

> oo, 1), 2), 3), 4, 6)

Recall that /> is the reverse function application. Recall also that the related reverse
function composition is #>. In fact all the combinators [->, [>>, [[/> and [[>>
described above have related combinators for function composition, namely #->,
#>>, ##> and ##>>. Using #->, for example, the function double can also be written
as:

val double =
(fn x => (x, x))
#-> (fn x => fn y => x + y)

When using combinators for writing functions in waterfall fashion, it is sometimes
necessary to do some “plumbing” in order to fit functions together. We have already
seen such plumbing in the function apply_fresh_args, where curry is needed for
making the function 1ist_comb, which works over pairs, to fit with the combina-
tor />. Such plumbing is also needed in situations where a function operates over

SFIXME: maybe give a “real world” example for this combinator.
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lists, but one calculates only with a single element. An example is the function
check_terms, whose purpose is to simultaneously type-check a list of terms. Con-
sider the code:

let
val ctxt = @{context}
in
map (Syntax.parse_term ctxt) ["m + n", "m * n", "m - (n::nat)"]
|> Syntax.check_terms ctxt
|> string_of_terms ctxt
[> tracing
end
>m+n, m* n, m - n

In this example we obtain three terms (using the function parse_term) whose vari-
ables m and n are of type nat. If you have only a single term, then check_terms
needs plumbing. This can be done with the function singleton.* For example

let
val ctxt = @{context}

in
Syntax.parse_term ctxt "m - (u::nat)"
|> singleton (Syntax.check_terms ctxt)
|> string_of_term ctxt
|> tracing

end

>m-n

where in Line 5, the function operating over lists fits with the single term generated
in Line 4.

Read More

The most frequently used combinators are defined in the files Pure/library.ML and
Pure/General/basics.ML. Also [Impl. Man., Sec. B.1] contains further information about
combinators.

56

2.4 ML-Antiquotations

Recall from Section 2.1 that code in Isabelle is always embedded in a theory. The
main advantage of this is that the code can contain references to entities defined on
the logical level of Isabelle. By this we mean references to definitions, theorems,

“There is already a function check_term in the file Pure/Syntax/syntax.ML that is implemented
in terms of singleton and check_terms.

>FIXME: find a good exercise for combinators

SFIXME: say something about calling conventions


http://isabelle.in.tum.de/repos/isabelle/raw-file/tip/src/Pure/library.ML
http://isabelle.in.tum.de/repos/isabelle/raw-file/tip/src/Pure/General/basics.ML
http://isabelle.in.tum.de/repos/isabelle/raw-file/tip/src/Pure/Syntax/syntax.ML
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terms and so on. These reference are realised in Isabelle with ML-antiquotations,
often just called antiquotations.” Syntactically antiquotations are indicated by the
@-sign followed by text wrapped in {... }. For example, one can print out the name
of the current theory with the code

Context.theory_name @{theory}
> "FirstSteps"

where @{theory} is an antiquotation that is substituted with the current theory
(remember that we assumed we are inside the theory FirstSteps). The name of
this theory can be extracted using the function theory_name.

Note, however, that antiquotations are statically linked, that is their value is deter-
mined at “compile-time”, not at “run-time”. For example the function

fun not_current_thyname () = Context.theory_name @{theory}

does not return the name of the current theory, if it is run in a different theory.
Instead, the code above defines the constant function that always returns the string
"FirstSteps", no matter where the function is called. Operationally speaking, the
antiquotation @{theory} is not replaced with code that will look up the current
theory in some data structure and return it. Instead, it is literally replaced with the
value representing the theory.

Another important antiquotation is @{context}. (What the difference between a
theory and a context is will be described in Chapter 4.) A context is for example
needed in order to use the function print_abbrevs that list of all currently defined
abbreviations.

ProofContext.print_abbrevs @{context}

> Code_Evaluation.valtermify = Ax. (x, Au. Code_Evaluation.termify x)
> INTER = INFI

> Inter = Inf
>

You can also use antiquotations to refer to proved theorems: @{thm ...} for a single
theorem

o{thm allIl}
> (Ax. 7P x) = Vx. 7P x

"Note that there are two kinds of antiquotations in Isabelle, which have very different purposes
and infrastructures. The first kind, described in this section, are ML-antiquotation. They are used to
refer to entities (like terms, types etc) from Isabelle’s logic layer inside ML-code. The other kind of
antiquotations are document antiquotations. They are used only in the text parts of Isabelle and their
purpose is to print logical entities inside BIgX-documents. Document antiquotations are part of the
user level and therefore we are not interested in them in this Tutorial, except in Appendix A.1 where
we show how to implement your own document antiquotations.
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and @{thms ...} for more than one

©@{thms conj_ac}

> (?P N 7Q) = (7Q N ?P)

> (?P AN ?Q N 7?R) = (?Q N ?P A ?R)
> ((?P AN ?Q) AN ?R) = (?P A ?Q A 7R)

The thm-antiquotations can also be used for manipulating theorems. For example,
if you need the version of te theorem refl that has a meta-equality instead of an
equality, you can write

O@{thm refl[THEN eq_reflection]}
> ?x = 7x

The point of these antiquotations is that referring to theorems in this way makes your
code independent from what theorems the user might have stored under this name
(this becomes especially important when you deal with theorem lists; see Section
2.5).

It is also possible to prove lemmas with the antiquotation @{lemma ... by ...}
whose first argument is a statement (possibly many of them separated by and) and
the second is a proof. For example

val foo_thm = @{lemma "True" and "False —> P" by simp_all}
The result can be printed out as follows.

foo_thm [> string_of_thms_no_vars @{context}
|> tracing
> True, False — P

You can also refer to the current simpset via an antiquotation. To illustrate this we
implement the function that extracts the theorem names stored in a simpset.

fun get_thm_names_from_ss simpset =
let
val {simps,...} = MetaSimplifier.dest_ss simpset
in
map #1 simps
end

The function dest_ss returns a record containing all information stored in the
simpset, but here we are only interested in the names of the simp-rules. Now you can
feed in the current simpset into this function. The current simpset can be referred to
using the antiquotation @{simpset}.
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get_thm_names_from_ss @{simpset}
> ["Nat.of_nat_eq_id", "Int.of_int_eq_id", "Nat.One_nat_def", ...]

Again, this way of referencing simpsets makes you independent from additions of
lemmas to the simpset by the user, which can potentially cause loops in your code.

It is also possible to define your own antiquotations. But you should exercise care
when introducing new ones, as they can also make your code also difficult to read. In
the next chapter we describe how to construct terms with the (build in) antiquotation
@{term ... }. A restriction of this antiquotation is that it does not allow you to use
schematic variables in terms. If you want to have an antiquotation that does not
have this restriction, you can implement your own using the function inline from
the structure ML_Antiquote. The code for the antiquotation term_pat is as follows.

let
val parser = Args.context -- Scan.lift Args.name_source

fun term_pat (ctxt, str) =
str [> ProofContext.read_term_pattern ctxt
|> ML_Syntax.print_term
|> ML_Syntax.atomic
in
ML_Antiquote.inline "term_pat" (parser >> term_pat)
end

The parser in Line 2 provides us with a context and a string; this string is transformed
into a term using the function read_term_pattern (Line 5); the next two lines
transform the term into a string so that the ML-system can understand it. (All these
functions will be explained in more detail in later sections.) An example for this
antiquotation is:

@{term_pat "Suc (?x::nat)"}
> Const ("Suc", "nat = nat") $ Var (("x", 0), "nat")

which shows the internal representation of the term Suc ?x. Similarly we can write
an antiquotation for type patterns.

let
val parser = Args.context —-- Scan.lift Args.name_source

fun typ_pat (ctxt, str) =
str [> Syntax.parse_typ ctxt
|> ML_Syntax.print_typ
|> ML_Syntax.atomic
in
ML_Antiquote.inline "typ_pat" (parser >> typ_pat)
end
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Read More
The file Pure/ML/m1_antiquote.ML contains the the definitions for most antiquotations.
Most of the basic operations on ML-syntax are implemented in Pure/ML/ml_syntax.ML.

2.5 Storing Data in Isabelle

Isabelle provides mechanisms for storing (and retrieving) arbitrary data. Before we
delve into the details, let us digress a bit. Conventional wisdom has it that the type-
system of ML ensures that an ’a 1ist, say, can only hold elements of the same type,
namely ’a. Despite this wisdom, however, it is possible to implement a universal
type in ML, although by some arguably accidental features of ML. This universal
type can be used to store data of different type into a single list. In fact, it allows
one to inject and to project data of arbitrary type. This is in contrast to datatypes,
which only allow injection and projection of data for some fixed collection of types.
In light of the conventional wisdom cited above it is important to keep in mind that
the universal type does not destroy type-safety of ML: storing and accessing the data
can only be done in a type-safe manner.

Read More
In Isabelle the universal type is implemented as the type Universal.universal in the file
Pure/ML-Systems/universal.ML.

We will show the usage of the universal type by storing an integer and a boolean
into a single list. Let us first define injection and projection functions for booleans
and integers into and from the type Universal.universal.

local
val fn_int = Universal.tag () : int Universal.tag
val fn_bool = Universal.tag () : bool Universal.tag
in
val inject_int = Universal.taglnject fn_int;
val inject_bool = Universal.taglnject fn_bool;
val project_int = Universal.tagProject fn_int;
val project_bool = Universal.tagProject fn_bool
end

Using the injection functions, we can inject the integer 13 and the boolean value
true into Universal.universal, and then store them in a Universal.universal
list as follows:

val foo_list =

let
val thirteen = inject_int 13
val truth_val = inject_bool true
in

[thirteen, truth_vall]
end


http://isabelle.in.tum.de/repos/isabelle/raw-file/tip/src/Pure/ML/ml_antiquote.ML
http://isabelle.in.tum.de/repos/isabelle/raw-file/tip/src/Pure/ML/ml_syntax.ML
http://isabelle.in.tum.de/repos/isabelle/raw-file/tip/src/Pure/ML-Systems/universal.ML
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The data can be retrieved with the projection functions defined above.

project_int (nth foo_list 0);
project_bool (nth foo_list 1)
> 13

> true

Notice that we access the integer as an integer and the boolean as a boolean. If we
attempt to access the integer as a boolean, then we get a runtime error.

project_bool (nth foo_list 0)
> *** Exception- Match raised

This runtime error is the reason why ML is still type-sound despite containing a
universal type.

Now, Isabelle heavily uses this mechanism for storing all sorts of data: theorem lists,
simpsets, facts etc. Roughly speaking, there are two places where data can be stored
in Isabelle: in theories and in proof contexts. Data such as simpsets are “global”
and therefore need to be stored in a theory (simpsets need to be maintained across
proofs and even across theories). On the other hand, data such as facts change inside
a proof and are only relevant to the proof at hand. Therefore such data needs to be
maintained inside a proof context, which represents “local” data.

For theories and proof contexts there are, respectively, the functors Theory_Data
and Proof_Data that help with the data storage. Below we show how to implement
a table in which you can store theorems and look them up according to a string
key. The intention in this example is to be able to look up introduction rules for
logical connectives. Such a table might be useful in an automatic proof procedure
and therefore it makes sense to store this data inside a theory. Consequently we use
the functor Theory_Data. The code for the table is:

structure Data = Theory_Data
(type T = thm Symtab.table
val empty = Symtab.empty
val extend = I
val merge = Symtab.merge (K true))

In order to store data in a theory, we have to specify the type of the data (Line
2). In this case we specify the type thm Symtab.table, which stands for a table
in which strings can be looked up producing an associated thm. We also have to
specify four functions to use this functor: namely how to initialise the data storage
(Line 3), how to extend it (Line 4) and how two tables should be merged (Line 5).
These functions correspond roughly to the operations performed on theories and
we just give some sensible defaults.® The result structure Data contains functions
for accessing the table (Data.get) and for updating it (Data.map). There is also

8FIXME: Say more about the assumptions of these operations.
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the functions Data.put, which however is not relevant here. Below we define two
auxiliary functions, which help us with accessing the table.

val lookup = Symtab.lookup o Data.get
fun update k v = Data.map (Symtab.update (k, v))

Since we want to store introduction rules associated with their logical connective,
we can fill the table as follows.

setup {*
update "op &"  @{thm conjI} #>
update "op -->" @{thm impI} #>
update "A11" @{thm allIl}

*}

The use of the command setup makes sure the table in the current theory is updated
(this is explained further in section 4.1). The lookup can now be performed as
follows.

lookup @{theory} "op &"
> SOME "[?P; 7Q] = 7P A 7Q"

An important point to note is that these tables (and data in general) need to be
treated in a purely functional fashion. Although we can update the table as follows

setup {* update "op &" @{thm TrueI} *}
and accordingly, Iookup now produces the introduction rule for True

lookup @{theory} "op &"
> SOME "True"

there are no references involved. This is one of the most fundamental coding con-
ventions for programming in Isabelle. References interfere with the multithreaded
execution model of Isabelle and also defeat its undo-mechanism. To see the latter,
consider the following data container where we maintain a reference to a list of
integers.

structure WrongRefData = Theory_Data
(type T = (int list) Unsynchronized.ref
val empty = Unsynchronized.ref []
val extend = I
val merge = fst)

We initialise the reference with the empty list. Consequently a first lookup produces
ref [].
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WrongRefData.get @{theory}
> ref []

For updating the reference we use the following function

fun ref_update n = WrongRefData.map
(fn r => let val _ = r := n::(!r) in r end)

which takes an integer and adds it to the content of the reference. As before, we
update the reference with the command setup.

setup {* ref_update 1 *}

A lookup in the current theory gives then the expected list ref [1].

WrongRefData.get @{theory}
> ref [1]

So far everything is as expected. But, the trouble starts if we attempt to backtrack to
the “point” before the setup-command. There, we would expect that the list is empty
again. But since it is stored in a reference, Isabelle has no control over it. So it is not
empty, but still ref [1]. Adding to the trouble, if we execute the setup-command
again, we do not obtain ref [1], but

WrongRefData.get @{theory}
> ref [1, 1]

Now imagine how often you go backwards and forwards in your proof scripts. By
using references in Isabelle code, you are bound to cause all hell to break loose.
Therefore observe the coding convention: Do not use references for storing data!

Read More

The functors for data storage are defined in Pure/context.ML. Isabelle contains
implementations of several container data structures, including association lists in
Pure/General/alist.ML, directed graphs in Pure/General/graph.ML, and tables and
symtables in Pure/General/table.ML.

Storing data in a proof context is done in a similar fashion. As mentioned before, the
corresponding functor is Proof_Data. With the following code we can store a list of
terms in a proof context.

structure Data = Proof_Data
(type T = term list
fun init _ = [])


http://isabelle.in.tum.de/repos/isabelle/raw-file/tip/src/Pure/context.ML
http://isabelle.in.tum.de/repos/isabelle/raw-file/tip/src/Pure/General/alist.ML
http://isabelle.in.tum.de/repos/isabelle/raw-file/tip/src/Pure/General/graph.ML
http://isabelle.in.tum.de/repos/isabelle/raw-file/tip/src/Pure/General/table.ML
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The init-function we have to specify must produce a list for when a context is ini-
tialised (possibly taking the theory into account from which the context is derived).
We choose here to just return the empty list. Next we define two auxiliary functions
for updating the list with a given term and printing the list.

fun update trm = Data.map (fn trms => trm::trms)

fun print ctxt
case (Data.get ctxt) of
[] => tracing "Empty!"

| trms => tracing (string_of_terms ctxt trms)

Next we start with the context generated by the antiquotation @{context} and up-
date it in various ways.

let
val ctxtO = @{context}
val ctxtl = ctxtO |> update @{term "False"}
|> update @{term "True A True"}
val ctxt2 = ctxtO [> update @{term "1::nat"}
val ctxt3 = ctxt2 [> update @{term "2::nat"}
in
print ctxtO;
print ctxtl;
print ctxt2;
print ctxt3
end
> Empty!
> True N True, False
> 1
> 2, 1

Many functions in Isabelle manage and update data in a similar fashion. Conse-
quently, such calculations with contexts occur frequently in Isabelle code, although
the “context flow” is usually only linear. Note also that the calculation above has
no effect on the underlying theory. Once we throw away the contexts, we have no
access to their associated data. This is different for theories, where the command
setup registers the data with the current and future theories, and therefore one can
access the data potentially indefinitely.

For convenience there is an abstract layer, namely the type Context.generic, for
treating theories and proof contexts more uniformly. This type is defined as follows

datatype generic =
Theory of theory
| Proof of proof

“FIXME: say more about generic contexts.
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There are two special instances of the data storage mechanism described above. The
first instance implements named theorem lists using the functor Named_Thms. This
is because storing theorems in a list is such a common task. To obtain a named
theorem list, you just declare

structure FooRules = Named_Thms
(val name = "foo"
val description = "Theorems for foo')

and set up the FooRules with the command

setup {* FooRules.setup *}

This code declares a data container where the theorems are stored, an attribute foo
(with the add and del options for adding and deleting theorems) and an internal
ML-interface for retrieving and modifying the theorems. Furthermore, the theorems
are made available on the user-level under the name foo. For example you can
declare three lemmas to be a member of the theorem list foo by:

lemma rulel[foo]: "A" sorry
lemma rule2[foo]: "B" sorry
lemma rule3[foo]: "C" sorry

and undeclare the first one by:

declare rulei[foo dell

You can query the remaining ones with:

thm foo
> 7C
> 7B

On the ML-level, we can add theorems to the list with FooRules.add_thm:
setup {* Context.theory_map (FooRules.add_thm @{thm TrueI}) *}
The rules in the list can be retrieved using the function FooRules.get:

FooRules.get @{context}
> ["True "’ n ?C”’ n ?B”J

Note that this function takes a proof context as argument. This might be confusing,
since the theorem list is stored as theory data. It becomes clear by knowing that the
proof context contains the information about the current theory and so the function
can access the theorem list in the theory via the context.
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Read More
For more information about named theorem lists see Pure/Tools/named_thms . ML.

The second special instance of the data storage mechanism are configuration val-
ues. They are used to enable users to configure tools without having to resort to
the ML-level (and also to avoid references). Assume you want the user to control
three values, say bval containing a boolean, ival containing an integer and sval
containing a string. These values can be declared by

val (bval, setup_bval) = Attrib.config_bool "bval" false
val (ival, setup_ival) = Attrib.config_int "ival" O
val (sval, setup_sval) = Attrib.config_string "sval" "some string"

where each value needs to be given a default. To enable these values on the user-
level, they need to be set up with

setup {*
setup_bval #>
setup_ival #>
setup_sval

*}

The user can now manipulate the values from the user-level of Isabelle with the
command

declare [[bval = true, ival = 3]]

On the ML-level these values can be retrieved using the function get from a proof
context

Config.get @{context} bval
> true

or directly from a theory using the function get_thy

Config.get_thy @{theory} bval
> true

It is also possible to manipulate the configuration values from the ML-level with the
functions put and put_thy. For example

let
val ctxt = @{context}
val ctxt’ = Config.put sval "foo" ctxt
val ctxt’’ = Config.put sval "bar" ctxt’
in
(Config.get ctxt sval,


http://isabelle.in.tum.de/repos/isabelle/raw-file/tip/src/Pure/Tools/named_thms.ML
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Config.get ctxt’ sval,
Config.get ctxt’’ sval)

end

> ("some string", "foo", "bar")

Read More
For more information about configuration values see the files Pure/Isar/attrib.ML and
Pure/config.ML.

2.6 Summary

This chapter describes the combinators that are used in Isabelle, as well as a simple
printing infrastructure for term, cterm and thm. The section on ML-antiquotations
shows how to refer statically to entities from the logic level of Isabelle. Isabelle also
contains mechanisms for storing arbitrary data in theory and proof contexts.

Coding Conventions / Rules of Thumb

e Print messages that belong together in a single string.

e Do not use references in Isabelle code.


http://isabelle.in.tum.de/repos/isabelle/raw-file/tip/src/Pure/Isar/attrib.ML
http://isabelle.in.tum.de/repos/isabelle/raw-file/tip/src/Pure/config.ML
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Chapter 3

Isabelle Essentials

One man’s obfuscation is another man’s abstraction.

Frank Ch. Eigler on the Linux Kernel Mailing List,
24 Nov. 2009

Isabelle is build around a few central ideas. One central idea is the LCF-approach to
theorem proving [3] where there is a small trusted core and everything else is built
on top of this trusted core. The fundamental data structures involved in this core are
certified terms and certified types, as well as theorems.

3.1 Terms and Types

In Isabelle, there are certified terms and uncertified terms (respectively types). Un-
certified terms are often just called terms. One way to construct them is by using the
antiquotation @{term ... }. For example

@{term "(a::nat) + b = c"}
> Const ("op =", ...) $
>  (Const ("Groups.plus_class.plus", ...) $ ... $ ...) $ ...

constructs the term a + b = c. The resulting term is printed using the internal
representation corresponding to the datatype term, which is defined as follows:

datatype term =

Const of string * typ
Free of string * typ

Var of indexname * typ
Bound of int

Abs of string * typ * term
$ of term * term

—_—— — — —

This datatype implements Church-style lambda-terms, where types are explicitly
recorded in variables, constants and abstractions. As can be seen in Line 5, terms use

31



32 CHAPTER 3. ISABELLE ESSENTIALS

the usual de Bruijn index mechanism for representing bound variables. For example
in

@{term "Ax y. x y"}
> Abs ("x", "’a = ’b", Abs ("y", "’a", Bound 1 $ Bound 0))

the indices refer to the number of Abstractions (Abs) that we need to skip until we hit
the Abs that binds the corresponding variable. Constructing a term with dangling de
Bruijn indices is possible, but will be flagged as ill-formed when you try to typecheck
or certify it (see Section 3.5). Note that the names of bound variables are kept at
abstractions for printing purposes, and so should be treated only as “comments”.
Application in Isabelle is realised with the term-constructor $.

Isabelle makes a distinction between free variables (term-constructor Free and writ-
ten on the user level in blue colour) and schematic variables (term-constructor Var
and written with a leading question mark). Consider the following two examples

let
val vl = Var (("x", 3), @{typ bool})
val v2 = Var (("x1", 3), @{typ bool})
val v3 = Free ("x", @{typ bool})

in
string_of_terms @{context} [vl, v2, v3]
[> tracing

end

> ?x3, 7x1.3, x

When constructing terms, you are usually concerned with free variables (as men-
tioned earlier, you cannot construct schematic variables using the antiquotation
@{term ...}). If you deal with theorems, you have to, however, observe the dis-
tinction. The reason is that only schematic variables can be instantiated with terms
when a theorem is applied. A similar distinction between free and schematic vari-
ables holds for types (see below).

Read More

Terms and types are described in detail in [Impl. Man., Sec. 2.2]. Their definition and many
useful operations are implemented in Pure/term.ML. For constructing terms involving HOL
constants, many helper functions are defined in HOL/Tools/hologic.ML.

Constructing terms via antiquotations has the advantage that only typable terms can
be constructed. For example

@{term "x x"}
> Type unification failed: Occurs check!

raises a typing error, while it perfectly ok to construct the term with the raw ML-
constructors:


http://isabelle.in.tum.de/repos/isabelle/raw-file/tip/src/Pure/term.ML
http://isabelle.in.tum.de/repos/isabelle/raw-file/tip/src/HOL/Tools/hologic.ML
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let
val omega = Free ("x", @{typ "nat = nat"}) $ Free ("x", @{typ nat})
in
tracing (string_of_term @{context} omega)
end
> X X

Sometimes the internal representation of terms can be surprisingly different from
what you see at the user-level, because the layers of parsing/type-checking/pretty
printing can be quite elaborate.

Exercise 3.1.1: Look at the internal term representation of the following terms, and find out
why they are represented like this:

ecase x of 0 = 0 | Sucy =y
e \(x, y). Py x
o {[x] | x < -2}

Hint: The third term is already quite big, and the pretty printer may omit parts of it by default.
If you want to see all of it, you can use the following ML-function to set the printing depth to a
higher value:

print_depth 50

The antiquotation @{prop ...} constructs terms by inserting the usually invisible
Trueprop-coercions whenever necessary. Consider for example the pairs

(e{term "P x"}, @{prop "P x"})
> (Free ("P", ...) $ Free ("x", ...),
> Const ("Trueprop", ...) $ (Free ("P", ...) $ Free ("x", ...)))

where a coercion is inserted in the second component and

(e{term "P x — @ x"}, @{prop "P x — Q x"})
> (Const ("==>", ...) $& ... & ...,
> Const ("==>", ...) % ... $ ...)

where it is not (since it is already constructed by a meta-implication). The pur-
pose of the Trueprop-coercion is to embed formulae of an object logic, for example
HOL, into the meta-logic of Isabelle. The coercion is needed whenever a term is
constructed that will be proved as a theorem.

As already seen above, types can be constructed using the antiquotation @{typ ...}
For example:
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@{typ "bool = nat"}
> bool = nat

The corresponding datatype is

datatype typ =

Type of string * typ list
| TFree of string * sort
| TVar of indexname * sort

Like with terms, there is the distinction between free type variables (term-constructor
TFree) and schematic type variables (term-constructor TVar and printed with a lead-
ing question mark). A type constant, like int or bool, are types with an empty list
of argument types. However, it needs a bit of effort to show an example, because
Isabelle always pretty prints types (unlike terms). Using just the antiquotation @{typ
"bool"} we only see

@{typ "bool"}
> bool

which is the pretty printed version of bool. However, in PolyML (version >5.3) it
is easy to install your own pretty printer. With the function below we mimic the
behaviour of the usual pretty printer for datatypes (it uses pretty-printing functions
which will be explained in more detail in Section 3.9).

local
fun pp_pair (x, y) = Pretty.list "(" ")" [x, y]
fun pp_list xs = Pretty.list "[" "]" xs
fun pp_str s Pretty.str s
fun pp_gstr s Pretty.quote (pp_str s)
fun pp_int i = pp_str (string of_int i)
fun pp_sort S = pp_list (map pp_gstr S)
fun pp_constr a args = Pretty.block [pp_str a, Pretty.brk 1, args]
in
fun raw_pp_typ (TVar ((a, i), S)) =
pp_constr "TVar" (pp_pair (pp_pair (pp_gqstr a, pp_int i), pp_sort S))
| raw_pp_typ (TFree (a, S)) =
pp_constr "TFree" (pp_pair (pp_gstr a, pp_sort S))
| raw_pp_typ (Type (a, tys)) =
pp_constr "Type" (pp_pair (pp_gstr a, pp_list (map raw_pp_typ tys)))

end
We can install this pretty printer with the function addPrettyPrinter as follows.

PolyML.addPrettyPrinter
(fn _ => fn _ => ml_pretty o Pretty.to_ML o raw_pp_typ)

Now the type bool is printed out in full detail.
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@{typ "bool"}
> Type ("bool", [])

When printing out a list-type

o{typ "’a list"}
> Type ("List.list", [TFree ("’a", ["HOL.type"])])

we can see the full name of the type is actually List.list, indicating that it is
defined in the theory List. However, one has to be careful with names of types,
because even if fun, bool and nat are defined in the theories HOL and Nat, respec-
tively, they are still represented by their simple name.

@{typ "bool = nat"}
> Type ("fun", [Type ("bool", []), Type ("nat", [1)])

We can restore the usual behaviour of Isabelle’s pretty printer with the code

PolyML.addPrettyPrinter
(fn _ => fn _ => ml_pretty o Pretty.to_ML o Proof_Display.pp_typ Pure.thy)

After that the types for booleans, lists and so on are printed out again the standard
Isabelle way.

@{typ "bool"};
e{typ "’a list"}
> I’booll’

> "’a List.list"

Read More
Types are described in detail in [Impl. Man., Sec. 2.1]. Their definition and many useful
operations are implemented in Pure/type.ML.

3.2 Constructing Terms and Types Manually

While antiquotations are very convenient for constructing terms, they can only con-
struct fixed terms (remember they are “linked” at compile-time). However, you often
need to construct terms manually. For example, a function that returns the implica-
tion A (x::nat). P x — @ x taking P and Q as arguments can only be written
as:


http://isabelle.in.tum.de/repos/isabelle/raw-file/tip/src/Pure/type.ML
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fun make_imp P @ =

let

val x = Free ("x", @{typ nat})
in

Logic.all x (Logic.mk_implies (P $ x, Q $ x))
end

The reason is that you cannot pass the arguments P and @ into an antiquotation.!
For example the following does not work.

fun make_wrong_imp P = @{prop "A(x::nat). P x — Q x"}

To see this, apply @{term S} and @{term T} to both functions. With make_imp you
obtain the intended term involving the given arguments

make_imp @{term S} @{term T}

> Const ... §

> Abs ("x", Type ("nat",[]),

> Const ... $ (Free ("S",...) $ ...) $ (Free ("T",...) $ ...))

whereas with make_wrong_imp you obtain a term involving the P and @ from the
antiquotation.

make_wrong_imp @{term S} @{term T}

> Const ... $

>  Abs ("x", ...,

> Const ... $ (Const ... $ (Free ("P",...) $ ...)) §
> (Const ... $ (Free ("Q",...) $ ...)))

There are a number of handy functions that are frequently used for constructing
terms. One is the function 1ist_comb, which takes as argument a term and a list of
terms, and produces as output the term list applied to the term. For example

let
val trm = @{term "P::bool = bool = bool"}
val args = [@{term "True"}, @{term "False"}]
in
list_comb (trm, args)
end
> Free ("P", "bool = bool = bool")
> $ Const ("True", "bool") $ Const ("False", "bool'")

Another handy function is 1ambda, which abstracts a variable in a term. For example

At least not at the moment.
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let
val x_nat = @{term "x::nat"}
val trm = @{term "(P::nat = bool) x"}
in
lambda x_nat trm
end
> Abs ("x", '"nat", Free ("P", "bool = bool") $ Bound 0)

In this example, 1ambda produces a de Bruijn index (i.e. Bound 0), and an abstrac-
tion, where it also records the type of the abstracted variable and for printing pur-
poses also its name. Note that because of the typing annotation on P, the variable x
in P x is of the same type as the abstracted variable. If it is of different type, as in

let
val x_int = @{term "x::int"}
val trm = @{term "(P::nat = bool) x"}
in
lambda x_int trm
end
> Abs ("x", "int", Free ("P", "nat = bool") $ Free ("x", "nat"))

then the variable Free ("x", "int") is not abstracted. This is a fundamental prin-
ciple of Church-style typing, where variables with the same name still differ, if they
have different type.

There is also the function subst_free with which terms can be replaced by other
terms. For example below, we will replace in f 0 x the subterm f 0 by y, and x by
True.

let
val subl = (@{term "(f::nat = nat = nat) 0"}, @{term "y::nat = nat"})
val sub2 = (@{term "x::nat"}, @{term "True"})
val trm = @{term "((f::nat = nat = nat) 0) x"}
in
subst_free [subl, sub2] trm
end
> Free ("y", "nat = nat") $ Const ("True", "bool")

As can be seen, subst_free does not take typability into account. However it takes
alpha-equivalence into account:

let
val sub = (@{term "(Ay::nat. y)"}, @{term "x::nat"})
val trm = @{term "(\x::nat. x)"}

in
subst_free [sub] trm

end

> Free ("X", "nat")
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Similarly the function subst_bounds, replaces lose bound variables with terms. To
see how this function works, let us implement a function that strips off the outermost
quantifiers in a term.

fun strip_alls t =
let
fun aux (x, T, t) = strip_alls t [>> cons (Free (x, T))
in
case t of
Const ("A11", _) $ Abs body => aux body
[ - = (1, t)

end

The function returns a pair consisting of the stripped off variables and the body of
the universal quantification. For example

strip_alls @{term "Vx y. x = (y::bool)"}
> ([Free ("x", "bool"), Free ("y", "bool")],
> Const ("op =", ...) $ Bound 1 $ Bound 0)

After calling strip_alls, you obtain a term with lose bound variables. With the
function subst_bounds, you can replace these lose Bounds with the stripped off
variables.

let
val (vrs, trm) = strip_alls @{term "Vx y. x = (y::bool)"}
in
subst_bounds (rev vrs, trm)
|> string_of_term @{context}
[> tracing
end
>X =y

Note that in Line 4 we had to reverse the list of variables that strip_alls returned.
The reason is that the head of the list the function subst_bounds takes is the re-
placement for Bound 0, the next element for Bound 1 and so on.

Notice also that this function might introduce name clashes, since we substitute just
a variable with the name recorded in an abstraction. This name is by no means
unique. If clashes need to be avoided, then we should use the function dest_abs,
which returns the body where the lose de Bruijn index is replaced by a unique free
variable. For example

let

val body = Bound 0 $ Free ("x", @{typ nat})
in

Term.dest_abs ("x", @{typ "nat = bool"}, body)
end

> ("xa", Free ("xa", "mat = bool") $ Free ("x", "nat'"))
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There are also many convenient functions that construct specific HOL-terms in the
structure HOLogic. For example mk_eq constructs an equality out of two terms. The
types needed in this equality are calculated from the type of the arguments. For
example

let
val eq = HOLogic.mk_eq (@{term "True"}, @{term "False"})
in
string_of_term @{context} eq
|> tracing
end
> True = False

Read More
There are many functions in Pure/term.ML, Pure/logic.ML and HOL/Tools/hologic.ML
that make manual constructions of terms and types easier.

When constructing terms manually, there are a few subtle issues with constants.
They usually crop up when pattern matching terms or types, or when constructing
them. While it is perfectly ok to write the function is_true as follows

fun is_true @{term True} = true
| is_true = false

this does not work for picking out V -quantified terms. Because the function

fun is_all (@{term All} $ _) = true
| is_all = false

will not correctly match the formula "V x: :nat. P x":

is_all @{term "V x::nat. P x"}
> false

The problem is that the @term-antiquotation in the pattern fixes the type of the
constant A11 to be (’a = bool) = bool for an arbitrary, but fixed type ’a. A
properly working alternative for this function is

fun is_all (Const ("A1l", _) $ _) = true
| is_all = false

because now

is_all @{term "V x::nat. P x"}
> true


http://isabelle.in.tum.de/repos/isabelle/raw-file/tip/src/Pure/term.ML
http://isabelle.in.tum.de/repos/isabelle/raw-file/tip/src/Pure/logic.ML
http://isabelle.in.tum.de/repos/isabelle/raw-file/tip/src/HOL/Tools/hologic.ML
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matches correctly (the first wildcard in the pattern matches any type and the second
any term).

However there is still a problem: consider the similar function that attempts to pick
out Nil-terms:

fun is_nil (Const ("Nil", _)) = true
| is_nil = false

Unfortunately, also this function does not work as expected, since

is_nil @{term "Nil"}
> false

The problem is that on the ML-level the name of a constant is more subtle than you
might expect. The function is_all worked correctly, because A11 is such a funda-
mental constant, which can be referenced by Const ("A11", some_type). How-
ever, if you look at

@{term "Nil"}
> Const ("List.list.Nil", ...)

the name of the constant Nil depends on the theory in which the term constructor
is defined (List) and also in which datatype (1ist). Even worse, some constants
have a name involving type-classes. Consider for example the constants for zero
and (op *):

(e{term "O::nat"}, @{term "(op *)"})
> (Const ("Groups.zero_class.zero", ...),
> Const ("Groups.times_class.times", ...))

While you could use the complete name, for example Const ("List.list.Nil",
some_type), for referring to or matching against Nil, this would make the code
rather brittle. The reason is that the theory and the name of the datatype can eas-
ily change. To make the code more robust, it is better to use the antiquotation
@{const_name ...}. With this antiquotation you can harness the variable parts of
the constant’s name. Therefore a function for matching against constants that have
a polymorphic type should be written as follows.

fun is_nil_or_all (Const (@{const_name "Nil"}, _)) = true
| is_nil_or_all (Const (@{const_name "Al1l"}, _) $ _) = true
| is_nil_or_all _ = false

The antiquotation for properly referencing type constants is @{type_name ... }. For
example
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O@{type_name "list"}
> "List.list"

Although types of terms can often be inferred, there are many situations where you
need to construct types manually, especially when defining constants. For example
the function returning a function type is as follows:

fun make_fun_type tyl ty2 = Type ("fun", [tyl, ty2])
This can be equally written with the combinator --> as:
fun make_fun_type tyl ty2 = tyl --> ty2

If you want to construct a function type with more than one argument type, then
you can use --->.

fun make_fun_types tys ty = tys —-—-—> ty

A handy function for manipulating terms is map_types: it takes a function and ap-
plies it to every type in a term. You can, for example, change every nat in a term
into an int using the function:

fun nat_to_int ty =
(case ty of
@{typ nat} => @{typ int}
| Type (s, tys) => Type (s, map nat_to_int tys)
[ - => ty)

Here is an example:

map_types nat_to_int @{term "a = (1::nat)"}
> Const ("op =", "int = int = bool")
> $ Free ("a", "int") $ Const ("HOL.one_class.one'", "int")

If you want to obtain the list of free type-variables of a term, you can use the function
add_tfrees (similarly add_tvars for the schematic type-variables). One would
expect that such functions take a term as input and return a list of types. But their
type is actually

Term.term -> (string * Term.sort) list -> (string * Term.sort) list

that is they take, besides a term, also a list of type-variables as input. So in order to
obtain the list of type-variables of a term you have to call them as follows
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Term.add_tfrees @{term "(a, b)"} []
> [(”)b”’ [”HDL'type”J)’ (”)a”, [”HUL'type"])J

The reason for this definition is that add_tfrees can be easily folded over a list of
terms. Similarly for all functions named add_* in Pure/term.ML.

Exercise 3.2.1: Write a function rev_sum : term -> term that takes a term of the form t;
+ tg + ... + t, (Whereby n might be one) and returns the reversed sum t,, + ... + to +
t1. Assume the t; can be arbitrary expressions and also note that + associates to the left. Try
your function on some examples.

Exercise 3.2.2: Write a function that takes two terms representing natural numbers in unary
notation (like Suc (Suc (Suc 0))), and produces the number representing their sum.

Exercise 3.2.3: Implement the function, which we below name deBruijn, that depends on a
natural number n>0 and constructs terms of the form:

el . .
rhsn =ef /\1=1...n. Pi

lhs n def /\i=1...n.Pi=P(i+1modn)~>rhsn

deBruijn n =4 lhsn — rhsn

This function returns for n=3 the term

(P1=P2—P1ANP2AP3)A
(P2=P3—P1ANP2AP3)A
(P3=P1—P1ANP2ANP3) —P1IANP2AP3

Make sure you use the functions defined in HOL/Tools/hologic.ML for constructing the terms
for the logical connectives.?

3.3 Unification and Matching

As seen earlier, Isabelle’s terms and types may contain schematic term variables
(term-constructor Var) and schematic type variables (term-constructor TVar). These
variables stand for unknown entities, which can be made more concrete by instan-
tiations. Such instantiations might be a result of unification or matching. While in
case of types, unification and matching is relatively straightforward, in case of terms
the algorithms are substantially more complicated, because terms need higher-order
versions of the unification and matching algorithms. Below we shall use the an-
tiquotations @{typ_pat ...} and @{term_pat ...} from Section 2.4 in order to
construct examples involving schematic variables.

Let us begin with describing the unification and matching functions for types. Both
return type environments (ML-type Type.tyenv) which map schematic type vari-
ables to types and sorts. Below we use the function typ_unify from the structure
Sign for unifying the types ?’a * ?’b and ?’b list * nat. This will produce the
mapping, or type environment, [?’a := ?’b list, ?’b := nat].

2Thanks to Roy Dyckhoff for suggesting this exercise and working out the details.


http://isabelle.in.tum.de/repos/isabelle/raw-file/tip/src/Pure/term.ML
http://isabelle.in.tum.de/repos/isabelle/raw-file/tip/src/HOL/Tools/hologic.ML
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val (tyenv_unif, _) = let

val tyl = @{typ_pat "7’a * 7’b"}

val ty2 = @{typ_pat "?’b list * nat"}
in

Sign.typ_unify @{theory} (tyl, ty2) (Vartab.empty, 0)
end

The environment Vartab.empty in line 5 stands for the empty type environment,
which is needed for starting the unification without any (pre)instantiations. The 0
is an integer index that will be explained below. In case of failure, typ_unify will
throw the exception TUNIFY. We can print out the resulting type environment bound
to tyenv_unif with the built-in function dest from the structure Vartab.

Vartab.dest tyenv_unif
> [(("’a", 0), (["HOL.type"l], "?’b List.list")),
> ((’”b", O), (["HUL.type"], "nat"))]

The first components in this list stand for the schematic type variables and the sec-
ond are the associated sorts and types. In this example the sort is the default sort
HOL.type. Instead of Vartab.dest, we will use in what follows our own pretty-
printing function from Figure 3.1 for Type. tyenvs. For the type environment in the
example this function prints out the more legible:

pretty_tyenv @{context} tyenv_unif
> [?’a := ?’b list, ?’b := nat]

The way the unification function typ_unify is implemented using an initial type
environment and initial index makes it easy to unify more than two terms. For
example

val (tyenvs, _) = let

val tysl = (@e{typ_pat "?’a"}, @{typ_pat "?’b list"})

val tys2 = (@{typ_pat "?’b"}, @{typ_pat "nat"})
in

fold (Sign.typ_unify @{theory}) [tysl, tys2] (Vartab.empty, 0)
end

The index 0 in Line 5 is the maximal index of the schematic type variables occurring
in tys1 and tys2. This index will be increased whenever a new schematic type
variable is introduced during unification. This is for example the case when two
schematic type variables have different, incomparable sorts. Then a new schematic
type variable is introduced with the combined sorts. To show this let us assume two
sorts, say s1 and s2, which we attach to the schematic type variables 7’a and 7’b.
Since we do not make any assumption about the sorts, they are incomparable.

class s1
class s2
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fun pretty_helper aux env =
env [> Vartab.dest
[> map ((fn (s1, s2) =>s1 =~ " := " ~ 52) o aux)
|> commas
|> enclose "[" "]"
[> tracing

fun pretty_tyenv ctxt tyenv =
let
fun get_typs (v, (s, T)) = (TVar (v, s), T)
val print = pairself (Syntax.string_of_typ ctxt)
in
pretty_helper (print o get_typs) tyenv
end

Figure 3.1: A pretty printing function for type environments, which are produced by
unification and matching.

val (tyenv, index) = let
val tyl = @{typ_pat "?’a::s1"}

val ty2 = @{typ_pat "7?’b::s2"}
in

Sign.typ_unify @{theory} (tyl, ty2) (Vartab.empty, 0)
end

To print out the result type environment we switch on the printing of sort information
by setting show_sorts to true. This allows us to inspect the typing environment.

pretty_tyenv @{context} tyenv
> [?’a::s1 := ?’al::{s1, s2}, ?’b::s82 := ?’al::{s1l, s2}]

As can be seen, the type variables 7’a and 7’b are instantiated with a new type
variable ?’a1 with sort {s1, s2}. Since a new type variable has been introduced
the index, originally being 0, has been increased to 1.

index
> 1

Let us now return to the unification problem ?’a * ?’b and ?’b list * nat from
the beginning of this section, and the calculated type environment tyenv_unif:

pretty_tyenv @{context} tyenv_unif
> [?’a := ?°b list, ?’b := nat]

Observe that the type environment which the function typ_unify returns is not
an instantiation in fully solved form: while ?’b is instantiated to nat, this is not
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propagated to the instantiation for ?’a. In unification theory, this is often called
an instantiation in triangular form. These triangular instantiations, or triangular
type environments, are used because of performance reasons. To apply such a type
environment to a type, say ?’a * ?’b, you should use the function norm_type:

Envir.norm_type tyenv_unif @{typ_pat "?’a * 7’b"}
> nat list * nat

Matching of types can be done with the function typ_match also from the structure
Sign. This function returns a Type.tyenv as well, but might raise the exception
TYPE_MATCH in case of failure. For example

val tyenv_match = let

val pat = @{typ_pat "7’a * 7’b"}

and ty = @{typ_pat "bool list * nat"}
in

Sign.typ_match @{theory} (pat, ty) Vartab.empty
end

Printing out the calculated matcher gives

pretty_tyenv @{context} tyenv_match
> [?’a := bool list, ?’b := nat]

Unlike unification, which uses the function norm_type, applying the matcher to a
type needs to be done with the function subst_type. For example

Envir.subst_type tyenv_match @{typ_pat "?’a * 7’b"}
> bool 1list * nat

Be careful to observe the difference: always use subst_type for matchers and
norm_type for unifiers. To show the difference, let us calculate the following matcher:

val tyenv_match’ = let

val pat = @{typ_pat "?’a * ?’b"}

and ty = @{typ_pat "?’b list * nat"}
in

Sign.typ_match @{theory} (pat, ty) Vartab.empty
end

Now tyenv_unif is equal to tyenv_match’. If we apply norm_type to the type 7’a
* 7°b we obtain

Envir.norm_type tyenv_match’ @{typ_pat "?’a * 7’b"}
> nat 1list * nat
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which does not solve the matching problem, and if we apply subst_type to the same
type we obtain

Envir.subst_type tyenv_unif @{typ_pat "7’a * ?’b"}
> ?’b list * nat

which does not solve the unification problem.

Read More

Unification and matching for types is implemented in Pure/type.ML. The “interface” func-
tions for them are in Pure/sign.ML. Matching and unification produce type environments
as results. These are implemented in Pure/envir.ML. This file also includes the substitution
and normalisation functions, which apply a type environment to a type. Type environments
are lookup tables which are implemented in Pure/term_ord.ML.

Unification and matching of terms is substantially more complicated than the type-
case. The reason is that terms have abstractions and, in this context, unification
or matching modulo plain equality is often not meaningful. Nevertheless, Isabelle
implements the function first_order_match for terms. This matching function
returns a type environment and a term environment. To pretty print the latter we
use the function pretty_env:

fun pretty_env ctxt env =
let
fun get_trms (v, (T, t)) = (Var (v, T), t)
val print = pairself (string_of_term ctxt)
in
pretty_helper (print o get_trms) env
end

As can be seen from the get_trms-function, a term environment associates a schematic
term variable with a type and a term. An example of a first-order matching problem
istheterm P (Aa b. @ b a) and the pattern 7X ?Y.

val (_, fo_env) = let

val fo_pat = @{term_pat "(?X::(nat=-nat=-nat)=-bool) ?Y"}

val trm_a = @{term "P::(nat=-nat=-nat)=-bool"}

val trm_b = @{term "Ma b. (Q::nat=>nat=snat) b a"}

val init = (Vartab.empty, Vartab.empty)
in

Pattern.first_order_match @{theory} (fo_pat, trm_a $ trm_b) init
end

In this example we annotated types explicitly because then the type environment is
empty and can be ignored. The resulting term environment is
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pretty_env @{context} fo_env
> [?X := P, ?Y := da b. Q b a]

The matcher can be applied to a term using the function subst_term (remember
the same convention for types applies to terms: subst_term is for matchers and
norm_term for unifiers). The function subst_term expects a type environment,
which is set to empty in the example below, and a term environment.

let
val trm = @{term_pat "(?X::(nat=nat=-nat)=-bool) ?7Y"}
in
Envir.subst_term (Vartab.empty, fo_env) trm
[> string_of_term @{context}
|> tracing
end
>P (Aa b. @ b a)

First-order matching is useful for matching against applications and variables. It
can also deal with abstractions and a limited form of alpha-equivalence, but this
kind of matching should be used with care, since it is not clear whether the result is
meaningful. A meaningful example is matching Ax. P x against the pattern Ay. 7X
y. In this case, first-order matching produces [?X := PJ].

let
val fo_pat = @{term_pat "My. (?X::nat=-bool) y"}
val trm = @{term "Ax. (P::nat=-bool) x"}
val init = (Vartab.empty, Vartab.empty)
in
Pattern.first_order_match @{theory} (fo_pat, trm) init
[> snd
|> pretty_env @{context}
end
> [?X := P]

Unification of abstractions is more thoroughly studied in the context of higher-order
pattern unification and higher-order pattern matching. A pattern is an abstraction
term whose “head symbol” (that is the first symbol under an abstraction) is either a
constant, a schematic variable or a free variable. If it is a schematic variable then it
can only have distinct bound variables as arguments. This excludes terms where a
schematic variable is an argument of another one and where a schematic variable is
applied twice with the same bound variable. The function pattern in the structure
Pattern tests whether a term satisfies these restrictions.

let
val trm_list =
[e{term_pat "7X"}, @{term_pat "a"},
@{term_pat "Xa b. ?X a b"}, @{term_pat "Xa b. (op +) a b"},
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@{term_pat "MAa. (op +) a ?Y"}, @{term_pat "7X ?Y"},
@{term_pat "Xa b. ?X a b ?Y"}, @{term_pat "Mla. ?X a a"}]
in
map Pattern.pattern trm_list
end
> [true, true, true, true, true, false, false, false]

The point of the restriction to patterns is that unification and matching are decid-
able and produce most general unifiers, respectively matchers. In this way, matching
and unification can be implemented as functions that produce a type and term envi-
ronment (unification actually returns a record of type Envir.env containing a max-
index, a type environment and a term environment). The corresponding functions
are match and unify, both implemented in the structure Pattern. An example for
higher-order pattern unification is

let
val trml = @{term_pat "Ax y. g (?X y x) (f (?Y x))"}
val trm2 = @{term_pat "Au v. g u (f u)"}
val init = Envir.empty O
val env = Pattern.unify @{theory} (trml, trm2) init
in
pretty_env @{context} (Envir.term_env env)
end
> [?7X := Ay x. x, ?Y := Ax. x]

The function Envir.empty generates a record with a specified max-index for the
schematic variables (in the example the index is 0) and empty type and term envi-
ronments. The function Envir.term_env pulls out the term environment from the
result record. The corresponding function for type environment is Envir. type_env.
An assumption of this function is that the terms to be unified have already the same
type. In case of failure, the exceptions that are raised are either Pattern, MATCH or
Unif.

As mentioned before, unrestricted higher-order unification, respectively unrestricted
higher-order matching, is in general undecidable and might also not posses a sin-
gle most general solution. Therefore Isabelle implements the unification function
unifiers so that it returns a lazy list of potentially infinite unifiers. An example is
as follows

val uni_seq =

let

val trml = @{term_pat "7X ?7Y"}

val trm2 = @{term "f a"}

val init = Envir.empty O
in

Unify.unifiers (@{theory}, init, [(trml, trm2)])
end

The unifiers can be extracted from the lazy sequence using the function Seq.pull.
In the example we obtain three unifiers uni... un3.
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val SOME ((unl, _), nextl) = Seq.pull uni_seq;
val SOME ((un2, _), next2) Seq.pull nextl;
val SOME ((un3, _), next3) = Seq.pull next2;
val NONE = Seq.pull next3

3

We can print them out as follows.

pretty_env @{context} (Envir.term_env unl);
pretty_env @{context} (Envir.term_env un2);
pretty_env @{context} (Envir.term_env un3)
> [?X := Ma. a, ?Y := f a]

> [?X := £, ?Y := a]

> [?X := Ab. £ a]

In case of failure the function unifiers does not raise an exception, rather returns
the empty sequence. For example

let
val trml = @{term "a"}
val trm2 = @{term "b"}
val init = Envir.empty O
in
Unify.unifiers (@{theory}, init, [(trml, trm2)])
[> Seq.pull
end
> NONE

In order to find a reasonable solution for a unification problem, Isabelle also tries
first to solve the problem by higher-order pattern unification. Only in case of failure
full higher-order unification is called. This function has a built-in bound, which can
be accessed and manipulated as a configuration value:

Config.get_thy @{theory} (Unify.search_bound_value)
> Int 60

If this bound is reached during unification, Isabelle prints out the warning message
"Unification bound exceeded" and plenty of diagnostic information (sometimes
annoyingly plenty of information).

For higher-order matching the function is called matchers implemented in the struc-
ture Unify. Also this function returns sequences with possibly more than one matcher.
Like unifiers, this function does not raise an exception in case of failure, but re-
turns an empty sequence. It also first tries out whether the matching problem can be
solved by first-order matching.

SFIXME: what is the list of term pairs in the unifier: flex-flex pairs?



A w N R

© o ~N o o

50 CHAPTER 3. ISABELLE ESSENTIALS

Higher-order matching might be necessary for instantiating a theorem appropriately.
More on this will be given in Sections 3.7. Here we only have a look at a simple case,
namely the theorem spec:

thm spec
> Vx. ?P x = 7P 7x

as an introduction rule. Applying it directly can lead to unexpected behaviour since
the unification has more than one solution. One way round this problem is to in-
stantiate the schematic variables 7P and 7x. instantiation function for theorems is
instantiate from the structure Drule. One problem, however, is that this function
expects the instantiations as lists of ctyp and cterm pairs:

instantiate: (ctyp * ctyp) list * (cterm * cterm) list -> thm -> thm

This means we have to transform the environment the higher-order matching func-
tion returns into such an instantiation. For this we use the functions term_env and
type_env, which extract from an environment the corresponding variable mappings
for schematic type and term variables. These mappings can be turned into proper
ctyp-pairs with the function

fun prep_trm thy (x, (T, t)) =
(cterm_of thy (Var (x, T)), cterm_of thy t)

and into proper cterm-pairs with

fun prep_ty thy (x, (S, ty)) =
(ctyp_of thy (TVar (x, S)), ctyp_of thy ty)

We can now calculate the instantiations from the matching function.

fun matcher_inst thy pat trm i =
let
val univ = Unify.matchers thy [(pat, trm)]
val env = nth (Seq.list_of univ) i
val tenv = Vartab.dest (Envir.term_env env)
val tyenv = Vartab.dest (Envir.type_env env)
in
(map (prep_ty thy) tyenv, map (prep_trm thy) tenv)
end

In Line 3 we obtain the higher-order matcher. We assume there is a finite number
of them and select the one we are interested in via the parameter i in the next line.
In Lines 5 and 6 we destruct the resulting environments using the function dest.
Finally, we need to map the functions prep_trm and prep_ty over the respective
environments (Line 8). As a simple example we instantiate the spec rule so that its
conclusion is of the form @ True.
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let
val pat = Logic.strip_imp_concl (prop_of @{thm spec})
val trm = @{term "Trueprop (Q True)"}
val inst = matcher_inst @{theory} pat trm 1
in
Drule.instantiate inst @{thm spec}
end
> Vx. Q x = Q True

Note that we had to insert a Trueprop-coercion in Line 3 since the conclusion of
spec contains one.

Read More

Unification and matching of higher-order patterns is implemented in Pure/pattern.ML.
This file also contains a first-order matcher for terms. Full higher-order unification
is implemented in Pure/unify.ML. It uses lazy sequences which are implemented in
Pure/General/seq.ML.

3.4 Sorts (TBD)

Free and schematic variables may be annotated with sorts. Sorts are lists of strings,
whereby each string stands for a class. Sorts classify types.

Sign.classes_of @{theory}

Read More
Classes, sorts and arities are defined in Pure/term.ML.

Pure/sign.ML Pure/sorts.ML Pure/axclass.ML

3.5 Type-Checking

Remember Isabelle follows the Church-style typing for terms, i.e., a term contains
enough typing information (constants, free variables and abstractions all have typing
information) so that it is always clear what the type of a term is. Given a well-typed
term, the function type_of returns the type of a term. Consider for example:

type_of (@{term "f::nat = bool"} $ @{term "x::nat"})
> bool

To calculate the type, this function traverses the whole term and will detect any
typing inconsistency. For example changing the type of the variable x from nat to
int will result in the error message:
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type_of (@{term "f::nat = bool"} $ @{term "x::int"})
> *** Exception- TYPE ("type_of: type mismatch in application" ...

Since the complete traversal might sometimes be too costly and not necessary, there
is the function fastype_of, which also returns the type of a term.

fastype_of (@{term "f::nat = bool"} $§ @{term "x::nat"})
> bool

However, efficiency is gained on the expense of skipping some tests. You can see this
in the following example

fastype_of (@{term "f::nat = bool"} $§ @{term "x::int"})
> bool

where no error is detected.

Sometimes it is a bit inconvenient to construct a term with complete typing anno-
tations, especially in cases where the typing information is redundant. A short-cut
is to use the “place-holder” type dummyT and then let type-inference figure out the
complete type. The type inference can be invoked with the function check_term. An
example is as follows:

let
val ¢ = Const (@{const_name "plus"}, dummyT)
val o = @{term "1::nat"}
val v = Free ("x", dummyT)
in
Syntax.check_term @{context} (c $ o § v)
end
> Const ("HOL.plus_class.plus", "nat = nat = nat") $
> Const ("HOL.one_class.one", '"nat") $ Free ("x", "nat")

Instead of giving explicitly the type for the constant plus and the free variable x,
type-inference fills in the missing information.

Read More

See Pure/Syntax/syntax.ML where more functions about reading, checking and pretty-
printing of terms are defined. Functions related to type-inference are implemented in
Pure/type.ML and Pure/type_infer.ML.

Exercise 3.5.1: Check that the function defined in Exercise 3.2.1 returns a result that type-
checks. See what happens to the solutions of this exercise given in Appendix B when they receive
an ill-typed term as input.
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3.6 Certified Terms and Certified Types

You can freely construct and manipulate terms and types, since they are just arbi-
trary unchecked trees. However, you eventually want to see if a term is well-formed,
or type-checks, relative to a theory. Type-checking is done via the function cterm_of,
which converts a term into a cterm, a certified term. Unlike terms, which are just
trees, cterms are abstract objects that are guaranteed to be type-correct, and they
can only be constructed via “official interfaces”.

Certification is always relative to a theory context. For example you can write:

cterm_of @{theory} @{term "(a::nat) + b = c"}
>a+b=c

This can also be written with an antiquotation:

@{cterm "(a::nat) + b = c"}
>a+b-=c

Attempting to obtain the certified term for

@{cterm "1 + True"}
> Type unification failed ...

yields an error (since the term is not typable). A slightly more elaborate example
that type-checks is:

let
val natT = @{typ "nat"}
val zero = @{term "O::nat"}

val plus = Const (@{const_name plus}, [natT, natT] ---> natT)
in

cterm_of @{theory} (plus $ zero $ zero)
end
>0+0

In Isabelle not just terms need to be certified, but also types. For example, you obtain
the certified type for the Isabelle type nat = bool on the ML-level as follows:

ctyp_of @{theory} (@{typ nat} --> @{typ booll})
> nat = bool

or with the antiquotation:
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@{ctyp "nat = bool"}
> nat = bool

Since certified terms are, unlike terms, abstract objects, we cannot pattern-match
against them. However, we can construct them. For example the function capply
produces a certified application.

Thm.capply @{cterm "P::nat = bool"} @{cterm "3::nat"}
> P 3

Similarly the function 1ist_comb from the structure Drule applies a list of cterms.

let
val chead = @{cterm "P::unit = nat = bool"}
val cargs = [@{cterm "()"}, @{cterm "3::nat"}]
in
Drule.list_comb (chead, cargs)
end
>P (O 3

Read More
For functions related to cterms and ctyps see the files Pure/thm.ML, Pure/more_thm.ML
and Pure/drule.ML.

3.7 Theorems

Just like cterms, theorems are abstract objects of type thm that can only be built
by going through interfaces. As a consequence, every proof in Isabelle is correct by
construction. This follows the tradition of the LCF-approach.

To see theorems in “action”, let us give a proof on the ML-level for the following
statement:

lemma
assumes assm;: "A(x::nat). P x = Q x"
and assmy: "P t"

shows "Q t"

The corresponding ML-code is as follows:

val my_thm =

let
val assml = @{cprop "A(x::nat). P x — Q x"}
val assm2 = @{cprop "(P::nat = bool) t"}

val Pt_implies_Qt =
assume assml
|> forall_elim @{cterm "t::nat"}
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val Qt = implies_elim Pt_implies_Qt (assume assm2)
in

Qt

[> implies_intr assm2

|> implies_intr assml
end

Note that in Line 3 and 4 we use the antiquotation @{cprop ...}, which inserts
necessary Trueprops.

If we print out the value of my_thm then we see only the final statement of the
theorem.

tracing (string_of_thm @{context} my_thm)
>[Ax. Px = Qx; Pt] = Q¢

However, internally the code-snippet constructs the following proof.

Nx. Px = @ xF/A\x. Px = Qx(assume)

M Px = axrPt = qo M perpe Eaiu?))
/\X'PX:QX,PtI—Qt - -elm
x. Px — Q xFP t — Qt(:>-zn‘ro)
A
(=>-intro)

FIAx. Px = Qx; Pt] = Q t

While we obtained a theorem as result, this theorem is not yet stored in Isabelle’s
theorem database. Consequently, it cannot be referenced on the user level. One way
to store it in the theorem database is by using the function note.*

local setup {*
Local_Theory.note ((@{binding "my_thm"}, []), [my_thm]) #> snd *}

The third argument of note is the list of theorems we want to store under a name.
We can store more than one under a single name. The first argument of note is the
name under which we store the theorem or theorems. The second argument can
contain a list of theorem attributes, which we will explain in detail in Section 3.8.
Below we just use one such attribute for adding the theorem to the simpset:

local setup {*
Local_Theory.note ((@{binding "my_thm_simp"},
[Attrib.internal (K Simplifier.simp_add)]), [my_thm]) #> snd *}

Note that we have to use another name under which the theorem is stored, since
Isabelle does not allow us to call note twice with the same name. The attribute
needs to be wrapped inside the function internal from the structure Attrib. If we
use the function get_thm_names_from_ss from the previous chapter, we can check
whether the theorem has actually been added.

“FIXME: make sure a pointer to the section about local-setup is given here.
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let
fun pred s = match_string "my_thm_simp" s
in
exists pred (get_thm_names_from_ss @{simpset})
end
> true

The main point of storing the theorems my_thm and my_thm_simp is that they can
now also be referenced with the thm-command on the user-level of Isabelle

thm my_thm my_thm_simp
>[Ax. Px = Qx; Pt] = Qt
>[Ax. Px = Qx; Pt] = Qqt

or with the @{thm ... }-antiquotation on the ML-level. Otherwise the user has no
access to these theorems.

Recall that Isabelle does not let you call note twice with the same theorem name.
In effect, once a theorem is stored under a name, this association is fixed. While
this is a “safety-net” to make sure a theorem name refers to a particular theorem or
collection of theorems, it is also a bit too restrictive in cases where a theorem name
should refer to a dynamically expanding list of theorems (like a simpset). Therefore
Isabelle also implements a mechanism where a theorem name can refer to a custom
theorem list. For this you can use the function add_thms_dynamic. To see how it
works let us assume we defined our own theorem list MyThmList.

structure MyThmList = Generic_Data
(type T = thm list
val empty = []
val extend = I
val merge = merge Thm.eq_thm_prop)

fun update thm = Context.theory_map (MyThmList.map (Thm.add_thm thm))

The function update allows us to update the theorem list, for example by adding the
theorem Truel.

setup {* update @{thm TrueI} *}

We can now install the theorem list so that it is visible to the user and can be refered
to by a theorem name. For this need to call add_thms_dynamic

setup {*
PureThy.add_thms_dynamic (@{binding "mythmlist"}, MyThmList.get)
*}

with a name and a function that accesses the theorem list. Now if the user issues the
command
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thm mythmlist
> True

the current content of the theorem list is displayed. If more theorems are stored in
the list, say

setup {* update @{thm FalseE} *}

then the same command produces

thm mythmlist
> False — 7P
> True

Note that if we add the theorem FalseE again to the list

setup {* update @{thm FalseE} *}

we still obtain the same list. The reason is that we used the function add_thm in
our update function. This is a dedicated function which tests whether the theorem is
already in the list. This test is done according to alpha-equivalence of the proposition
of the theorem. The corresponding testing function is eq_thm_prop. Suppose you
proved the following three theorems.

lemma
shows thmi: "Vx. P x"
and thm2: "Vy. P y"
and thm3: "Vy. Q y" sorry

Testing them for alpha equality produces:

(Thm.eq_thm_prop (@{thm thml}, @{thm thm2}),
Thm.eq_thm_prop (@{thm thm2}, @{thm thm3}))
> (true, false)

Many functions destruct theorems into cterms. For example the functions 1hs_of
and rhs_of return the left and right-hand side, respectively, of a meta-equality.

let
val eq = @{thm True_def}
in
(Thm.1lhs_of eq, Thm.rhs_of eq)
|> pairself (string_of_cterm @{context})
end
> (True, (M\x. x) = (A\x. x))
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Other function produce terms that can be pattern-matched. Suppose the following
two theorems.

lemma
shows foo_testl: "A =—> B =—> C"
and foo_test2: "A — B — C" sorry

We can destruct them into premises and conclusions as follows.

let
val ctxt = @{context}
fun prems_and_concl thm =
["Premises: " ~ (string_of_terms ctxt (Thm.prems_of thm))] @
["Conclusion: " ~ (string_of_term ctxt (Thm.concl_of thm))]
[> cat_lines
|> tracing
in
prems_and_concl @{thm foo_testl};
prems_and_concl @{thm foo_test2}
end
> Premises: 7A, 7B
> Conclusion: 7C
> Premises:
> Conclusion: 7?A — 7B — 7C

Note that in the second case, there is no premise. The reason is that = separates
premises and conclusion, while — is the object implication from HOL, which just
constructs a formula.

Read More
The basic functions for theorems are defined in Pure/thm.ML, Pure/more_thm.ML and
Pure/drule.ML.

Although we will explain the simplifier in more detail as tactic in Section 6.4, the
simplifier can be used to work directly over theorems, for example to unfold defini-
tions. To show this, we build the theorem True = True (Line 1) and then unfold
the constant True according to its definition (Line 2).

Thm.reflexive @{cterm "True'}
[> Simplifier.rewrite_rule [@{thm True_def}]
[> string_of_thm @{context}
[> tracing

> (Mx. x) = (MAx. x) = (Mx. x) = (Ax. x)

Often it is necessary to transform theorems to and from the object logic, that is
replacing all — and V by = and A, or the other way around. A reason for such a
transformation might be stating a definition. The reason is that definitions can only
be stated using object logic connectives, while theorems using the connectives from
the meta logic are more convenient for reasoning. Therefore there are some build in
functions which help with these transformations. The function rulify replaces all
object connectives by equivalents in the meta logic. For example
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Object_Logic.rulify @{thm foo_test2}
> [74; ?B] = 7C

The transformation in the other direction can be achieved with function atomize
and the following code.

let
val thm = @{thm foo_testl}
val meta_eq = Object_Logic.atomize (cprop_of thm)
in
MetaSimplifier.rewrite_rule [meta_eq] thm
end
> 7?40 — 7B — 7C

In this code the function atomize produces a meta-equation between the given the-
orem and the theorem transformed into the object logic. The result is the theorem
with object logic connectives. However, in order to completely transform a theorem
involving meta variables, such as 1ist.induct, which is of the form

[?P [1; Aa list. 7P list —> 7P (a # list)] —> 7P ?list

we have to first abstract over the meta variables 7P and ?1ist. For this we can use
the function forall_intr_vars. This allows us to implement the following function
for atomizing a theorem.

fun atomize_thm thm =
let
val thm’ = forall_intr_vars thm
val thm’’ = Object_Logic.atomize (cprop_of thm’)
in
MetaSimplifier.rewrite_rule [thm’’] thm’
end

This function produces for the theorem 1ist.induct

atomize_thm @{thm list.induct}
> VP list. P [] — (VYa list. P list — P (a # list)) — P list

Theorems can also be produced from terms by giving an explicit proof. One way to
achieve this is by using the function prove in the structure Goal. For example below
we use this function to prove the term P — P.°

SFIXME: What about prove_internal?
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let

val trm = @{term "P — P::bool"}

val tac = K (atac 1)
in

Goal.prove @{context} ["P"] [] trm tac
end

> ?P — 7P

This function takes first a context and second a list of strings. This list specifies
which variables should be turned into schematic variables once the term is proved.
The fourth argument is the term to be proved. The fifth is a corresponding proof
given in form of a tactic (we explain tactics in Chapter 6). In the code above, the
tactic proves the theorem by assumption. As before this code will produce a theorem,
but the theorem is not yet stored in the theorem database.

While the LCF-approach of going through interfaces ensures soundness in Isabelle,
there is the function make_thm in the structure Skip_Proof that allows us to turn any
proposition into a theorem. Potentially making the system unsound. This is some-
times useful for developing purposes, or when explicit proof construction should be
omitted due to performace reasons. An example of this function is as follows:

Skip_Proof.make_thm @{theory} @{prop "True = False"}
> True = False

Read More

Functions that setup goal states and prove theorems are implemented in Pure/goal.ML.
A function and a tactic that allow one to skip proofs of theorems are implemented in
Pure/Isar/skip_proof.ML.

Theorems also contain auxiliary data, such as the name of the theorem, its kind,
the names for cases and so on. This data is stored in a string-string list and can be
retrieved with the function get_tags. Assume you prove the following lemma.

lemma foo_data:
shows "P —> P — P" by assumption

The auxiliary data of this lemma can be retrieved using the function get_tags. So
far the the auxiliary data of this lemma is

Thm.get_tags @{thm foo_data}
> [("name", "General.foo_data"), ("kind", "lemma")]

consisting of a name and a kind. When we store lemmas in the theorem database,
we might want to explicitly extend this data by attaching case names to the two
premises of the lemma. This can be done with the function name from the structure
Rule_Cases.


http://isabelle.in.tum.de/repos/isabelle/raw-file/tip/src/Pure/goal.ML
http://isabelle.in.tum.de/repos/isabelle/raw-file/tip/src/Pure/Isar/skip_proof.ML

1
2

3.7. THEOREMS 61

local_setup {*
Local_Theory.note ((@{binding "foo_data’"}, []),
[(Rule_Cases.name ["foo_case_one'", "foo_case_two"]
@{thm foo_data})]) #> snd *}

The data of the theorem foo_data’ is then as follows:

Thm.get_tags @{thm foo_data’}
> [("name", "General.foo_data’"), ("kind", "lemma"),
> ("case_names'", "foo_case_one;foo_case_two")]

You can observe the case names of this lemma on the user level when using the proof
methods cases and induct. In the proof below

lemma

shows "@ — Q@ = Q"
proof (cases rule: foo_data’)
print_cases

> cases:

> foo_case_one:

> let "?case" = "7pP"
> foo_case_two:

> let "7case" = "7pP"

we can proceed by analysing the cases foo_case_one and foo_case_two. While if
the theorem has no names, then the cases have standard names 1, 2 and so on. This
can be seen in the proof below.

lemma

shows " —= Q@ = Q"
proof (cases rule: foo_data)
print_cases

> cases:

> 1:

> let "7case" = "7pP"
> 2:

> let "7case" = "7P"

One great feature of Isabelle is its document preparation system, where proved theo-
rems can be quoted in documents referencing directly their formalisation. This helps
tremendously to minimise cut-and-paste errors. However, sometimes the verbatim
quoting is not what is wanted or what can be shown to readers. For such situations
Isabelle allows the installation of theorem styles. These are, roughly speaking, func-
tions from terms to terms. The input term stands for the theorem to be presented;
the output can be constructed to ones wishes. Let us, for example, assume we want
to quote theorems without leading V-quantifiers. For this we can implement the
following function that strips off Vs.

fun strip_allq (Const (@{const_name "A11"}, _) $ Abs body) =
Term.dest_abs body [> snd [> strip_allq
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| strip_allq (Const (@{const_name "Trueprop"}, _) $ t) =
strip_allq t
| strip_allg t = t

We use in Line 2 the function dest_abs for deconstructing abstractions, since this
function deals correctly with potential name clashes. This function produces a pair
consisting of the variable and the body of the abstraction. We are only interested
in the body, which we feed into the recursive call. In Line 3 and 4, we also have to
explicitly strip of the outermost Trueprop-coercion. Now we can install this function
as the theorem style named my_strip_allgq.

setup{*
Term_Style.setup "my_strip_allq" (Scan.succeed (K strip_allq))
*}

We can test this theorem style with the following theorem

theorem style_test:
shows "Vx y z. (x, x) = (y, z)" sorry

Now printing out in a document the theorem style_test normally using @{thm
...} produces

@{thm style_test}
>Vxyz (x, x)=(~, z)

as expected. But with the theorem style @{thm (my_strip_allg) ...} we obtain

@{thm (my_strip_allq) style_test}
> (x, x) = (y, z)

without the leading quantifiers. We can improve this theorem style by explicitly
giving a list of strings that should be used for the replacement of the variables. For
this we implement the function which takes a list of strings and uses them as name
in the outermost abstractions.

fun rename_allq [] t = t
| rename_allq (x::xs) (Const (@{const_name "A11"}, U) $ Abs (_, T, t)) =
Const (@{const_name "A11"}, U) $ Abs (x, T, rename_allq xs t)
| rename_allq xs (Const (@{const_name "Trueprop"}, U) $ t) =
rename_allq xs t
| rename_allq _ t =t

We can now install a the modified theorem style as follows

setup {* let

val parser = Scan.repeat Args.name

fun action xs = K (rename_allq xs #> strip_allq)
in

Term_Style.setup "my_strip_allq2" (parser >> action)
end *}
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The parser reads a list of names. In the function action we first call rename_allq
with the parsed list, then we call strip_allq on the resulting term. We can now
suggest, for example, two variables for stripping off the first two V -quantifiers.

O{thm (my_strip_allq2 x’ x’’) style_test}
> (x?, x?) = (x77, z)

Such styles allow one to print out theorems in documents formatted to ones heart
content. The styles can also be used in the document antiquotations @{prop ...},
@{term_type ...} and @{typeof ...}

Next we explain theorem attributes, which is another mechanism for dealing with
theorems.

Read More
Theorem styles are implemented in Pure/Thy/term_style.ML.

3.8 Theorem Attributes

Theorem attributes are [symmetric], [THEN ...], [simp] and so on. Such at-
tributes are neither tags nor flags annotated to theorems, but functions that do fur-
ther processing of theorems. In particular, it is not possible to find out what are
all theorems that have a given attribute in common, unless of course the function
behind the attribute stores the theorems in a retrievable data structure.

If you want to print out all currently known attributes a theorem can have, you can
use the Isabelle command

print_attributes

> COMP: direct composition with rules (no lifting)

> HOL.dest: declaration of Classical destruction rule
> HOL.elim: declaration of Classical elimination rule
> ..

The theorem attributes fall roughly into two categories: the first category manipu-
lates theorems (for example [symmetric] and [THEN ...J), and the second stores
theorems somewhere as data (for example [simp], which adds theorems to the cur-
rent simpset).

To explain how to write your own attribute, let us start with an extremely simple
version of the attribute [symmetric]. The purpose of this attribute is to produce the
“symmetric” version of an equation. The main function behind this attribute is

val my_symmetric = Thm.rule_attribute (fn _ => fn thm => thm RS @{thm sym})

where the function rule_attribute expects a function taking a context (which
we ignore in the code above) and a theorem (thm), and returns another theorem
(namely thm resolved with the theorem sym: s = t = t = s; the function RS is
explained in Section 6.2). The function rule_attribute then returns an attribute.


http://isabelle.in.tum.de/repos/isabelle/raw-file/tip/src/Pure/Thy/term_style.ML
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Before we can use the attribute, we need to set it up. This can be done using the
Isabelle command attribute_setup as follows:

attribute setup my_sym =
{* Scan.succeed my_symmetric *} "applying the sym rule"

Inside the {* ... x}, we have to specify a parser for the theorem attribute. Since the
attribute does not expect any further arguments (unlike [THEN ... ], for instance),
we use the parser Scan.succeed. An example for the attribute [my_sym] is the proof

lemma test[my_sym]: "2 = Suc (Suc 0)" by simp

which stores the theorem Suc (Suc 0) = 2 under the name test. You can see this,
if you query the lemma:

thm test
> Suc (Suc 0) = 2

We can also use the attribute when referring to this theorem:

thm test[my_sym]
> 2 = Suc (Suc 0)

An alternative for setting up an attribute is the function setup. So instead of using
attribute_setup, you can also set up the attribute as follows:

Attrib.setup @{binding "my_sym"} (Scan.succeed my_symmetric)
"applying the sym rule"

This gives a function from theory -> theory, which can be used for example with
setup or with Context.>> o Context .map_t:heory.6

As an example of a slightly more complicated theorem attribute, we implement our
own version of [THEN ...]. This attribute will take a list of theorems as argument
and resolve the theorem with this list (one theorem after another). The code for this
attribute is

fun MY_THEN thms =
let
fun RS_rev thml thm2 = thm2 RS thml
in
Thm.rule_attribute (fn _ => fn thm => fold RS_rev thms thm)
end

where for convenience we define the reverse and curried version of RS. The setup of
this theorem attribute uses the parser thms, which parses a list of theorems.

®FIXME: explain what happens here.
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attribute setup MY_THEN = {* Attrib.thms >> MY_THEN *}
"resolving the list of theorems with the theorem"

You can, for example, use this theorem attribute to turn an equation into a meta-
equation:

thm test[MY_THEN eq_reflection]
> Suc (Suc 0) = 2

If you need the symmetric version as a meta-equation, you can write

thm test[MY_THEN sym eq_reflection]
> 2 = Suc (Suc 0)

It is also possible to combine different theorem attributes, as in:

thm test[my_sym, MY_THEN eq_reflection]
> 2 = Suc (Suc 0)

However, here also a weakness of the concept of theorem attributes shows through:
since theorem attributes can be arbitrary functions, they do not commute in general.
If you try

thm test[MY_THEN eq_reflection, my_sym]
> exception THM 1 raised: RSN: no unifiers

you get an exception indicating that the theorem sym does not resolve with meta-
equations.

The purpose of rule_attribute is to directly manipulate theorems. Another usage
of theorem attributes is to add and delete theorems from stored data. For example
the theorem attribute [simp] adds or deletes a theorem from the current simpset.
For these applications, you can use declaration_attribute. To illustrate this func-
tion, let us introduce a theorem list.

structure MyThms = Named_Thms
(val name = "attr_thms"
val description = "Theorems for an Attribute")

We are going to modify this list by adding and deleting theorems. For this we use
the two functions MyThms.add_thm and MyThms.del_thm. You can turn them into
attributes with the code

val my_add
val my_del

Thm.declaration_attribute MyThms.add_thm
Thm.declaration_attribute MyThms.del_thm

and set up the attributes as follows
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attribute_setup my_thms = {* Attrib.add_del my_add my_del *}
"maintaining a list of my_thms"

The parser add_del is a predefined parser for adding and deleting lemmas. Now if
you prove the next lemma and attach to it the attribute [my_thms]

lemma trueI_2[my_thms]: "True" by simp

then you can see it is added to the initially empty list.

MyThms.get @{context}
> ["True"]

You can also add theorems using the command declare.

declare test[my_thms] truel_2[my_thms add]

With this attribute, the add operation is the default and does not need to be explicitly
given. These three declarations will cause the theorem list to be updated as:

MyThms.get @{context}
> ["True", "Suc (Suc 0) = 2"]

The theorem trueI_2 only appears once, since the function add_thm tests for dupli-
cates, before extending the list. Deletion from the list works as follows:

declare test[my_thms del]

After this, the theorem list is again:

MyThms.get @{context}
> ["True"]

We used in this example two functions declared as declaration_attribute, but
there can be any number of them. We just have to change the parser for reading the
arguments accordingly.

78

Read More
FIXME: Pure/more_thm.ML; parsers for attributes is in Pure/Isar/attrib.ML...also ex-
plained in the chapter about parsing.

’FIXME What are: theory_attributes, proof_attributes?
8FIXME readmore


http://isabelle.in.tum.de/repos/isabelle/raw-file/tip/src/Pure/more_thm.ML
http://isabelle.in.tum.de/repos/isabelle/raw-file/tip/src/Pure/Isar/attrib.ML
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3.9 Pretty-Printing

So far we printed out only plain strings without any formatting except for occasional
explicit line breaks using "\n". This is sufficient for “quick-and-dirty” printouts.
For something more sophisticated, Isabelle includes an infrastructure for properly
formatting text. Most of its functions do not operate on strings, but on instances
of the pretty type:

Pretty.T

The function str transforms a (plain) string into such a pretty type. For example

Pretty.str "test'
> String ("test", 4)

where the result indicates that we transformed a string with length 4. Once you
have a pretty type, you can, for example, control where linebreaks may occur in case
the text wraps over a line, or with how much indentation a text should be printed.
However, if you want to actually output the formatted text, you have to transform
the pretty type back into a string. This can be done with the function string_of.
In what follows we will use the following wrapper function for printing a pretty type:

fun pprint prt = tracing (Pretty.string_of prt)

The point of the pretty-printing infrastructure is to give hints about how to layout
text and let Isabelle do the actual layout. Let us first explain how you can insert
places where a line break can occur. For this assume the following function that
replicates a string n times:

fun rep n str = implode (replicate n str)

and suppose we want to print out the string:

val test_str = rep 8 '"fooooooooooooooobaaaaaaaaaaaar "

We deliberately chose a large string so that it spans over more than one line. If we
print out the string using the usual “quick-and-dirty” method, then we obtain the
ugly output:

tracing test_str

> fooooooooooooooobaaaaaaaaaaaar f000oooooooooooobaaaaaaaaaaaar £0000000000
> ooooobaaaaaaaaaaaar f0000o0oooooooooobaaaaaaaaaaaar f0000000000000OObaaaaa
> aaaaaaar fooooooooooooooobaaaaaaaaaaaar fo000oooooooooooobaaaaaaaaaaaar fo
> 000000000000OOObaaaaaaaaaaaar

We obtain the same if we just use the function pprint.
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pprint (Pretty.str test_str)

> f000000000000000baaaaaaaaaaaar £000000000000000baaaaaaaaaaaar 0000000000
> ooooobaaaaaaaaaaaar f00000000000000Obaaaaaaaaaaaar f000000000000000baaaaa
> aaaaaaar fo000000000000OOOObaaaaaaaaaaaar f000000000000OOObaaaaaaaaaaaar fo
> 0000000000000OObaaaaaaaaaaaar

However by using pretty types you have the ability to indicate possible linebreaks for
example at each whitespace. You can achieve this with the function breaks, which
expects a list of pretty types and inserts a possible line break in between every two
elements in this list. To print this list of pretty types as a single string, we concatenate
them with the function b1k as follows:

let

val ptrs = map Pretty.str (space_explode " " test_str)
in

pprint (Pretty.blk (0, Pretty.breaks ptrs))
end

> fooooooooooooooobaaaaaaaaaaaar f00000000000000OObaaaaaaaaaaaar
> fooooooooooooooobaaaaaaaaaaaar foo00000000000OObaaaaaaaaaaaar
> fooooooooooooooobaaaaaaaaaaaar fooooooooooooooobaaaaaaaaaaaar
> fooooooooooooooobaaaaaaaaaaaar fo0000000000OOOOObaaaaaaaaaaaar

Here the layout of test_str is much more pleasing to the eye. The 0 in blk stands
for no hanging indentation of the printed string. You can increase the indentation
and obtain

let
val ptrs = map Pretty.str (space_explode " " test_str)
in
pprint (Pretty.blk (3, Pretty.breaks ptrs))
end
> fooooooooooooooobaaaaaaaaaaaar f0o0ooooooooooooobaaaaaaaaaaaar
> fooooooooooooooobaaaaaaaaaaaar f000000000000OOOObaaaaaaaaaaaar
> fooooooooooooooobaaaaaaaaaaaar f00000000000O0OOOObaaaaaaaaaaaar
> fooooooooooooooobaaaaaaaaaaaar fooooooooooooooobaaaaaaaaaaaar

where starting from the second line the indent is 3. If you want that every line starts
with the same indent, you can use the function indent as follows:

let

val ptrs = map Pretty.str (space_explode " " test_str)
in

pprint (Pretty.indent 10 (Pretty.blk (0, Pretty.breaks ptrs)))
end

> fooooooooooooooobaaaaaaaaaaaar fooooooooooooooobaaaaaaaaaaaar
> fooooooooooooooobaaaaaaaaaaaar fooooooooooooooobaaaaaaaaaaaar
> fooooooooooooooobaaaaaaaaaaaar fooooooooooooooobaaaaaaaaaaaar
> fooooooooooooooobaaaaaaaaaaaar fooooooooooooooobaaaaaaaaaaaar
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If you want to print out a list of items separated by commas and have the linebreaks
handled properly, you can use the function commas. For example

let

val ptrs = map (Pretty.str o string_of_int) (99998 upto 100020)
in

pprint (Pretty.blk (0, Pretty.commas ptrs))
end
> 99998, 99999, 100000, 100001, 100002, 100003, 100004, 100005, 100006,
> 100007, 100008, 100009, 100010, 100011, 100012, 100013, 100014, 100015,
> 100016, 100017, 100018, 100019, 100020

where upto generates a list of integers. You can print out this list as a “set”, that
means enclosed inside "{" and "}", and separated by commas using the function
enum. For example

let
val ptrs = map (Pretty.str o string_of_int) (99998 upto 100020)
in
pprint (Pretty.enum "," "{" "}" ptrs)
end
> {99998, 99999, 100000, 100001, 100002, 100003, 100004, 100005, 100006,
> 100007, 100008, 100009, 100010, 100011, 100012, 100013, 100014, 100015,
> 100016, 100017, 100018, 100019, 100020}

As can be seen, this function prints out the “set” so that starting from the second,
each new line has an indentation of 2.

If you print out something that goes beyond the capabilities of the standard func-
tions, you can do relatively easily the formatting yourself. Assume you want to print
out a list of items where like in “English” the last two items are separated by "and".
For this you can write the function

fun and_list [] = []
| and_list [x] = [x]
| and_list xs =
let
val (front, last) = split_last xs
in
(Pretty.commas front) @
[Pretty.brk 1, Pretty.str "and", Pretty.brk 1, last]
end

where Line 7 prints the beginning of the list and Line 8 the last item. We have to use
Pretty.brk 1 in order to insert a space (of length 1) before the "and". This space
is also a place where a line break can occur. We do the same after the "and". This
gives you for example
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let
val ptrsl = map (Pretty.str o string_of_int) (1 upto 22)
val ptrs2 = map (Pretty.str o string_of_int) (10 upto 28)

in

pprint (Pretty.blk (0, and_list ptrsi));

pprint (Pretty.blk (0, and_list ptrs2))
end
>1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21
> and 22
> 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27 and
> 28

Like blk, the function chunks prints out a list of items, but automatically inserts
forced breaks between each item. Compare

let
val a_and_b = [Pretty.str "a", Pretty.str "b"]
in
pprint (Pretty.blk (0, a_and_b));
pprint (Pretty.chunks a_and_b)
end
> ab
> a
>b

The function big_list helps with printing long lists. It is used for example in the
command print_theorems. An example is as follows.

let
val pstrs = map (Pretty.str o string_of_int) (4 upto 10)
in
pprint (Pretty.big_list "header" pstrs)
end
> header
> 4

V V. V.V VYV
© 0 N O O»

10

The point of the pretty-printing functions is to conveninetly obtain a lay-out of terms
and types that is pleasing to the eye. If we print out the the terms produced by the
the function de_bruijn from exercise 3.2.3 we obtain the following:

pprint (Syntax.pretty_term @{context} (de_bruijn 4))
>®P3=P4 — P4 NP3 ANP2API1) A
>®P2=P3 —P4 ANP3ANP2API1) A
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>P1=P2 — P4 ANP3AP2API1)A
>(P1=P4 —P4NP3ANP2APIL1 —
>P4 NP3 ANP2ANPI1

We use the function pretty_term for pretty-printing terms. Next we like to pretty-
print a term and its type. For this we use the function tell_type.

fun tell_type ctxt trm =

let
fun pstr s = Pretty.breaks (map Pretty.str (space_explode " " s))
val ptrm = Pretty.quote (Syntax.pretty_term ctxt trm)

val pty = Pretty.quote (Syntax.pretty_typ ctxt (fastype_of trm))
in
pprint (Pretty.blk (O,
(pstr "The term " @ [ptrm] @ pstr " has type
@ [pty, Pretty.str "."])))

n

end

In Line 3 we define a function that inserts possible linebreaks in places where a
space is. In Lines 4 and 5 we pretty-print the term and its type using the functions
pretty_term and pretty_typ. We also use the function quote in order to enclose
the term and type inside quotation marks. In Line 9 we add a period right after the
type without the possibility of a line break, because we do not want that a line break
occurs there. Now you can write

tell_type @{context} @{term "min (Suc 0)"}
> The term "min (Suc 0)" has type "nat = nat".

To see the proper line breaking, you can try out the function on a bigger term and
type. For example:

tell_type @{context} @{term "op = (op = (op = (op = (op = op =))))"}
> The term "op = (op = (op = (op = (op = op =))))" has type
> "(((((’a = ’a = bool) = bool) = bool) = bool) = bool) = bool".

Read More

The general infrastructure for pretty-printing is implemented in the file
Pure/General/pretty.ML. The file Pure/Syntax/syntax.ML contains pretty-printing
functions for terms, types, theorems and so on.

Pure/ General/markup .ML

3.10 Summary


http://isabelle.in.tum.de/repos/isabelle/raw-file/tip/src/Pure/General/pretty.ML
http://isabelle.in.tum.de/repos/isabelle/raw-file/tip/src/Pure/Syntax/syntax.ML
http://isabelle.in.tum.de/repos/isabelle/raw-file/tip/src/Pure/General/markup.ML
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Coding Conventions / Rules of Thumb

e Start with a proper context and then pass it around through all your functions.



Chapter 4

Advanced Isabelle

All things are difficult before they are easy.

proverb

While terms, types and theorems are the most basic data structures in Isabelle, there
are a number of layers built on top of them. Most of these layers are concerned
with storing and manipulating data. Handling them properly is an essential skill for
programming on the ML-level of Isabelle programming. The most basic layer are
theories. They contain global data and can be seen as the “long-term memory” of
Isabelle. There is usually only one theory active at each moment. Proof contexts and
local theories, on the other hand, store local data for a task at hand. They act like
the “short-term memory” and there can be many of them that are active in parallel.

4.1 Theories (TBD)

Theories, as said above, are the most basic layer in Isabelle. They contain definitions,
syntax declarations, axioms, proofs etc. If a definition is stated, it must be stored in
a theory in order to be usable later on. Similar with proofs: once a proof is finished,
the proved theorem needs to be stored in the theorem database of the theory in order
to be usable. All relevant data of a theory can be queried as follows.

print_theory

names: Pure Code_Generator HOL ...

classes: Inf < type ...

default sort: type

syntactic types: #prop ...

logical types: ’a X ’b ...

type arities: * :: (random, random) random ...
logical constants: == :: ’a = ’a = prop ...
abbreviations:

axioms:

oracles:

definitions:

theorems:

VVVVVVVVVVYVYV
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4.2 Setups (TBD)

Sign.declare_const

In the previous section we used setup in order to make a theorem attribute known
to Isabelle. What happens behind the scenes is that setup expects a function of type
theory -> theory: the input theory is the current theory and the output the theory
where the theory attribute has been stored.

This is a fundamental principle in Isabelle. A similar situation occurs for example
with declaring constants. The function that declares a constant on the ML-level is
add_consts_i. If you write?

Sign.add_consts_i [(@{binding "BAR"}, @{typ "nat"}, NoSyn)] @{theoryl}

for declaring the constant BAR with type nat and run the code, then you indeed
obtain a theory as result. But if you query the constant on the Isabelle level using
the command term

term "BAR"
> "BAR" :: "ig"

you do not obtain a constant of type nat, but a free variable (printed in blue) of
polymorphic type. The problem is that the ML-expression above did not register the
declaration with the current theory. This is what the command setup is for. The
constant is properly declared with

setup {* Sign.add_consts_i [(@{binding "BAR"}, @{typ "nat"}, NoSyn)] *}

Now

term "BAR"
> "BAR" :: "nat"

returns a (black) constant with the type nat.

A similar command is local _setup, which expects a function of type local_theory
-> local_theory. Later on we will also use the commands method_setup for in-
stalling methods in the current theory and simproc_setup for adding new simprocs
to the current simpset.

'FIXME: list append in merge operations can cause exponential blowups.
2Recall that ML-code needs to be enclosed in ML {* ... *},
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4.3 Contexts (TBD)

ML_command "ProofContext.debug := true"
ML_command "ProofContext.verbose := true"

4.4 Local Theories (TBD)

In contrast to an ordinary theory, which simply consists of a type signature, as well as
tables for constants, axioms and theorems, a local theory contains additional context
information, such as locally fixed variables and local assumptions that may be used
by the package. The type local_theory is identical to the type of proof contexts
Proof.context, although not every proof context constitutes a valid local theory.

Context.>> o Context.map_theory Local_Theory.declaration

4.5 Morphisms (TBD)

Morphisms are arbitrary transformations over terms, types, theorems and bindings.
They can be constructed using the function morphism, which expects a record with
functions of type

binding: binding -> binding

typ: typ —> typ
term: term -> term
fact: thm list -> thm list

The simplest morphism is the identity-morphism defined as
val identity = Morphism.morphism {binding = I, typ = I, term = I, fact = I}
Morphisms can be composed with the function $>

fun trm_phi (Free (x, T)) = Var ((x, 0), T)
| trm_phi (Abs (x, T, t)) = Abs (x, T, trm_phi t)
| trm_phi (t $ s) = (trm_phi t) $ (trm_phi s)
| trm_phi t = ¢

val phi = Morphism.term_morphism trm_phi
Morphism.term phi @{term "P x y"}
term_morphism

term, thm

Read More
Morphisms are implemented in the file Pure/morphism.ML.


http://isabelle.in.tum.de/repos/isabelle/raw-file/tip/src/Pure/morphism.ML
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4.6 Misc (TBD)

Datatype.get_info @{theory} "List.list"

FIXME: association lists: Pure/General/alist.ML
FIXME: calling the ML-compiler

4.7 What Is In an Isabelle Name? (TBD)

On the ML-level of Isabelle, you often have to work with qualified names. These
are strings with some additional information, such as positional information and
qualifiers. Such qualified names can be generated with the antiquotation @{binding
... }. For example

@{binding "name"}
> name

An example where a qualified name is needed is the function define. This function
is used below to define the constant TrueConj as the conjunction True A True.

local setup {*
Local_Theory.define ((@{binding "TrueConj"}, NoSyn),
(Attrib.empty_binding, @{term "True A True"})) #> snd *}

Now querying the definition you obtain:

thm TrueConj_def

> TrueConj = True A True

Read More
The basic operations on bindings are implemented in Pure/General/binding.ML.

345

Sign.intern_type @{theory} "list"
Sign.intern_const @{theory} "prod_fun"

6

Occasionally you have to calculate what the “base” name of a given constant is. For
this you can use the function Sign.extern_const or Long_Name.base_name. For
example:

SFIXME give a better example why bindings are important

*FIXME give a pointer to local_setup; if not, then explain why snd is needed.

SFIXME: There should probably a separate section on binding, long-names and sign.

®FIXME: Explain the following better; maybe put in a separate section and link with the
comment in the antiquotation section.


http://isabelle.in.tum.de/repos/isabelle/raw-file/tip/src/Pure/General/alist.ML
http://isabelle.in.tum.de/repos/isabelle/raw-file/tip/src/Pure/General/binding.ML
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Sign.extern_const @{theory} "List.list.Nil"
> ”Nil n

The difference between both functions is that extern_const returns the smallest
name that is still unique, whereas base_name always strips off all qualifiers.

Read More
Functions about naming are implemented in Pure/General/name_space.ML; functions
about signatures in Pure/sign.ML.

Binding.str_of returns the string with markup; Binding.name_of returns the
string without markup

Binding.conceal

4.8 Concurrency (TBD)

prove_future future_result fork_pri

4.9 Parse and Print Translations (TBD)

4.10 Summary

TBD


http://isabelle.in.tum.de/repos/isabelle/raw-file/tip/src/Pure/General/name_space.ML
http://isabelle.in.tum.de/repos/isabelle/raw-file/tip/src/Pure/sign.ML
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Chapter 5

Parsing

Isabelle distinguishes between outer and inner syntax. Commands, such as defini-
tion, inductive and so on, belong to the outer syntax, whereas terms, types and so
on belong to the inner syntax. For parsing inner syntax, Isabelle uses a rather gen-
eral and sophisticated algorithm, which is driven by priority grammars. Parsers for
outer syntax are built up by functional parsing combinators. These combinators are
a well-established technique for parsing, which has, for example, been described in
Paulson’s classic ML-book [5]. Isabelle developers are usually concerned with writ-
ing these outer syntax parsers, either for new definitional packages or for calling
methods with specific arguments.

Read More

The library for writing parser combinators is split up, roughly, into two parts: The first
part consists of a collection of generic parser combinators defined in the structure Scan
in the file Pure/General/scan.ML. The second part of the library consists of combina-
tors for dealing with specific token types, which are defined in the structure OuterParse
in the file Pure/Isar/outer_parse.ML. In addition specific parsers for packages are
defined in Pure/Isar/spec_parse.ML. Parsers for method arguments are defined in
Pure/Isar/args.ML.

5.1 Building Generic Parsers

Let us first have a look at parsing strings using generic parsing combinators. The
function $$ takes a string as argument and will “consume” this string from a given
input list of strings. “Consume” in this context means that it will return a pair con-
sisting of this string and the rest of the input list. For example:

($$ "n") (Symbol.explode "hello")
> ("h”’ ["e”, "1”, "1”, HOHJ)

($$ "w") (Symbol.explode "world")
> ("w” ["O” Hr” "l n "d”])

The function $$ will either succeed (as in the two examples above) or raise the
exception FAIL if no string can be consumed. For example trying to parse
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http://isabelle.in.tum.de/repos/isabelle/raw-file/tip/src/Pure/General/scan.ML
http://isabelle.in.tum.de/repos/isabelle/raw-file/tip/src/Pure/Isar/outer_parse.ML
http://isabelle.in.tum.de/repos/isabelle/raw-file/tip/src/Pure/Isar/spec_parse.ML
http://isabelle.in.tum.de/repos/isabelle/raw-file/tip/src/Pure/Isar/args.ML
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($$ "x") (Symbol.explode "world")
> Exception FAIL raised

will raise the exception FAIL. There are three exceptions used in the parsing combi-
nators:

e FAIL is used to indicate that alternative routes of parsing might be explored.

e MORE indicates that there is not enough input for the parser. For example in
(8¢ "n") [].

e ABORT is the exception that is raised when a dead end is reached. It is used for
example in the function !! (see below).

However, note that these exceptions are private to the parser and cannot be accessed
by the programmer (for example to handle them).

In the examples above we use the function explode from the structure Symbol,
instead of the more standard library function explode, for obtaining an input list for
the parser. The reason is that explode in Symbol is aware of character sequences,
for example \<foo>, that have a special meaning in Isabelle. To see the difference
consider

let
val input = "\<foo> bar"
in
(explode input, Symbol.explode input)
end
> (["\", "<, MfM, Mo, Mo, MM mowonph g tph]
S \eEest, ¥ I, SRl Ue, Gnij)

Slightly more general than the parser $$ is the function one, in that it takes a predi-
cate as argument and then parses exactly one item from the input list satisfying this
predicate. For example the following parser either consumes an "h" or a "w":

let
val hw = Scan.one (fn x => x = "h" orelse x = "w")
val inputl = Symbol.explode "hello"
val input2 = Symbol.explode "world"
in
(hw inputl, hw input2)
end
> ((llhll’ [I’ell’ I’lll’ I’lll’ "O"J), (IIWI!, [IIOIV’ ’Irll’ Vllll’ Hdll]))

Two parsers can be connected in sequence by using the function --. For example
parsing h, e and 1 (in this order) you can achieve by:
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($$ "n" —- $$ "e" -- $$ "1") (Symbol.explode "hello")
> (((”h”’ ”e”)’ ”lll)’ [lll ”, IIOHJ)

Note how the result of consumed strings builds up on the left as nested pairs.

If, as in the previous example, you want to parse a particular string, then you can
use the function this_string.

Scan.this_string "hell" (Symbol.explode "hello")
> (”hellﬂ’ [”OHJ)

Parsers that explore alternatives can be constructed using the function [ /. The parser
(p Il q) returns the result of p, in case it succeeds, otherwise it returns the result
of q. For example:

let
val hw = $$ "h" || $$ "w"
val inputl = Symbol.explode "hello"
val input2 = Symbol.explode "world"
in
(hw inputl, hw input2)
end
> (("h", ["e", "1", "1", "o"]), ("w", ["o", "r", "1", "d"]))

The functions /-- and --/ work like the sequencing function for parsers, except
that they discard the item being parsed by the first (respectively second) parser.
That means the item being dropped is the one that /-- and --/ “point” away. For
example:

let
val just_e = $$ "h" [-— $§ "e"
val just_h = $$ "h" --| $$ "e"
val input = Symbol.explode "hello"
in
(just_e input, just_h input)
end
> (("e", ["1", "1", "o"]), ("n", ["1", "1", "o"]))

The parser Scan.optional p x returns the result of the parser p, if it succeeds;
otherwise it returns the default value x. For example:

let
val p = Scan.optional ($$ "n") "x"
val inputl = Symbol.explode "hello"
val input2 = Symbol.explode "world"
in
(p inputl, p input2)
end
> (("n", ["e", "1", "1", "o"]), ("x", ["w", "o", "r", "1", "d"]))
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The function option works similarly, except no default value can be given. Instead,
the result is wrapped as an option-type. For example:

let
val p = Scan.option ($$ "h")
val inputl = Symbol.explode "hello"
val input2 = Symbol.explode "world"
in
(p inputl, p input2)
end
> ((SOME llhll’ [Ilell’ Ill H’ Hl N’ "O"J), (NONE’ ["W", "O", Ilrll’ Ill H’ IIdlIJ))

The function ahead parses some input, but leaves the original input unchanged. For
example:

Scan.ahead (Scan.this_string "foo") (Symbol.explode "foo")
> ("fOO"’ [”f"’ "o"’ HOHJ)

The function !! helps with producing appropriate error messages during parsing.
For example if you want to parse p immediately followed by g, or start a completely
different parser r, you might write:

p--q Il r

However, this parser is problematic for producing a useful error message, if the
parsing of (p -- q) fails. Because with the parser above you lose the information
that p should be followed by g. To see this assume that p is present in the input, but it
is not followed by q. That means (p -- g) will fail and hence the alternative parser
r will be tried. However, in many circumstances this will be the wrong parser for
the input “p-followed-by-something” and therefore will also fail. The error message
is then caused by the failure of r, not by the absence of q in the input. This kind of
situation can be avoided when using the function ! !. This function aborts the whole
process of parsing in case of a failure and prints an error message. For example if
you invoke the parser

11 (fn _ => ".fOO") ($$ ”h”)
on "hello", the parsing succeeds

('l (fn _ => "foo") ($$ "h")) (Symbol.explode "hello")
> ("h", [uen’ "l", "l", HOIIJ)

but if you invoke it on "world"
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(!l (fn _ => "foo") ($$ "h")) (Symbol.explode "world")
> Exception ABORT raised

then the parsing aborts and the error message foo is printed. In order to see the
error message properly, you need to prefix the parser with the function error. For
example:

Scan.error (!! (fn _ => "foo") ($$ "h"))
> Exception Error "foo" raised

This “prefixing” is usually done by wrappers such as local_theory (see Section 5.8
which explains this function in more detail).

Let us now return to our example of parsing (p -- g) |/ r. If you want to generate
the correct error message for failure of parsing p-followed-by-q, then you have to
write:

fun p_followed_by_q p g r =

let

val err_msg = fn _ => p ~ " is not followed by " ~ q
in

(3¢ p —— (!! err_msg ($$ @))) || ($$ r —— $$ r)
end

Running this parser with the arguments "h", "e" and "w", and the input "holle"

Scan.error (p_followed_by_q "h" "e" "w") (Symbol.explode "holle")
> Exception ERROR "h is not followed by e" raised

produces the correct error message. Running it with

Scan.error (p_followed_by_q "h" "e" "w") (Symbol.explode "wworld")
> (("W”, HW”)’ [”O", ”r"’ ”l H, ”d"])

yields the expected parsing.

The function Scan.repeat p will apply a parser p as often as it succeeds. For exam-
ple:

Scan.repeat ($$ "h") (Symbol.explode "hhhhello")
> ( ["h n "h n "h n "h ”] [”e n ”l n ”l n ”O "J )

Note that repeat stores the parsed items in a list. The function repeat1 is similar,
but requires that the parser p succeeds at least once.

Also note that the parser would have aborted with the exception MORE, if you had it
run with the string "hhhh". This can be avoided by using the wrapper finite and
the “stopper-token” stopper. With them you can write:
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Scan.finite Symbol.stopper (Scan.repeat ($$ "h")) (Symbol.explode "hhhh")
> ([”h ”’ ”h ”’ ”h H’ ”h HJ , [J)

The function stopper is the “end-of-input” indicator for parsing strings; other stop-
pers need to be used when parsing, for example, tokens. However, this kind of
manually wrapping is often already done by the surrounding infrastructure.

The function repeat can be used with one to read any string as in

let
val p = Scan.repeat (Scan.one Symbol.not_eof)
val input = Symbol.explode "foo bar foo'

in
Scan.finite Symbol.stopper p input
end
> ([Hf!l’ ”O", "O", n H’ Hbll’ "all’ Ilrll’ n Il’ Ilfll, “O", “O"], [J)

where the function not_eof ensures that we do not read beyond the end of the input
string (i.e. stopper symbol).

The function unless takes two parsers: if the first one can parse the input, then the
whole parser fails; if not, then the second is tried. Therefore

Scan.unless ($$ "h") ($$ "w") (Symbol.explode "hello")
> Exception FAIL raised

fails, while

Scan.unless ($$ "h") ($$ "w") (Symbol.explode "world")
> ("W”,["O", "r”’ "1”’ ”d”])

succeeds.

The functions repeat and unless can be combined to read any input until a certain
marker symbol is reached. In the example below the marker symbol is a "*".

let
val p = Scan.repeat (Scan.unless ($$ "*") (Scan.one Symbol.not_eof))
val inputl = Symbol.explode "fooooo"
val input2 = Symbol.explode "foo*ooo"

in

(Scan.finite

Symbol.

stopper p inputl,

Scan.finite Symbol.stopper p input2)
end
> (([I!fll IIOII IIOII IIOII HOII "O"J [J)
E E E E E 2 2
> ([Hfll’ ”0”, ”O”J, [II*H, "0”, "0”, HOHJ))

After parsing is done, you almost always want to apply a function to the parsed
items. One way to do this is the function >> where (p >> f) runs first the parser p
and upon successful completion applies the function f to the result. For example
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let

fun double (x, y) = (x ~x, y ~ y)

val parser = $$ "h" -- $$ "e"
in

(parser >> double) (Symbol.explode "hello")
end

> ((Ilhh”’ ”ee")’ ["1 ”’ Ill ”’ "O”])
doubles the two parsed input strings; or

let
val p = Scan.repeat (Scan.one Symbol.not_eof)
val input = Symbol.explode "foo bar foo"
in
Scan.finite Symbol.stopper (p >> implode) input
end
> ("foo bar foo",[])

where the single-character strings in the parsed output are transformed back into
one string.

The function 1ift takes a parser and a pair as arguments. This function applies the
given parser to the second component of the pair and leaves the first component
untouched. For example

Scan.lift ($$ "h" -- $$ "e") (1, Symbol.explode "hello")
> ((Ilh”, IIeH)’ (1, [’Ill” ’Il”’ ’IOHJ))

1

Be aware of recursive parsers. Suppose you want to read strings separated by com-
mas and by parentheses into a tree datastructure; for example, generating the tree
corresponding to the string " (4, A), (A, A)" where the As will be the leaves. We
assume the trees are represented by the datatype:

datatype tree =
Lf of string
| Br of tree * tree

Since nested parentheses should be treated in a meaningful way—for example the
string " ((A4)) " should be read into a single leaf—you might implement the following
parser.

fun parse_basic s =
$$ s >> Lf || $$ "(" |-- parse_tree s ——| $$ ")"

and parse_tree s =
parse_basic s --| $$ "," -- parse_tree s >> Br || parse_basic s

IFIXME: In which situations is 1ift useful? Give examples.
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This parser corrsponds to the grammar:

<Basic> ::= <String> | (<Tree>)
<Tree> ::= <Basic>, <Tree> | <Basic>

The parameter s is the string over which the tree is parsed. The parser parse_basic
reads either a leaf or a tree enclosed in parentheses. The parser parse_tree reads
either a pair of trees separated by a comma, or acts like parse_basic. Unfortunately,
because of the mutual recursion, this parser will immediately run into a loop, even
if it is called without any input. For example

parse_tree "A"
> x** Exception—- TOPLEVEL_ERROR raised

raises an exception indicating that the stack limit is reached. Such looping parser
are not useful, because of ML’s strict evaluation of arguments. Therefore we need
to delay the execution of the parser until an input is given. This can be done by
adding the parsed string as an explicit argument. So the parser above should be
implemented as follows.

fun parse_basic s xs =
($$ s >> Lf || $$ "(" |-- parse_tree s --| $$ ")") xs

and parse_tree s xs =
(parse_basic s ——| $$ "," -- parse_tree s >> Br || parse_basic s) xs

While the type of the parser is unchanged by the addition, its behaviour changed:
with this version of the parser the execution is delayed until some string is applied
for the argument xs. This gives us exactly the parser what we wanted. An example
is as follows:

let

val input = Symbol.explode "(A, ((4))),A"
in

Scan.finite Symbol.stopper (parse_tree "A") input
end

> (Br (Br (Lf "A", Lf "A"), Lf "A"), [])

Exercise 5.1.1: Write a parser that parses an input string so that any comment enclosed within
(*...%) is replaced by the same comment but enclosed within (**...*x) in the output string.
To enclose a string, you can use the function enclose s1 s2 s which produces the string s1 ~

s " s2 Hint: To simplify the task ignore the proper nesting of comments.
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5.2 Parsing Theory Syntax

Most of the time, however, Isabelle developers have to deal with parsing tokens, not
strings. These token parsers have the type:

type ’a parser = OuterLex.token list -> ’a * (OuterLex.token list

The reason for using token parsers is that theory syntax, as well as the parsers for
the arguments of proof methods, use the type OuterLex. token.

Read More

The parser functions for the theory syntax are contained in the structure OuterParse
defined in the file Pure/Isar/outer_parse.ML. The definition for tokens is in the file
Pure/Isar/outer_lex.ML.

The structure OuterLex defines several kinds of tokens (for example Ident for iden-
tifiers, Keyword for keywords and Command for commands). Some token parsers take
into account the kind of tokens. The first example shows how to generate a token
list out of a string using the function scan. It is given the argument Position.none
since, at the moment, we are not interested in generating precise error messages.
The following code

OuterSyntax.scan Position.none "hello world"
> [Token (..., (Ident, "hello"),...),

> Token (..., (Space, " "),...),

> Token (..., (Ident, "world"),...)]

produces three tokens where the first and the last are identifiers, since "hello" and
"world" do not match any other syntactic category. The second indicates a space.

We can easily change what is recognised as a keyword with the function keyword.
For example calling it with

val _ = OuterKeyword.keyword "hello"
then lexing "hello world" will produce

OuterSyntax.scan Position.none "hello world"
> [Token (..., (Keyword, "hello"),...),

> Token (..., (Space, " "),...),

> Token (..., (Ident, "world"),...)]

Many parsing functions later on will require white space, comments and the like to
have already been filtered out. So from now on we are going to use the functions
filter and is_proper to do this. For example:


http://isabelle.in.tum.de/repos/isabelle/raw-file/tip/src/Pure/Isar/outer_parse.ML
http://isabelle.in.tum.de/repos/isabelle/raw-file/tip/src/Pure/Isar/outer_lex.ML
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let
val input = OuterSyntax.scan Position.none "hello world"
in
filter Outerlex.is_proper input
end
> [Token (..., (Ident, "hello"), ...), Token (..., (Ident, "world"), ...)]

For convenience we define the function:

fun filtered_input str =
filter OuterLex.is_proper (OuterSyntax.scan Position.none str)

If you now parse

filtered_input "inductive | for"

> [Token (..., (Command, "inductive"),...),
> Token (..., (Keyword, "["),...),

> Token (..., (Keyword, "for"),...)]

you obtain a list consisting of only one command and two keyword tokens. If you
want to see which keywords and commands are currently known to Isabelle, type:

let

val (keywords, commands) = OuterKeyword.get_lexicons ()
in

(Scan.dest_lexicon commands, Scan.dest_lexicon keywords)
end

> ([n}n’ n{n’ J’ [u;\n’ nﬁn, J)

You might have to adjust the print_depth in order to see the complete list.
The parser $$$ parses a single keyword. For example:

let
val inputl = filtered_input "where for"
val input2 = filtered_input "| in"
in
(OuterParse. $$$ "where" inputl, OuterParse.$$$ "[|" input2)
end
> (("where",...), ("|",...))

Any non-keyword string can be parsed with the function reserved. For example:

let
val p = OuterParse.reserved "bar"
val input = filtered_input "bar"
in
p input
end

> ("par", [])
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Like before, you can sequentially connect parsers with --. For example:

let

val input = filtered_input "| in"
in

(OuterParse.$$$ "|" -- OuterParse.$$$ "in") input
end

> (", "in"), [1)

The parser OuterParse.enum s p parses a possibly empty list of items recognised
by the parser p, where the items being parsed are separated by the string s. For
example:

let

val input = filtered_input "in | in | in foo"
in

(OuterParse.enum "|" (OuterParse.$$$ "in")) input
end

> ([”in”, ”in", ”in”], [J)

The function enum1 works similarly, except that the parsed list must be non-empty.
Note that we had to add a string "foo" at the end of the parsed string, otherwise the
parser would have consumed all tokens and then failed with the exception MORE. Like
in the previous section, we can avoid this exception using the wrapper Scan.finite.
This time, however, we have to use the “stopper-token” OuterLex.stopper. We can
write:

let
val input = filtered_input "in | in | in"
val p = OuterParse.enum "|" (OuterParse.$$$ "in")
in
Scan.finite OuterLex.stopper p input
end
> (["j_n”’ "iIl", "il’l"], [])

The following function will help to run examples.

fun parse p input = Scan.finite OuterLex.stopper (Scan.error p) input

The function !!! can be used to force termination of the parser in case of a dead
end, just like Scan. !'! (see previous section). A difference, however, is that the error
message of OuterParse. !!! is fixed to be "Outer syntax error" together with a
relatively precise description of the failure. For example:



90 CHAPTER 5. PARSING

let

val input = filtered_input "in |["

val parse_bar_then_in = OuterParse.$$$ "|" -- OuterParse.$$$ "in"
in

parse (OuterParse.!!! parse_bar_then_in) input
end

> Exception ERROR "Outer syntax error: keyword "|" expected,
> but keyword in was found" raised

Exercise 5.2.1: (FIXME) A type-identifier, for example ’a, is a token of kind Keyword. It can
be parsed using the function type_ident.

(FIXME: or give parser for numbers)

Whenever there is a possibility that the processing of user input can fail, it is a
good idea to give all available information about where the error occurred. For this
Isabelle can attach positional information to tokens and then thread this informa-
tion up the “processing chain”. To see this, modify the function filtered_input,
described earlier, as follows

fun filtered_input’ str =
filter OuterLex.is_proper (OuterSyntax.scan (Position.line 7) str)

where we pretend the parsed string starts on line 7. An example is

filtered_input’ "foo \n bar"
> [Token (("foo", ({line=7, end_line=7}, {line=7})), (Ident, "foo"), ...),
> Token (("bar", ({line=8, end_line=8}, {line=8})), (Ident, "bar"), ...)]

in which the "\n" causes the second token to be in line 8.

By using the parser position you can access the token position and return it as part
of the parser result. For example

let
val input = filtered_input’ "where"
in
parse (OuterParse.position (OuterParse.$$$ "where")) input
end
> (("where", {line=7, end_line=7}), [])

Read More
The functions related to positions are implemented in the file Pure/General/position.ML.

Exercise 5.2.2: Write a parser for the context-free grammar representing arithmetic expres-
sions with addition and multiplication. As usual, multiplication binds stronger than addition,
and both of them nest to the right. The context-free grammar is defined as:

<Basic> ::= <Number> | (<Expr>)
<Factor> <Basic> * <Factor> | <Basic>
<Expr> <Factor> + <Expr> | <Factor>

Hint: Be careful with recursive parsers.
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5.3 Parsers for ML-Code (TBD)

MI._source

5.4 Context Parser (TBD)

Args.context

Args.context

Used for example in attribute_setup and method_setup.

5.5 Argument and Attribute Parsers (TBD)

5.6 Parsing Inner Syntax

There is usually no need to write your own parser for parsing inner syntax, that is
for terms and types: you can just call the predefined parsers. Terms can be parsed
using the function term. For example:

let

val input = OuterSyntax.scan Position.none "foo"
in

OuterParse.term input
end

> ("\"E\ Ftoken\ "Efoo\"E\"F\"E", [])

The function prop is similar, except that it gives a different error message, when
parsing fails. As you can see, the parser not just returns the parsed string, but also
some encoded information. You can decode the information with the function parse
in YXML. For example

YXML.parse "\“E\"Ftoken\ Efoo\"E\"F\"E"
> XML.Elem ("token", [], [XML.Text "foo"])

The result of the decoding is an XML-tree. You can see better what is going on if you
replace Position.none by Position.line 42, say:

let

val input = OuterSyntax.scan (Position.line 42) "foo"
in

YXML.parse (fst (OuterParse.term input))
end

> XML.Elem ("token", [("line", "42"), ("end_line", "42")], [XML.Text "foo"])

The positional information is stored as part of an XML-tree so that code called later
on will be able to give more precise error messages.
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Read More
The functions to do with input and output of XML and YXML are defined in
Pure/General/xml.ML and Pure/General/yxml.ML.

FIXME: parse_term check_term parse_typ check_typ read_term read_term

5.7 Parsing Specifications

There are a number of special purpose parsers that help with parsing specifications
of function definitions, inductive predicates and so on. In Chapter 7, for example,
we will need to parse specifications for inductive predicates of the form:

simple_inductive
even and odd
where
evenO: "even 0"
| evenS: "odd n = even (Suc n)"
| oddS: "evem n = odd (Suc n)"

For this we are going to use the parser:

val spec_parser =
OuterParse.fixes —-—
Scan.optional
(OuterParse. $$$ "where" |[--

OuterParse.!!!
(OuterParse.enuml "|["
(SpecParse.opt_thm_name ":" -- (OuterParse.prop))) []

Note that the parser must not parse the keyword simple_inductive, even if it is
meant to process definitions as shown above. The parser of the keyword will be
given by the infrastructure that will eventually call spec_parser.

To see what the parser returns, let us parse the string corresponding to the definition
of even and odd:

let
val input = filtered_input
("even and odd " ~
"where " ~
" evenO[intro]: \"even O\" " ~
"| evenS[intro]: \"odd n —> even (Suc n)\" " °
"| oddS[intro]: \"even n — odd (Suc n)\"")

in
parse spec_parser input
end
> (([(even, NONE, NoSyn), (odd, NONE, NoSyn)],
> [((evenO,...), "\"E\"Ftoken\ Eeven O\"E\"F\"E"),
> ((evenS,...), "\"E\"Ftoken\"Eodd n — even (Suc n)\"E\"F\"E"),
> ((oddS,...), "\"E\"Ftoken\"Eeven n —> odd (Suc n)\"E\"F\"E")]), [])
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As you see, the result is a pair consisting of a list of variables with optional type-
annotation and syntax-annotation, and a list of rules where every rule has optionally
a name and an attribute.

The function fixes in Line 2 of the parser reads an and-separated list of variables
that can include optional type annotations and syntax translations. For example:?

Jet

val input = filtered_input

"foo::\"int = bool\" and bar::nat (\"BAR\" 100) and blonk"

in

parse OuterParse.fixes input
end
> ([(foo, SOME "\"E\"Ftoken\"Eint = bool\"E\"F\"E", NoSyn),
> (bar, SOME "\"E\"Ftoken\ Enat\"E\"F\"E", Mixfix ("BAR", [], 100)),
>  (blonk, NONE, NoSymn)l,[])

Whenever types are given, they are stored in the SOMEs. The types are not yet used to
type the variables: this must be done by type-inference later on. Since types are part
of the inner syntax they are strings with some encoded information (see previous
section). If a mixfix-syntax is present for a variable, then it is stored in the Mixfix
data structure; no syntax translation is indicated by NoSyn.

Read More
The data structure for mixfix annotations are implemented in Pure/Syntax/mixfix.ML
and Pure/Syntax/syntax.ML.

Lines 3 to 7 in the function spec_parser implement the parser for a list of intro-
duction rules, that is propositions with theorem annotations such as rule names and
attributes. The introduction rules are propositions parsed by prop. However, they
can include an optional theorem name plus some attributes. For example

let
val input = filtered_input "foo_lemma[intro,dest!]:"
val ((name, attrib), _) = parse (SpecParse.thm_name ":") input
in
(name, map Args.dest_src attrib)
end
> (foo_lemma, [(("intro", []), ...), (("dest", [...1), ...)1)

The function opt_thm_name is the “optional” variant of thm_name. Theorem names
can contain attributes. The name has to end with ":"—see the argument of the
function SpecParse.opt_thm_name in Line 7.

ZNote that in the code we need to write \"int = bool\" in order to properly escape the double
quotes in the compound type.
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Read More
Attributes and arguments are implemented in the files Pure/Isar/attrib.ML and
Pure/Isar/args.ML.

Exercise 5.7.1: Have a look at how the parser SpecParse.where_alt_specs is implemented
in file Pure/Isar/spec_parse.ML. This parser corresponds to the “where-part” of the intro-
duction rules given above. Below we paraphrase the code of where_alt_specs adapted to our
purposes.

val spec_parser’ =
OuterParse.fixes —--—
Scan.optional
(OuterParse. $$$ "where" |[--

OuterParse. !!!
(OuterParse.enuml "["
((SpecParse.opt_thm_name ":" -- (OuterParse.prop) —--|

Scan.option (Scan.ahead (OuterParse.name ||
OuterParse.$$$ "[") —-
OuterParse.!!! (OuterParse.$$$ "["))))) []

Both parsers accept the same input, but if you look closely, you can notice an additional “tail”
(Lines 8 to 10) in spec_parser’. What is the purpose of this additional “tail”?

(FIXME: QuterParse.type_args, OuterParse.typ, OuterParse.opt_mixfix)

5.8 New Commands and Keyword Files

Often new commands, for example for providing new definitional principles, need to
be implemented. While this is not difficult on the ML-level, new commands, in order
to be useful, need to be recognised by ProofGeneral. This results in some subtle
configuration issues, which we will explain in this section.

To keep things simple, let us start with a “silly” command that does nothing at all.
We shall name this command foobar. On the ML-level it can be defined as:

let

val do_nothing = Scan.succeed (Local_Theory.theory I)

val kind = OuterKeyword.thy_decl
in

OuterSyntax.local_theory "foobar" '"description of foobar" kind do_nothing
end

The crucial function local_theory expects a name for the command, a short de-
scription, a kind indicator (which we will explain later more thoroughly) and a
parser producing a local theory transition (its purpose will also explained later).
While this is everything you have to do on the ML-level, you need a keyword file that
can be loaded by ProofGeneral. This is to enable ProofGeneral to recognise foobar
as a command. Such a keyword file can be generated with the command-line:


http://isabelle.in.tum.de/repos/isabelle/raw-file/tip/src/Pure/Isar/attrib.ML
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http://isabelle.in.tum.de/repos/isabelle/raw-file/tip/src/Pure/Isar/spec_parse.ML
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$ isabelle keywords -k foobar some_log_files

The option -k foobar indicates which postfix the name of the keyword file will be
assigned. In the case above the file will be named isar-keywords-foobar.el. This
command requires log files to be present (in order to extract the keywords from
them). To generate these log files, you first need to package the code above into a
separate theory file named Command. thy, say—see Figure 5.1 for the complete code.

For our purposes it is sufficient to use the log files of the theories Pure, HOL and
Pure-ProofGeneral, as well as the log file for the theory Command. thy, which con-
tains the new foobar-command. If you target other logics besides HOL, such as
Nominal or ZF, then you need to adapt the log files appropriately.

Pure and HOL are usually compiled during the installation of Isabelle. So log files
for them should be already available. If not, then they can be conveniently compiled
with the help of the build-script from the Isabelle distribution.

$ ./build -m "Pure"
$ ./build -m "HOL"

The Pure-ProofGeneral theory needs to be compiled with:

$ ./build -m "Pure-ProofGeneral" "Pure"

For the theory Command. thy, you first need to create a “managed” subdirectory with:
$ isabelle mkdir FoobarCommand

This generates a directory containing the files:

./IsaMakefile

. /FoobarCommand/ROOT . ML

. /FoobarCommand/document

. /FoobarCommand/document/root . tex

You need to copy the file Command. thy into the directory FoobarCommand and add
the line

no_document use_thy "Command";

to the file . /FoobarCommand/ROOT.ML. You can now compile the theory by just typ-
ing:

$ isabelle make

If the compilation succeeds, you have finally created all the necessary log files. They
are stored in the directory

~/.isabelle/heaps/Isabelle2009/polyml-5.2.1_x86-1inux/log



96 CHAPTER 5. PARSING

theory Command
imports Main
begin
ML {*
let
val do_nothing = Scan.succeed (Local_Theory.theory I)
val kind = OuterKeyword.thy_decl
in
OuterSyntax.local_theory "foobar" '"description of foobar" kind do_nothing
end

*}
end

Figure 5.1: This file can be used to generate a log file. This log file in turn can be
used to generate a keyword file containing the command foobar.

or something similar depending on your Isabelle distribution and architecture. One
quick way to assign a shell variable to this directory is by typing

$ ISABELLE_LOGS="$(isabelle getenv -b ISABELLE_OUTPUT)"/log

on the Unix prompt. If you now type 1s $ISABELLE_LOGS, then the directory should
include the files:

Pure.gz

HOL.gz
Pure-ProofGeneral.gz
HOL-FoobarCommand.gz

From them you can create the keyword files. Assuming the name of the directory is
in $ISABELLE_LOGS, then the Unix command for creating the keyword file is:

$ isabelle keywords -k foobar
$ISABELLE_LOGS/{Pure.gz,HOL.gz,Pure-ProofGeneral.gz,HOL-FoobarCommand.gz}

The result is the file isar-keywords-foobar.el. It should contain the string foobar
twice.® This keyword file needs to be copied into the directory ~/.isabelle/etc. To
make ProofGeneral aware of it, you have to start Isabelle with the option -k foobar,
that is:

$ isabelle emacs -k foobar a_theory_file

If you now build a theory on top of Command. thy, then you can use the command
foobar. You can just write

foobar

3To see whether things are fine, check that grep foobar on this file returns something non-empty.
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but you will not see any action as we chose to implement this command to do noth-
ing. The point of this command is only to show the procedure of how to interact with
ProofGeneral. A similar procedure has to be done with any other new command, and
also any new keyword that is introduced with the function keyword. For example:

val _ = OuterKeyword.keyword "blink"

At the moment the command foobar is not very useful. Let us refine it a bit next
by letting it take a proposition as argument and printing this proposition inside the
tracing buffer.

The crucial part of a command is the function that determines the behaviour of the
command. In the code above we used a “do-nothing”-function, which because of
succeed does not parse any argument, but immediately returns the simple function
Local_Theory.theory I. We can replace this code by a function that first parses a
proposition (using the parser OuterParse.prop), then prints out the tracing infor-
mation (using a new function trace_prop) and finally does nothing. For this you
can write:

let
fun trace_prop str =
Local_Theory.theory (fn ctxt => (tracing str; ctxt))

val kind = OuterKeyword.thy_decl
in
OuterSyntax.local_theory '"foobar_trace" '"traces a proposition'
kind (OuterParse.prop >> trace_prop)
end

The command is now foobar_trace and can be used to see the proposition in the
tracing buffer.

foobar_trace "True A False"

Note that so far we used thy_decl as the kind indicator for the command. This
means that the command finishes as soon as the arguments are processed. Examples
of this kind of commands are definition and declare. In other cases, commands are
expected to parse some arguments, for example a proposition, and then “open up”
a proof in order to prove the proposition (for example lemma) or prove some other
properties (for example function). To achieve this kind of behaviour, you have to
use the kind indicator thy_goal and the function local_theory_to_proof to set
up the command. Note, however, once you change the “kind” of a command from
thy_decl to thy_goal then the keyword file needs to be re-created!

Below we show the command foobar_goal which takes a proposition as argument

and then starts a proof in order to prove it. Therefore in Line 9, we set the kind
indicator to thy_goal.
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let
fun goal_prop str 1lthy =
let
val prop = Syntax.read_prop lthy str
in
Proof.theorem_i NONE (K I) [[(prop,[])]] lthy
end

val kind = OuterKeyword.thy_goal
in
OuterSyntax.local_theory_to_proof "foobar_goal'" "proves a proposition"
kind (OuterParse.prop >> goal_prop)
end

The function goal_prop in Lines 2 to 7 takes a string (the proposition to be proved)
and a context as argument. The context is necessary in order to be able to use
read_prop, which converts a string into a proper proposition. In Line 6 the function
theorem_i starts the proof for the proposition. Its argument NONE stands for a locale
(which we chose to omit); the argument (K I) stands for a function that determines
what should be done with the theorem once it is proved (we chose to just forget
about it). Line 9 contains the parser for the proposition.

If you now type foobar_goal "True A True", you obtain the following proof state
foobar_goal "True A True"

goal (1 subgoal):
1. True A True

and can prove the proposition as follows.

apply (zrule conjI)
apply (zule Truel)+
done

TBD below
(FIXME: read a name and show how to store theorems; see note)

val r = Unsynchronized.ref (NONE:(unit -> term) option)
let
fun after_qed thm_name thms 1thy =
Local_Theory.note (thm_name, (flat thms)) lthy [> snd

fun setup_proof (thm_name, (txt, pos)) lthy =
let
val trm = ML_Context.evaluate lthy true ("r", r) txt
in
Proof.theorem_i NONE (after_qed thm_name) [[(trm,[])]] lthy
end

val parser = SpecParse.opt_thm_name ":" -- (QuterParse.ML_source
in
OuterSyntax.local_theory_to_proof '"foobar_prove'" '"proving a proposition"
OuterKeyword.thy_goal (parser >> setup_proof)
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end

foobar_prove test: {* @{prop "True"} *}
apply (rule Truel)
done

5.9 Methods (TBD)

(FIXME: maybe move to after the tactic section)

Methods are central to Isabelle. They are the ones you use for example in apply. To
print out all currently known methods you can use the Isabelle command:

print_methods

> methods:

> -: do nothing (insert current facts only)

> HOL.default: apply some intro/elim rule (potentially classical)
>

An example of a very simple method is:

method setup foo =
{* Scan.succeed
(K (SIMPLE_METHOD ((etac @{thm conjE} THEN’ rtac @{thm conjI}) 1))) *}
"foo method for conjE and conjI"

It defines the method foo, which takes no arguments (therefore the parser Scan. succeed)
and only applies a single tactic, namely the tactic which applies conjE and then
conjI. The function SIMPLE_METHOD turns such a tactic into a method. The method

foo can be used as follows

lemma shows "A AN B =— C A D"
apply (foo)

where it results in the goal state
goal (2 subgoals):
1. [A; Bl = ¢ 2. [4; B] = D

(FIXME: explain a version of rule-tac)
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Chapter 6

Tactical Reasoning

One of the main reason for descending to the ML-level of Isabelle is to be able to
implement automatic proof procedures. Such proof procedures can considerably
lessen the burden of manual reasoning. They are centred around the idea of refining
a goal state using tactics. This is similar to the apply-style reasoning at the user-
level, where goals are modified in a sequence of proof steps until all of them are
discharged. In this chapter we will explain simple tactics and how to combine them
using tactic combinators. We also describe the simplifier, simprocs and conversions.

6.1 Basics of Reasoning with Tactics

To see how tactics work, let us first transcribe a simple apply-style proof into ML.
Suppose the following proof.

lemma disj_swap:

shows "P Vv Q = Q Vv P"
apply (erule disjE)
apply (rule disjI2)
apply (assumption)
apply (rule disjI1)
apply (assumption)
done

This proof translates to the following ML-code.

let
val ctxt = @{context}
val goal = @{prop "P V @ = Q V P"}
in
Goal.prove ctxt ["P", "Q"] [] goal
(fn _ => etac @{thm disjE} 1
THEN rtac @{thm disjI2} 1
THEN atac 1
THEN rtac @{thm disjIi1} 1
THEN atac 1)
end
>?P V ?7Q = ?7Q V 7P

101
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To start the proof, the function prove sets up a goal state for proving the goal P V
Q = Q V P. We can give this function some assumptions in the third argument
(there are no assumption in the proof at hand). The second argument stands for a
list of variables (given as strings). This list contains the variables that will be turned
into schematic variables once the goal is proved (in our case P and ). The last
argument is the tactic that proves the goal. This tactic can make use of the local
assumptions (there are none in this example). The tactics etac, rtac and atac in
the code above correspond roughly to erule, rule and assumption, respectively.
The combinator THEN strings the tactics together.

Read More

To learn more about the function prove see [Impl Man., Sec. 4.3] and the file
Pure/goal.ML. See Pure/tactic.ML and Pure/tactical.ML for the code of basic tac-
tics and tactic combinators; see also Chapters 3 and 4 in the old Isabelle Reference Manual,
and Chapter 3 in the Isabelle/Isar Implementation Manual.

Note that in the code above we use antiquotations for referencing the theorems. We
could also just have written etac disjE 1 because many of the basic theorems have
a corresponding ML-binding:

disjE
> [?P V ?Q; ?P — 7R; ? — ?7R] — 7R

In case where no ML-binding exists, theorems can also be looked up dynamically
using the function thm and the (string) name of the theorem. For example:

thm "disjE"
> [?P V ?Q; ?P — 7R; ? — ?7R] — 7R

Both ways however are considered bad style! The reason is that the binding for disjE
can be re-assigned and thus one does not have complete control over which theorem
is actually applied. Similarly with the lookup of "disjE". Although theorems must
have a unique name in the theorem database, the string can stand for a dynamically
updatable theorem list. Also in this case we cannot be sure which theorem is applied.
These problems can be nicely prevented by using antiquotations

e{thm "disjE"}
> [P v ?7q; 7P = 7R; ?Q — 7R] = 7R

because then the theorems are fixed statically at compile-time.

During the development of automatic proof procedures, you will often find it neces-
sary to test a tactic on examples. This can be conveniently done with the command
apply (tactic {* ... *}). Consider the following sequence of tactics
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val foo_tac =
(etac @{thm disjE} 1
THEN rtac @{thm disjI2} 1
THEN atac 1
THEN rtac @{thm disjIi1} 1
THEN atac 1)

and the Isabelle proof:

lemma

shows "P Vv @ — Q V P"
apply (tactic {* foo_tac *})
done

By using tactic {* ... *} you can call from the user-level of Isabelle the tactic
foo_tac or any other function that returns a tactic.

The tactic foo_tac is just a sequence of simple tactics stringed together by THEN. As
can be seen, each simple tactic in foo_tac has a hard-coded number that stands for
the subgoal analysed by the tactic (1 stands for the first, or top-most, subgoal). This
hard-coding of goals is sometimes wanted, but usually it is not. To avoid the explicit
numbering, you can write

val foo_tac’ =
(etac @{thm disjE}
THEN’ rtac @{thm disjI2}
THEN’ atac
THEN’ rtac @{thm disjI1}
THEN’ atac)

where THEN’ is used instead of THEN. (For most combinators that combine tactics—
THEN is only one such combinator—a “primed” version exists.) With foo_tac’ you
can give the number for the subgoal explicitly when the tactic is called. So in the
next proof you can first discharge the second subgoal, and subsequently the first.

lemma
shows "P1 V Q1 — Q@1 V P1"
and "P2 V Q2 = Q2 VvV P2"
apply (tactic {* foo_tac’ 2 *})
apply(tactic {* foo_tac’ 1 *})
done

This kind of addressing is more difficult to achieve when the goal is hard-coded
inside the tactic.

The tactics foo_tac and foo_tac’ are very specific for analysing goals being only of
the formP Vv § = Q V P.If the goal is not of this form, then these tactics return
the error message:!

*** empty result sequence —- proof command failed
*** At command "apply".

To be precise, tactics do not produce this error message; the message originates from the apply
wrapper that calls the tactic.
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This means they failed. The reason for this error message is that tactics are functions
mapping a goal state to a (lazy) sequence of successor states. Hence the type of a
tactic is:

type tactic = thm -> thm Seq.seq

By convention, if a tactic fails, then it should return the empty sequence. Therefore,
if you write your own tactics, they should not raise exceptions willy-nilly; only in
very grave failure situations should a tactic raise the exception THM.

The simplest tactics are no_tac and all_tac. The first returns the empty sequence
and is defined as

fun no_tac thm = Seq.empty

which means no_tac always fails. The second returns the given theorem wrapped
in a single member sequence; it is defined as

fun all_tac thm = Seq.single thm

which means all_tac always succeeds, but also does not make any progress with
the proof.

The lazy list of possible successor goal states shows through at the user-level of
Isabelle when using the command back. For instance in the following proof there
are two possibilities for how to apply foo_tac’: either using the first assumption or
the second.

lemma
shows "[P vV Q; PV Q] = Q Vv P"
apply (tactic {* foo_tac’ 1 *})
back
done

By using back, we construct the proof that uses the second assumption. While in the
proof above, it does not really matter which assumption is used, in more interesting
cases provability might depend on exploring different possibilities.

Read More

See Pure/General/seq.ML for the implementation of lazy sequences. In day-to-day
Isabelle programming, however, one rarely constructs sequences explicitly, but uses the pre-
defined tactics and tactic combinators instead.

It might be surprising that tactics, which transform one goal state to the next, are
functions from theorems to theorem (sequences). The surprise resolves by knowing
that every goal state is indeed a theorem. To shed more light on this, let us modify
the code of all_tac to obtain the following tactic


http://isabelle.in.tum.de/repos/isabelle/raw-file/tip/src/Pure/General/seq.ML
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fun my_print_tac ctxt thm =

let

val _ = tracing (string_of_thm_no_vars ctxt thm)
in

Seq.single thm
end

which prints out the given theorem (using the string-function defined in Section 2.2)
and then behaves like all_tac. With this tactic we are in the position to inspect
every goal state in a proof. For this consider the proof in Figure 6.1: as can be seen,
internally every goal state is an implication of the form

Ay — ... = A, = #C

where C is the goal to be proved and the 4; are the subgoals. So after setting
up the lemma, the goal state is always of the form ¢ = #C; when the proof is
finished we are left with #C. Since the goal C can potentially be an implication,
there is a “protector” wrapped around it (the wrapper is the outermost constant
Const ("prop", bool = bool); in the figure we make it visible as a #). This
wrapper prevents that premises of C are misinterpreted as open subgoals. While
tactics can operate on the subgoals (the 4; above), they are expected to leave the
conclusion C intact, with the exception of possibly instantiating schematic variables.
This instantiations of schematic variables can be observed on the user level. Have a
look at the following definition and proof.
definition

EQ_TRUE

where
"EQ_TRUE X = (X = True)"

lemma test:

shows "EQ_TRUE 7X"
unfolding EQ_TRUE_def
by (rule refl)

Although Isabelle issues a warning message when stating goals involving meta-
variables, it is possible to prove this theorem. The reason for the warning message is
that the proved theorem is not EQ_TRUE ?7X, as one might expect, but EQ_TRUE True.
We can test this with:

thm test
> EQ@_TRUE True

The reason for this result is that the schematic variable ?X is instantiated inside the
proof to be True and then the instantiation propagated to the “outside”.

Read More
For more information about the internals of goals see [Impl. Man., Sec. 3.1].
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notation (output) "prop" ("#." [1000] 1000)

lemma
shows "[4; B] = A A B"
apply(tactic {* my_print_tac @{context} *})

goal (1 subgoal):
1. [A; B] = A A B

internal goal state:
([4; B] = A A B) = #([A; B] = A A B)

apply (zrule conjI)
apply (tactic {* my_print_tac @{context} *})

goal (2 subgoals):
1. [4; B] = 4
2. [A; B] = B

internal goal state:

[[4; B] = 4; [4A; B] = B] = #([A; B] = A A B)
apply (assumption)

apply (tactic {* my_print_tac @{context} *})

goal (1 subgoal):

1. [4; B] = B

internal goal state:

([4; B] = B) = #([A; B] = A A B)
apply (assumption)
apply (tactic {* my_print_tac @{context} *})
No subgoals!

internal goal state:
#([A; B] = A A B)

Figure 6.1: The figure shows an Isabelle snippet of a proof where each intermediate
goal state is printed by the Isabelle system and by my_print_tac. The latter shows
the goal state as represented internally (highlighted boxes). This tactic shows that
every goal state in Isabelle is represented by a theorem: when you start the proof of
[4; B] = A A Bthetheoremis ([A; B] = A A B) — #([A; B] = A A
B) ; when you finish the proof the theorem is #([A; B] = A4 A B).
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6.2 Simple Tactics

In this section we will introduce more of the simple tactics in Isabelle. The first one
is print_tac, which is quite useful for low-level debugging of tactics. It just prints
out a message and the current goal state. Unlike my_print_tac shown earlier, it
prints the goal state as the user would see it. For example, processing the proof

lemma
shows "False —> True"
apply (tactic {* print_tac "foo message" *})

gives:
foo message

False — True
1. False — True

A simple tactic for easy discharge of any proof obligations, even difficult ones, is
cheat_tac in the structure Skip_Proof. This tactic corresponds to the Isabelle com-
mand sorry and is sometimes useful during the development of tactics.

lemma
shows "False" and "Goldbach_conjecture"
apply (tactic {* Skip_Proof.cheat_tac @{theory} *})

No subgoals!

Another simple tactic is the function atac, which, as shown earlier, corresponds to
the assumption method.

lemma
shows "P — PpP"
apply(tactic {* atac 1 *})

No subgoals!

Similarly, rtac, dtac, etac and ftac correspond (roughly) to rule, drule, erule
and frule, respectively. Each of them takes a theorem as argument and attempts to
apply it to a goal. Below are three self-explanatory examples.

lemma
shows "P A Q"
apply(tactic {* rtac @{thm conjI} 1 *})

goal (2 subgoals):
1. P

2. Q

lemma
shows "P A @ = False"
apply (tactic {* etac @{thm conjE} 1 *})

goal (1 subgoal):
1. [P; Q] = False
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lemma
shows "False A True —> False"
apply (tactic {* dtac @{thm conjunct2} 1 *})

goal (1 subgoal):
1. True — False

The function resolve_tac is similar to rtac, except that it expects a list of theorems
as argument. From this list it will apply the first applicable theorem (later theorems
that are also applicable can be explored via the lazy sequences mechanism). Given
the code

val resolve_xmp_tac = resolve_tac [@{thm impI}, @{thm conjI}]

an example for resolve_tac is the following proof where first an outermost impli-
cation is analysed and then an outermost conjunction.

lemma

shows "C — (4 A B)"

and "(A — B) A C"
apply (tactic {* resolve_xmp_tac 1 *})
apply (tactic {* resolve_xmp_tac 2 *})

goal (3 subgoals):
1. C = A AN B
2. A — B

3. C

Similar versions taking a list of theorems exist for the tactics dtac (dresolve_tac),
etac (eresolve_tac) and so on.

Another simple tactic is cut_facts_tac. It inserts a list of theorems into the assump-
tions of the current goal state. Below we will insert the definitions for the constants
True and False. So

lemma
shows "True # False"
apply (tactic {* cut_facts_tac [@{thm True_def}, @{thm False_def}] 1 *})

produces the goal state

goal (1 subgoal):
1. [True = (Ax. x) = (Ax. x); False = VYP. P|] = True # False

Often proofs on the ML-level involve elaborate operations on assumptions and A-
quantified variables. To do such operations using the basic tactics shown so far is
very unwieldy and brittle. Some convenience and safety is provided by the functions
FOCUS and SUBPROOF. These tactics fix the parameters and bind the various compo-
nents of a goal state to a record. To see what happens, suppose the function defined
in Figure 6.2, which takes a record and just prints out the contents of this record.
Then consider the proof:

lemma
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fun foc_tac {prems, params, asms, concl, context, schematics} =
let
fun pairsl f1 f2 xs =
commas (map (fn (x, y) => f1 x =~ ":=" = f2 y) xs)

fun pairs2 f xs = pairsl f f xs

val string of_params = pairsl I (string_of_cterm context) params

val string of_asms = string_of_cterms context asms

val string of_concl = string_of_cterm context concl

val string_of_prems = string_of_thms_no_vars context prems

val string_of_schms = pairs2 (string_of_cterm context) (snd schematics)

val strs = ["params: " ~ string_of_params,
"schematics: " = string_of_schms,
"assumptions: " = string_of_asms,
"conclusion: " ~ string_of_concl,
"premises: " ~ string_of_prems]
in
tracing (cat_lines strs); all_tac
end

Figure 6.2: A function that prints out the various parameters provided by FOCUS and
SUBPROCF. It uses the functions defined in Section 2.2 for extracting strings from
cterms and thms.

shows "Ax y. Axy = Byx — C (?z y) x"
apply (tactic {* Subgoal.FOCUS foc_tac @{context} 1 *})

The tactic produces the following printout:

params: X:=K, y:=y
schematics: ?z:=z
assumptions: A4 x y
conclusion: Byx — C(zy)x
premises: Axy

The params and schematics stand for list of pairs where the left-hand side of := is
replaced by the right-hand side inside the tactic. Notice that in the actual output the
variables x and y have a brown colour. Although they are parameters in the original
goal, they are fixed inside the tactic. By convention these fixed variables are printed
in brown colour. Similarly the schematic variable 7z. The assumption, or premise, A
x y is bound as cterm to the record-variable asms, but also as thm to prems.

If we continue the proof script by applying the impI-rule

apply (rule impI)
apply (tactic {* Subgoal.FOCUS foc_tac @{context} 1 *})

then the tactic prints out:
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params: X:=X, y:=y
schematics: ?z:=z
assumptions: A4 x y,B y x
conclusion: C (zy) x
premises: Axy Byx

Now also B y x is an assumption bound to asms and prems.

One difference between the tactics SUBPROOF and FOCUS is that the former ex-
pects that the goal is solved completely, which the latter does not. Another is that
SUBPROOF cannot instantiate any schematic variables.

Observe that inside FOCUS and SUBPROOF, we are in a goal state where there is only a
conclusion. This means the tactics dtac and the like are of no use for manipulating
the goal state. The assumptions inside FOCUS and SUBPROOF are given as cterms
and theorems in the arguments asms and prems, respectively. This means we can
apply them using the usual assumption tactics. With this you can for example easily
implement a tactic that behaves almost like atac:

val atac’ = Subgoal.FOCUS (fn {prems, ...} => resolve_tac prems 1)

If you apply atac’ to the next lemma

lemma
shows "[Bx y; Axy; Cxy] = Axy"
apply (tactic {* atac’ @{context} 1 *})

it will produce

No subgoals!

Notice that atac’ inside FOCUS calls resolve_tac with the subgoal number 1 and
also the outer call to FOCUS in the apply-step uses 1. This is another advantage of
FOCUS and SUBPROOF: the addressing inside it is completely local to the tactic inside
the subproof. It is therefore possible to also apply atac’ to the second goal by just
writing:
lemma

shows "True"

and "[Bxy; Axy; Cxy] = Axy"
apply (tactic {* atac’ @{context} 2 *})
apply (rule Truel)
done

There is one peculiarity about FOCUS and SUBPROCF. If we apply rtac @{thm allIl}
in the proof below

lemma
shows "B — Vx. A x"
apply (tactic {* rtac @{thm allIl} 1 *})

it will produce the expected goal state
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goal (1 subgoal):
1. Ax. B= A x

But if we apply the same tactic inside FOCUS we obtain

lemma
shows "B — Vx. 4 x"
apply (tactic {* Subgoal.FOCUS (fn _ => rtac @{thm allIl} 1) @{context} 1 *})

it will produce the goal state

goal (1 subgoal):
1. Ax. B= A x

If we want to imitate the behaviour of the “plain” tactic, then we can apply the tactic
norm_hhf_tac. This gives

apply (tactic {* Goal.norm_hhf_tac 1 *})

goal (1 subgoal):
1. Ax. B= A x

This tactic transforms the goal state into a hereditary Harrop normal form. To sum
up, both FOCUS and SUBPROCF are rather convenient, but can impose a considerable
run-time penalty in automatic proofs. If speed is of the essence, then maybe the two
lower level combinators described next are more appropriate.

Read More
The functions FOCUS and SUBPROOF are defined in Pure/subgoal.ML and also described in
[Impl. Man., Sec. 4.3].

Similar but less powerful functions than FOCUS, respectively SUBPROOF, are SUBGOAL
and CSUBGOAL. They allow you to inspect a given subgoal (the former presents the
subgoal as a term, while the latter as a cterm). With them you can implement a
tactic that applies a rule according to the topmost logic connective in the subgoal
(to illustrate this we only analyse a few connectives). The code of the tactic is as
follows.

fun select_tac (t, i) =
case t of
O@{term "Trueprop"} $ t’ => select_tac (t’, i)
| e{term "op ="} $ _ § t’ => select_tac (t’, 1)
| e{term "op A"} $ _ $ _ => rtac @{thm conjI} i
| e{term "op —"} $ _ $ _ => rtac O@{thm impI} i
| e{term "Not"} $ _ => rtac @{thm notI} i
| Const (@{const_name "All"}, _) $ _ => rtac @{thm allI} i
| _ => all_tac

The input of the function is a term representing the subgoal and a number speci-
fying the subgoal of interest. In Line 3 you need to descend under the outermost
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Trueprop in order to get to the connective you like to analyse. Otherwise goals like
A A B are not properly analysed. Similarly with meta-implications in the next line.
While for the first five patterns we can use the @term-antiquotation to construct the
patterns, the pattern in Line 8 cannot be constructed in this way. The reason is that
an antiquotation would fix the type of the quantified variable. So you really have to
construct this pattern using the basic term-constructors. This is not necessary in the
other cases, because their type is always fixed to function types involving only the
type bool. (See Section 3.2 about constructing terms manually.) For the catch-all
pattern, we chose to just return all_tac. Consequently, select_tac never fails.

Let us now see how to apply this tactic. Consider the four goals:

lemma
shows "4 A B" and "A — B —C" and "Vx. D x" and "E — F"
apply (tactic {* SUBGOAL select_tac 4 *})
apply (tactic {* SUBGOAL select_tac 3 *})
apply (tactic {* SUBGOAL select_tac 2 *})
apply (tactic {* SUBGOAL select_tac 1 *})

goal (5 subgoals):
1. A

2. B

A — B — C
. Nx. D x

E = F

[$ I NVA)

where in all but the last the tactic applies an introduction rule. Note that we applied
the tactic to the goals in “reverse” order. This is a trick in order to be independent
from the subgoals that are produced by the rule. If we had applied it in the other
order

lemma

shows "4 A B" and "A — B —C" and "Vx. D x" and "E — F"
apply (tactic {* SUBGOAL select_tac 1 *})
apply (tactic {* SUBGOAL select_tac 3 *})
apply (tactic {* SUBGOAL select_tac 4 *})
apply (tactic {* SUBGOAL select_tac 5 *})

then we have to be careful to not apply the tactic to the two subgoals produced by
the first goal. To do this can result in quite messy code. In contrast, the “reverse
application” is easy to implement.

Of course, this example is contrived: there are much simpler methods available in
Isabelle for implementing a tactic analysing a goal according to its topmost con-
nective. These simpler methods use tactic combinators, which we will explain in the
next section. But before that we will show how tactic application can be constrained.

Read More
The functions SUBGOAL and CSUBGOAL are defined in Pure/tactical.ML.

Since rtac and the like use higher-order unification, an automatic proof procedure
based on them might become too fragile, if it just applies theorems as shown above.
The reason is that a number of theorems introduce schematic variables into the goal
state. Consider for example the proof
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lemma
shows "Vx € A. Px — Q x"
apply (tactic {* dtac @{thm bspec} 1 *})

goal (2 subgoals):
1. ?x € A
2. P?7x — @ x

where the application of theorem bspec generates two subgoals involving the new
schematic variable 7x. Now, if you are not careful, tactics applied to the first sub-
goal might instantiate this schematic variable in such a way that the second subgoal
becomes unprovable. If it is clear what the ?x should be, then this situation can be
avoided by introducing a more constrained version of the bspec-theorem. One way
to give such constraints is by pre-instantiating theorems with other theorems. The
function RS, for example, does this.

©{thm disjI1} RS @{thm conjI}
> [?P1; 7Q] = (?P1 V ?7Q1) A 7Q

In this example it instantiates the first premise of the conjI-theorem with the theo-
rem disjI1. If the instantiation is impossible, as in the case of

©@{thm conjI} RS @{thm mp}
> x** Exception- THM ("RSN: no unifiers", 1,
> ["[?P; 7Q] = ?P A 7Q", "[?P — ?Q; ?P] = ?Q"]) raised

then the function raises an exception. The function RSN is similar to RS, but takes an
additional number as argument. This number makes explicit which premise should
be instantiated.

To improve readability of the theorems we shall produce below, we will use the func-
tion no_vars from Section 2.2, which transforms schematic variables into free ones.
Using this function for the first RS-expression above produces the more readable
result:

no_vars @{context} (@{thm disjI1} RS @{thm conjI})
>[P; @] = (P V Qa) AN @

If you want to instantiate more than one premise of a theorem, you can use the
function MRS:

no_vars @{context} ([@{thm disjI1}, @{thm disjI2}] MRS @{thm conjI})
>[P; Q) = (P vV Qa) N (Pa V Q)

If you need to instantiate lists of theorems, you can use the functions RL and MRL.
For example in the code below, every theorem in the second list is instantiated with
every theorem in the first.
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let
val listl = [@{thm impI}, @{thm disjI2}]
val 1list2 = [@{thm conjI}, @{thm disjI1}]
in
map (no_vars @{context}) (listl RL list2)
end
> [[P = Q; Qa] = (P — @) A Qa,
> [Q; Qa] = (P V Q) A Qa,
> P = Q = P — Q) V Qa,
> Q@ = (P V Q) V Qa]l
Read More

The combinators for instantiating theorems with other theorems are defined in
Pure/drule.ML.

Higher-order unification is also often in the way when applying certain congruence
theorems. For example we would expect that the theorem cong

thm cong
> [7f = 7g; 7x = ?y] = 7f ?x = 7g ?y

is applicable in the following proof producing the subgoals t x = s uand y = w.

lemma
fixes x y u w::"’a"
shows "t x y = s u w"
apply (zrule cong)

goal (2 subgoals):
1. (la. a) = (la. a)
2.txy=suw

As you can see this is unfortunately not the case if we apply cong with the method
rule. The problem is that higher-order unification produces an instantiation that
is not the intended one. While we can use back to interactively find the intended
instantiation, this is not an option for an automatic proof procedure. Fortunately, the
tactic cong_tac helps with applying congruence theorems and finding the intended
instantiation. For example

lemma
fixes x y u w::"’a"
shows "t x y = s u w"
apply (tactic {* Cong_Tac.cong_tac @{thm cong} 1 *})

goal (2 subgoals):
1. tx=su
2.y =w

However, frequently it is necessary to explicitly match a theorem against a goal state
and in doing so construct manually an appropriate instantiation. Imagine you have
the theorem

lemma rule:
shows "[f = g; x =y] = R (f x) (g y)"
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sorry

and you want to apply it to the goal t; t, < s7 so. Since in the theorem all vari-
ables are schematic, we have a nasty higher-order unification problem and rtac will
not be able to apply this rule in the way we want. For the goal at hand we want
to use it so that R is instantiated to the constant < and similarly “obvious” instan-
tiations for the other variables. To achieve this we need to match the conclusion
of rule against the goal reading off an instantiation for rule. For this the func-
tion first_order_match matches two cterms and produces, in the successful case,
a matcher that can be used to instantiate the theorem. The instantiation can be
done with the function instantiate. To automate this we implement the following
function.

fun fo_rtac thm = Subgoal.FOCUS (fn {concl, ...} =>
let
val concl_pat = Drule.strip_imp_concl (cprop_of thm)
val insts = Thm.first_order_match (concl_pat, concl)
in
rtac (Drule.instantiate insts thm) 1
end)

Note that we use FOCUS because it gives us directly access to the conclusion of
the goal state, but also because this function takes care of correctly handling pa-
rameters that might be present in the goal state. In Line 3 we use the function
strip_imp_concl for calculating the conclusion of a theorem (produced as cterm).
An example of fo_rtac is as follows.

lemma
shows ”/\tl s1 (tg::’a) (sg::’a). (t1 ta) < (s1 s2)"

apply (tactic {* fo_rtac @{thm rule} @{context} 1 *})

goal (2 subgoals):
1. /\tl S1 tg S9. t1 = 81
2. /\t1 S1 tg S9. to = So

We obtain the intended subgoals and also the parameters are correctly introduced in
both of them. Such manual instantiations are quite frequently necessary in order to
appropriately constrain the application of theorems. Otherwise one can end up with
“wild” higher-order unification problems that make automatic proofs fail.

Read More
Functions for matching cterms are defined in Pure/thm.ML. Functions for instantiating
schematic variables in theorems are defined in Pure/drule.ML.

6.3 Tactic Combinators

The purpose of tactic combinators is to build compound tactics out of smaller tactics.
In the previous section we already used THEN, which just strings together two tactics
in a sequence. For example:
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lemma
shows "(Foo A Bar) A False"
apply (tactic {* rtac @{thm conjI} 1 THEN rtac @{thm conjI} 1 *})

goal (3 subgoals):
1. Foo
2. Bar
3. False

If you want to avoid the hard-coded subgoal addressing in each component, then, as
seen earlier, you can use the “primed” version of THEN. For example:

lemma
shows "(Foo A Bar) A False"
apply (tactic {* (rtac @{thm conjI} THEN’ rtac @{thm conjI}) 1 *})

goal (3 subgoals):
1. Foo

2. Bar

3. False

Here you have to specify the subgoal of interest only once and it is consistently
applied to the component. For most tactic combinators such a “primed” version
exists and in what follows we will usually prefer it over the “unprimed” one.

The tactic combinator RANGE takes a list of n tactics, say, and applies them to each
of the first n subgoals. For example below we first apply the introduction rule for
conjunctions and then apply a tactic to each of the two subgoals.
lemma

shows "4 =— True A A"

apply (tactic {* (rtac @{thm conjI}
THEN’ RANGE [rtac @{thm Truel}, atac]) 1 *})

No subgoals!

If there is a list of tactics that should all be tried out in sequence on one specified
subgoal, you can use the combinator EVERY’. For example the function foo_tac’
from page 103 can also be written as:

val foo_tac’’ = EVERY’ [etac @{thm disjE}, rtac @{thm disjI2},
atac, rtac @{thm disjI1}, atac]

There is even another way of implementing this tactic: in automatic proof procedures
(in contrast to tactics that might be called by the user) there are often long lists of
tactics that are applied to the first subgoal. Instead of writing the code above and
then calling foo_tac’’ 1, you can also just write

val foo_tacl = EVERY1 [etac @{thm disjE}, rtac @{thm disjI2},
atac, rtac @{thm disjI1}, atac]

and call foo_tacl.

With the combinators THEN’, EVERY’ and EVERY1 it must be guaranteed that all
component tactics successfully apply; otherwise the whole tactic will fail. If you
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rather want to try out a number of tactics, then you can use the combinator ORELSE’
for two tactics, and FIRST’ (or FIRST1) for a list of tactics. For example, the tactic

val orelse_xmp_tac = rtac @{thm disjI1} ORELSE’ rtac @{thm conjI}

will first try out whether theorem disjI applies and in case of failure will try conjI.
To see this consider the proof

lemma

shows "True A False" and "Foo V Bar"
apply (tactic {* orelse_xmp_tac 2 *})
apply (tactic {* orelse_xmp_tac 1 *})

which results in the goal state

goal (3 subgoals):
1. True

2. False

3. Foo

Using FIRST’ we can simplify our select_tac from Page 111 as follows:

val select_tac’ = FIRST’ [rtac @{thm conjI}, rtac @{thm impI},
rtac @{thm notI}, rtac @{thm allIl}, K all_tac]

Since we like to mimic the behaviour of select_tac as closely as possible, we must
include all_tac at the end of the list, otherwise the tactic will fail if no theorem
applies (we also have to wrap all_tac using the K-combinator, because it does not
take a subgoal number as argument). You can test the tactic on the same goals:

lemma

shows "4 A B" and "A — B —C" and "Vx. D x" and "E — F"
apply (tactic {* select_tac’ 4 *})
apply (tactic {* select_tac’ 3 *})
apply (tactic {* select_tac’ 2 *})
apply (tactic {* select_tac’ 1 *})

goal (5 subgoals):
1. A

2. B

A =—= B — C
. Nx. D x

E — F

[$2 I NV}

Since such repeated applications of a tactic to the reverse order of all subgoals is
quite common, there is the tactic combinator ALLGOALS that simplifies this. Using
this combinator you can simply write:

lemma
shows "A A B" and "A — B —C" and "Vx. D x" and "E = F"
apply (tactic {* ALLGOALS select_tac’ *})
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goal (5 subgoals):

1. A

2. B

3. A — B — C
4. Ax. D x

5. E = F

Remember that we chose to implement select_tac’ so that it always succeeds by
fact of having all_tac at the end of the tactic list. The same can be achieved with
the tactic combinator TRY. For example:

val select_tac’’ = TRY o FIRST’ [rtac @{thm conjI}, rtac @{thm impI},
rtac @{thm notI}, rtac @{thm allI}]

This tactic behaves in the same way as select_tac’: it tries out one of the given
tactics and if none applies leaves the goal state unchanged. This, however, can be
potentially very confusing when visible to the user, for example, in cases where the
goal is the form

lemma
shows "E — F"
apply (tactic {* select_tac’ 1 *})

goal (1 subgoal):
1. E = F

In this case no theorem applies. But because we wrapped the tactic in a TRY, it does
not fail anymore. The problem is that for the user there is little chance to see whether
progress in the proof has been made, or not. By convention therefore, tactics visible
to the user should either change something or fail.

To comply with this convention, we could simply delete the K all_tac in select_tac’
or delete TRY from select_tac’’. But for the sake of argument, let us suppose that
this deletion is not an option. In such cases, you can use the combinator CHANGED to
make sure the subgoal has been changed by the tactic. Because now

lemma
shows "E — F"
apply(tactic {* CHANGED (select_tac’ 1) *})

gives the error message:

*** empty result sequence -- proof command failed
**x At command "apply".

We can further extend the select_tacs so that they not just apply to the topmost
connective, but also to the ones immediately “underneath”, i.e. analyse the goal com-
pletely. For this you can use the tactic combinator REPEAT. As an example suppose
the following tactic

val repeat_xmp_tac = REPEAT (CHANGED (select_tac’ 1))
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which applied to the proof

lemma
shows "((—-4) AN (Vx. Bx)) N (C — D)"
apply (tactic {* repeat_xmp_tac *})

produces

goal (3 subgoals):
1. A = False
2. Vx. Bx

3. C — D

Here it is crucial that select_tac’ is prefixed with CHANGED, because otherwise
REPEAT runs into an infinite loop (it applies the tactic as long as it succeeds). The
function REPEAT1 is similar, but runs the tactic at least once (failing if this is not
possible).

If you are after the “primed” version of repeat_xmp_tac, then you can implement it
as

val repeat_xmp_tac’ = REPEAT o CHANGED o select_tac’

since there are no “primed” versions of REPEAT and CHANGED.

If you look closely at the goal state above, then you see the tactics repeat_xmp_tac
and repeat_xmp_tac’ are not yet quite what we are after: the problem is that goals
2 and 3 are not analysed. This is because the tactic is applied repeatedly only to the
first subgoal. To analyse also all resulting subgoals, you can use the tactic combinator
REPEAT_ALL_NEW. Supposing the tactic

val repeat_all_new_xmp_tac = REPEAT_ALL_NEW (CHANGED o select_tac’)

you can see that the following goal

lemma
shows "((-4) N (Vx. Bx)) N (C — D)"
apply(tactic {* repeat_all_new_xmp_tac 1 *})

goal (3 subgoals):
1. A = False
2. Ax. Bx

3.C =D

is completely analysed according to the theorems we chose to include in select_tac’.

Recall that tactics produce a lazy sequence of successor goal states. These states can
be explored using the command back. For example

lemma
shows "[P1 Vv Q1; P2 VvV Q2] = R"
apply (tactic {* etac @{thm disjE} 1 *})

applies the rule to the first assumption yielding the goal state:
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goal (2 subgoals):
1. [P2 vV Q2; P1] = R
2. [P2 V Q2; Q1] = R

After typing
back

the rule now applies to the second assumption.

goal (2 subgoals):
1. [P1 Vv Q1; P2] = R
2. [P1 v Q1; Q2] = R

Sometimes this leads to confusing behaviour of tactics and also has the potential to
explode the search space for tactics. These problems can be avoided by prefixing the
tactic with the tactic combinator DETERM.

lemma
shows "[P1 Vv @1; P2 V Q2] = R"
apply (tactic {* DETERM (etac @{thm disjE} 1) *})

goal (2 subgoals):
1. [P2 v Q2; P1] — R
2. [P2 VvV Q2; Q1] = R

This combinator will prune the search space to just the first successful application.
Attempting to apply back in this goal states gives the error message:

*** back: no alternatives
***x At command "back'.

23

Read More
Most tactic combinators described in this section are defined in Pure/tactical.ML. Some
combinators for the purpose of proof search are implemented in Pure/search.ML.

Exercise 6.3.1: Dyckhoff presents in [2] inference rules of a sequent calculus, called G4ip, for
intuitionistic propositional logic. The interesting feature of this calculus is that no contraction
rule is needed in order to be complete. As a result the rules can be applied exhaustively, which
in turn leads to simple decision procedure for propositional intuitionistic logic. The task is to
implement this decision procedure as a tactic. His rules are

2FIXME: say something about COND and COND’
SFIXME: PARALLEL-CHOICE PARALLEL-GOALS


http://isabelle.in.tum.de/repos/isabelle/raw-file/tip/src/Pure/tactical.ML
http://isabelle.in.tum.de/repos/isabelle/raw-file/tip/src/Pure/search.ML
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Note that in Isabelle right rules need to be implemented as introduction rule, the left rules as
elimination rules. You have to to prove separate theorems corresponding to —,, ,. The tactic
should explore all possibilites of applying these rules to a propositional formula until a goal
state is reached in which all subgoals are discharged. For this you can use the tactic combinator
DEPTH_SOLVE in the structure Search.

Exercise 6.3.2: Add to the sequent calculus from the previous exercise also rules for equality
and run your tactic on the de Bruijn formulae discussed in Exercise 3.2.3.

6.4 Simplifier Tactics

A lot of convenience in reasoning with Isabelle derives from its powerful simplifier.
We will describe it in this section. However, due to its complexity, we can mostly
only scratch the surface.

The power of the simplifier is a strength and a weakness at the same time, because
you can easily make the simplifier run into a loop and in general its behaviour can
be difficult to predict. There is also a multitude of options that you can configure
to change the behaviour of the simplifier. There are the following five main tactics
behind the simplifier (in parentheses is their user-level counterpart):

simp_tac (simp (no_asm))
asm_simp_tac (simp (no_asm_simp))
full_simp_tac (simp (no_asm_use))
asm_lr_simp_tac (simp (asm_1lr))
asm_full_simp_tac (simp)

All these tactics take a simpset and an integer as argument (the latter as usual to
specify the goal to be analysed). So the proof

lemma

shows "Suc (1 + 2) < 3 + 2"
apply (simp)
done

corresponds on the ML-level to the tactic



122 CHAPTER 6. TACTICAL REASONING

lemma

shows "Suc (1 + 2) < 3+ 2"
apply (tactic {* asm_full_simp_tac @{simpset} 1 *})
done

If the simplifier cannot make any progress, then it leaves the goal unchanged, i.e.,
does not raise any error message. That means if you use it to unfold a definition for
a constant and this constant is not present in the goal state, you can still safely apply
the simplifier.

4

There is one restriction you have to keep in mind when using the simplifier: it can
only deal with rewriting rules whose left-hand sides are higher order pattern (see
Section 3.3 on unification). Whether a term is a pattern or not can be tested with
the function pattern from the structure Pattern. If a rule is not a pattern and you
want to use it for rewriting, then you have to use simprocs or conversions, both of
which we shall describe in the next section.

When using the simplifier, the crucial information you have to provide is the simpset.
If this information is not handled with care, then, as mentioned above, the simplifier
can easily run into a loop. Therefore a good rule of thumb is to use simpsets that
are as minimal as possible. It might be surprising that a simpset is more complex
than just a simple collection of theorems. One reason for the complexity is that the
simplifier must be able to rewrite inside terms and should also be able to rewrite
according to theorems that have premises.

The rewriting inside terms requires congruence theorems, which are typically meta-
equalities of the form

tiy =81 ... t, = 8,

constr ty...t,, = constr si...Sj,

with constr being a constant, like If, Let and so on. Every simpset contains only
one congruence rule for each term-constructor, which however can be overwritten.
The user can declare lemmas to be congruence rules using the attribute [cong].
Note that in HOL these congruence theorems are usually stated as equations, which
are then internally transformed into meta-equations.

The rewriting with theorems involving premises requires what is in Isabelle called a
subgoaler, a solver and a looper. These can be arbitrary tactics that can be installed
in a simpset and which are executed at various stages during simplification.

Simpsets can also include simprocs, which produce rewrite rules on demand accord-
ing to a pattern (see next section for a detailed description of simpsets). Another
component are split-rules, which can simplify for example the “then” and “else”
branches of if-statements under the corresponding preconditions.

Read More
For more information about the simplifier see Pure/meta_simplifier.ML and
Pure/simplifier.ML. The generic splitter is implemented in Provers/splitter.ML.

*FIXME: show rewriting of cterms


http://isabelle.in.tum.de/repos/isabelle/raw-file/tip/src/Pure/meta_simplifier.ML
http://isabelle.in.tum.de/repos/isabelle/raw-file/tip/src/Pure/simplifier.ML
http://isabelle.in.tum.de/repos/isabelle/raw-file/tip/src/Provers/splitter.ML
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5

The most common combinators for modifying simpsets are:

addsimps delsimps

addcongs delcongs

addsimprocs delsimprocs
6

To see how they work, consider the function in Figure 6.3, which prints out some
parts of a simpset. If you use it to print out the components of the empty simpset,
i.e., empty_ss

print_ss @{context} empty_ss
> Simplification rules:

> Congruences rules:

> Simproc patterns:

you can see it contains nothing. This simpset is usually not useful, except as a
building block to build bigger simpsets. For example you can add to empty_ss the
simplification rule Diff_Int as follows:

val ssl = empty_ss addsimps [@{thm Diff_Int} RS @{thm eq_reflectionl}]

Printing then out the components of the simpset gives:

print_ss @{context} ssi

> Simplification rules:

> ?7.unknown: A -BNC=A4A-BU (4-20C)
> Congruences rules:

> Simproc patterns:

7

Adding also the congruence rule UN_cong

val ss2 = ss1 addcongs [@{thm UN_cong} RS @{thm eq_reflection}]

gives

*FIXME: Find the right place to mention this: Discrimination nets are implemented in
Pure/net.ML.

®FIXME: What about splitters? addsplits, delsplits

7FIXME: Why does it print out ??.unknown


http://isabelle.in.tum.de/repos/isabelle/raw-file/tip/src/Pure/net.ML
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fun print_ss ctxt ss =
let
val {simps, congs, procs, ...} = MetaSimplifier.dest_ss ss

fun name_thm (nm, thm) =

"M = qpm ° ": " ° (string_of_thm_no_vars ctxt thm)
fun name_ctrm (nm, ctrm) =
"oo" S qpm © ": " ° (string_of_cterms ctxt ctrm)

val s = ["Simplification rules:"] @ map name_thm simps @
["Congruences rules:"] @ map name_thm congs @
["Simproc patterns:"] @ map name_ctrm procs
in
s [> cat_lines
|> tracing
end
Figure 6.3: The function dest_ss returns a record containing all printable infor-
mation stored in a simpset. We are here only interested in the simplification rules,
congruence rules and simprocs.

print_ss @{context} ss2
> Simplification rules:
> ?7.unknown: A-BNC=A-BU (4-20)

> Congruences rules:

> UNION: [A=B; A\x. x € B— Cx=Dzx] = [Jx€A. Cx = |Jx€B. D x
> Simproc patterns:

Notice that we had to add these lemmas as meta-equations. The empty_ss expects
this form of the simplification and congruence rules. This is different, if we use for
example the simpset HOL_basic_ss (see below), where rules are usually added as
equation. However, even when adding these lemmas to empty_ss we do not end
up with anything useful yet. In the context of HOL, the first really useful simpset is
HOL_basic_ss. While printing out the components of this simpset

print_ss @{context} HOL_basic_ss
> Simplification rules:

> Congruences rules:

> Simproc patterns:

also produces “nothing”, the printout is somewhat misleading. In fact the HOL_basic_ss
is setup so that it can solve goals of the form

True, t = t, t = t and False — P;

and also resolve with assumptions. For example:

lemma
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shows "True"

and "t = t"

and "t = t"

and "False — Foo"

and "[4; B; C] = A"
apply (tactic {* ALLGOALS (simp_tac HOL_basic_ss) *})
done

This behaviour is not because of simplification rules, but how the subgoaler, solver
and looper are set up in HOL_basic_ss.

The simpset HOL_ss is an extension of HOL_basic_ss containing already many use-
ful simplification and congruence rules for the logical connectives in HOL.

print_ss @{context} HOL_ss

> Simplification rules:

>  Pure.triv_forall_equality: (/Ax. PROP V) = PROP V
HOL.the_eq_trivial: THE x. x =y = ¥
HOL.the_sym_eq_trivial: THE ya. y =ya = y

Congruences rules:
HOL.simp_implies:
— (PROP P =simp=> PROP () = (PROP P’ =simp=> PROP Q’)
op ——>: [P=P; PP = Q=Q] =P — Q=P —
Simproc patterns:

V VVVVVVVYV

Read More
The simplifier for HOL is set up in HOL/Tools/simpdata.ML. The simpset HOL_ss is imple-
mented in HOL/HOL . thy.

The simplifier is often used to unfold definitions in a proof. For this the simplifier
implements the tactic rewrite_goal_tac.® Suppose for example the definition

definition "MyTrue = True"

then we can use this tactic to unfold the definition of this constant.

lemma
shows "MyTrue — True"
apply (tactic {* rewrite_goal_tac @{thms MyTrue_def} 1 *})

producing the goal state

goal (1 subgoal):
1. True — True

If you want to unfold definitions in all subgoals, not just one, then use the the tactic
rewrite_goals_tac.

The simplifier is often used in order to bring terms into a normal form. Unfortunately,
often the situation arises that the corresponding simplification rules will cause the

SFIXME: see LocalDefs infrastructure.
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types prm = "(nat X nat) list"
consts perm :: "prm = ’a = ’a" ("_ - _" [80,80] 80)
overloading
perm_nat = "perm :: prm = nat = nat"
perm_prod = "perm :: prm = (’ax’b) = (’ax’b)"
perm_list = "perm :: prm = ’a list = ’a list"
begin

fun swap::"nat = nat = nat = nat"
where
"swap a b ¢ = (if c=a then b else (if c=b then a else c))"

primrec perm_nat
where

"perm_nat [] ¢ = ¢
| "perm_nat (ab#pi) c

swap (fst ab) (snd ab) (perm_nat pi c)"

fun perm_prod
where
"perm_prod pi (x, y)

(pi-x, pi-y)"

primrec perm_list
where
"perm_list pi [] = []"
| "perm_list pi (x#xs) = (pi-x)#(perm_list pi xs)"

end

lemma perm_append[simp] :
fixes c::"nat" and pi; pis::"prm
shows "((pii@pig)-c) = (pii+(pig-c))"
by (induct pii) (auto)

n

lemma perm_bij[simp]:
fixes ¢ d::"nat" and pi::"prm"
shows "(pi-c = pi-d) = (c = d)"
by (induct pi) (auto)

lemma perm_rev[simp]:
fixes c::"nat" and pi::"prm"
shows "pi.((rev pi)-c) = c"

by (induct pi arbitrary: c) (auto)

lemma perm_compose:

fixes c::"nat" and pi; pig::"prm"
shows "pii-(pis-c) = (pii-piz)-(piy-c)”
by (induct pis) (auto)

Figure 6.4: A simple theory about permutations over nats. The point is that the
lemma perm_compose cannot be directly added to the simplifier, as it would cause
the simplifier to loop. It can still be used as a simplification rule if the permutation
in the right-hand side is sufficiently protected.
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simplifier to run into an infinite loop. Consider for example the simple theory about
permutations over natural numbers shown in Figure 6.4. The purpose of the lemmas
is to push permutations as far inside as possible, where they might disappear by
Lemma perm_rev. However, to fully normalise all instances, it would be desirable to
add also the lemma perm_compose to the simplifier for pushing permutations over
other permutations. Unfortunately, the right-hand side of this lemma is again an
instance of the left-hand side and so causes an infinite loop. There seems to be no
easy way to reformulate this rule and so one ends up with clunky proofs like:

lemma
fixes ¢ d::"nat" and pi; pio::"prm"
shows "pii-(c, pis-((rev piy)-d)) = (piy-c, (pii-pig)-d)"
apply (simp)
apply (rule trans)
apply (rule perm_compose)
apply (simp)
done

It is however possible to create a single simplifier tactic that solves such proofs. The
trick is to introduce an auxiliary constant for permutations and split the simplifica-
tion into two phases (below actually three). Let assume the auxiliary constant is

definition

perm_aux :: "prm = ’‘a = ’a" ("_ -aux _" [80,80] 80)
where

"pi raux ¢ = pi - c"

Now the two lemmas

lemma perm_aux_expand:
fixes c::"nat" and pi; pio::"prm"
shows "pii-(pig-c) = pii -aux (pig-c)"
unfolding perm_aux_def by (rule refl)

lemma perm_compose_aux:

fixes c::"nat" and pi; pio::"prm"

shows "pi;-(pigraux c¢) = (pii-pia) -aux (pij-c)"
unfolding perm_aux_def by (rule perm_compose)

are simple consequence of the definition and perm_compose. More importantly, the
lemma perm_compose_aux can be safely added to the simplifier, because now the
right-hand side is not anymore an instance of the left-hand side. In a sense it freezes
all redexes of permutation compositions after one step. In this way, we can split
simplification of permutations into three phases without the user noticing anything
about the auxiliary constant. We first freeze any instance of permutation compo-
sitions in the term using lemma "perm_aux_expand" (Line 9); then simplify all
other permutations including pushing permutations over other permutations by rule
perm_compose_aux (Line 10); and finally “unfreeze” all instances of permutation
compositions by unfolding the definition of the auxiliary constant.

val perm_simp_tac =
let
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val thmsl = [@{thm perm_aux_expand}]
val thms2 = [@{thm perm_append}, @{thm perm_bij}, @{thm perm_rev},
@{thm perm_compose_aux}] @ @{thms perm_prod.simps} @
@{thms perm_list.simps} @ @{thms perm_nat.simps}
val thms3 = [@{thm perm_aux_def}]
in

simp_tac (HOL_basic_ss addsimps thms1)

THEN’ simp_tac (HOL_basic_ss addsimps thms2)

THEN’ simp_tac (HOL_basic_ss addsimps thms3)
end

For all three phases we have to build simpsets adding specific lemmas. As is sufficient
for our purposes here, we can add these lemmas to HOL_basic_ss in order to obtain
the desired results. Now we can solve the following lemma

lemma

fixes ¢ d::"nat" and pi; pio::"prm"

shows "pij-(c, pis-((rev pii)-d)) = (pii-c, (pii-pigz)-d)"
apply (tactic {* perm_simp_tac 1 *})
done

in one step. This tactic can deal with most instances of normalising permutations. In
order to solve all cases we have to deal with corner-cases such as the lemma being an
exact instance of the permutation composition lemma. This can often be done easier
by implementing a simproc or a conversion. Both will be explained in the next two
chapters.

(FIXME: Is it interesting to say something about op =simp=>?)

(FIXME: What are the second components of the congruence rules—something to
do with weak congruence constants?)

(FIXME: Anything interesting to say about Simplifier.clear_ss?)

(FIXME: what are mksimps_pairs; used in Nominal.thy)

(FIXME: explain simplify and Simplifier.rewrite_rule etc.)

6.5 Simprocs

In Isabelle you can also implement custom simplification procedures, called simprocs.
Simprocs can be triggered by the simplifier on a specified term-pattern and rewrite
a term according to a theorem. They are useful in cases where a rewriting rule must
be produced on “demand” or when rewriting by simplification is too unpredictable
and potentially loops.

To see how simprocs work, let us first write a simproc that just prints out the pattern
which triggers it and otherwise does nothing. For this you can use the function:

fun fail_simproc simpset redex =

let
val ctxt = Simplifier.the_context simpset
val _ = tracing ("The redex: " ~ (string_of_cterm ctxt redex))

in
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NONE
end

This function takes a simpset and a redex (a cterm) as arguments. In Lines 3 and 4,
we first extract the context from the given simpset and then print out a message
containing the redex. The function returns NONE (standing for an optional thm)
since at the moment we are not interested in actually rewriting anything. We want
that the simproc is triggered by the pattern Suc n. This can be done by adding the
simproc to the current simpset as follows

simproc_setup fail ("Suc n") = {* K fail _simproc *}

where the second argument specifies the pattern and the right-hand side contains the
code of the simproc (we have to use K since we are ignoring an argument about mor-
phisms. After this, the simplifier is aware of the simproc and you can test whether it
fires on the lemma:

lemma
shows "Suc 0 = 1"
apply (simp)

> The redex: Suc 0
> The redex: Suc O

This will print out the message twice: once for the left-hand side and once for the
right-hand side. The reason is that during simplification the simplifier will at some
point reduce the term 1 to Suc 0, and then the simproc “fires” also on that term.

We can add or delete the simproc from the current simpset by the usual declare-
statement. For example the simproc will be deleted with the declaration

declare [[simproc del: fail]]

If you want to see what happens with just this simproc, without any interference
from other rewrite rules, you can call fail as follows:
lemma

shows "Suc 0 = 1"
apply(tactic {* simp_tac (HOL_basic_ss addsimprocs [@{simproc fail}]) 1*})

Now the message shows up only once since the term 1 is left unchanged.

Setting up a simproc using the command simproc_setup will always add automat-
ically the simproc to the current simpset. If you do not want this, then you have
to use a slightly different method for setting up the simproc. First the function
fail_simproc needs to be modified to

fun fail_simproc’ simpset redex =

let

val ctxt = Simplifier.the_context simpset

val _ = tracing ("The redex: " ~ (string_of_term ctxt redex))
in

NONE

end
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Here the redex is given as a term, instead of a cterm (therefore we printing it out us-
ing the function string_of_term). We can turn this function into a proper simproc
using the function Simplifier.simproc_i:

val fail’ =
let

val thy = @{theory}

val pat = [@{term "Suc n"}]
in

Simplifier.simproc_i thy "fail_ simproc’" pat (K fail_simproc’)
end

Here the pattern is given as term (instead of cterm). The function also takes a list of
patterns that can trigger the simproc. Now the simproc is set up and can be explicitly
added using addsimprocs to a simpset whenever needed.

Simprocs are applied from inside to outside and from left to right. You can see this
in the proof

lemma
shows "Suc (Suc 0) = (Suc 1)"
apply (tactic {* simp_tac (HOL_basic_ss addsimprocs [fail’]) 1%*})

The simproc fail’ prints out the sequence

> Suc 0
> Suc (Suc 0)
> Suc 1

To see how a simproc applies a theorem, let us implement a simproc that rewrites
terms according to the equation:

lemma plus_one:
shows "Suc n = n + 1" by simp

Simprocs expect that the given equation is a meta-equation, however the equation
can contain preconditions (the simproc then will only fire if the preconditions can be
solved). To see that one has relatively precise control over the rewriting with sim-
procs, let us further assume we want that the simproc only rewrites terms “greater”
than Suc 0. For this we can write

fun plus_one_simproc ss redex =
case redex of
@{term "Suc 0"} => NONE
| _ => SOME @{thm plus_one}

and set up the simproc as follows.

val plus_one =
let
val thy = @{theoryl}
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val pat = [@{term "Suc n"}]
in

Simplifier.simproc_i thy "sproc +1" pat (K plus_one_simproc)
end

Now the simproc is set up so that it is triggered by terms of the form Suc n, but
inside the simproc we only produce a theorem if the term is not Suc 0. The result
you can see in the following proof

lemma
shows "P (Suc (Suc (Suc 0))) (Suc 0)"
apply (tactic {* simp_tac (HOL_basic_ss addsimprocs [plus_one]) 1*})

where the simproc produces the goal state

goal (1 subgoal):
1. P (Suc 0 + 1 + 1) (Suc 0)

As usual with rewriting you have to worry about looping: you already have a loop
with plus_one, if you apply it with the default simpset (because the default simpset
contains a rule which just does the opposite of plus_one, namely rewriting "+ 1" to
a successor). So you have to be careful in choosing the right simpset to which you
add a simproc.

Next let us implement a simproc that replaces terms of the form Suc n with the
number n increased by one. First we implement a function that takes a term and
produces the corresponding integer value.

fun dest_suc_trm ((Const (@{const_name "Suc"}, _)) $ t) = 1 + dest_suc_trm t
| dest_suc_trm t = snd (HOLogic.dest_number t)

It uses the library function dest_number that transforms (Isabelle) terms, like 0, 1,
2 and so on, into integer values. This function raises the exception TERY, if the term
is not a number. The next function expects a pair consisting of a term t (containing
Sucs) and the corresponding integer value n.

fun get_thm ctxt (t, n) =
let
val num = HOLogic.mk_number @{typ "nat"} n
val goal = Logic.mk_equals (t, num)
in
Goal.prove ctxt [] [] goal (K (Arith_Data.arith_tac ctxt 1))
end

From the integer value it generates the corresponding number term, called num (Line
3), and then generates the meta-equation t = num (Line 4), which it proves by the
arithmetic tactic in Line 6.

For our purpose at the moment, proving the meta-equation using arith_tac is fine,
but there is also an alternative employing the simplifier with a special simpset. For
the kind of lemmas we want to prove here, the simpset num_ss should suffice.
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fun get_thm_alt ctxt (t, n) =
let
val num = HOLogic.mk_number @{typ "nat"} n
val goal = Logic.mk_equals (t, num)
val num_ss = HOL_ss addsimps [@{thm One_nat_def}, @{thm Let_def}] @
@{thms nat_number} @ @{thms neg_simps} @ @{thms plus_nat.simps}
in
Goal.prove ctxt [] [] goal (K (simp_tac num_ss 1))
end

The advantage of get_thm_alt is that it leaves very little room for something to go
wrong; in contrast it is much more difficult to predict what happens with arith_tac,
especially in more complicated circumstances. The disadvantage of get_thm_alt is
to find a simpset that is sufficiently powerful to solve every instance of the lemmas
we like to prove. This requires careful tuning, but is often necessary in “production

code”.?

Anyway, either version can be used in the function that produces the actual theorem
for the simproc.

fun nat_number_simproc ss t =
let
val ctxt = Simplifier.the_context ss
in
SOME (get_thm ctxt (t, dest_suc_trm t))
handle TERM _ => NONE
end

This function uses the fact that dest_suc_trm might raise an exception TERM. In this
case there is nothing that can be rewritten and therefore no theorem is produced
(i.e. the function returns NONE). To try out the simproc on an example, you can set
it up as follows:

val nat_number =
let
val thy = @{theory}
val pat = [@{term "Suc n"}]
in
Simplifier.simproc_i thy "nat_number" pat (K nat_number_simproc)
end

Now in the lemma

lemma
shows "P (Suc (Suc 2)) (Suc 99) (0::nat) (Suc 4 + Suc 0) (Suc (0 + 0))"
apply (tactic {* simp_tac (HOL_ss addsimprocs [nat_number]) 1*})

you obtain the more legible goal state

°It would be of great help if there is another way than tracing the simplifier to obtain the lemmas
that are successfully applied during simplification. Alas, there is none.
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goal (1 subgoal):
1. P 4100 0 (56 + 1) (Suc (0 + 0))

where the simproc rewrites all Sucs except in the last argument. There it cannot
rewrite anything, because it does not know how to transform the term Suc (0 + 0)
into a number. To solve this problem have a look at the next exercise.

Exercise 6.5.1: Write a simproc that replaces terms of the form t, + to by their result. You
can assume the terms are “proper” numbers, that is of the form 0, 1, 2 and so on.

(FIXME: We did not do anything with morphisms. Anything interesting one can say
about them?)

6.6 Conversions

Conversions are a thin layer on top of Isabelle’s inference kernel, and can be viewed
as a controllable, bare-bone version of Isabelle’s simplifier. The purpose of con-
versions is to manipulate cterms. However, we will also show in this section how
conversions can be applied to theorems and to goal states. The type of conversions
is

type conv = cterm -> thm

whereby the produced theorem is always a meta-equality. A simple conversion is
the function all_conv, which maps a cterm to an instance of the (meta)reflexivity
theorem. For example:

Conv.all_conv @{cterm "Foo \ Bar"}
> Foo V Bar = Foo V Bar

Another simple conversion is no_conv which always raises the exception CTERM.

Conv.no_conv @{cterm True}
> x** Exception- CTERM ("no conversion", []) raised

A more interesting conversion is the function beta_conversion: it produces a meta-
equation between a term and its beta-normal form. For example

let
val add = @{cterm "Ax y. x + (y::nat)"}
val two = @{cterm "2::nat"}
val ten = @{cterm "10::nat"}

val ctrm = Thm.capply (Thm.capply add two) ten
in

Thm.beta_conversion true ctrm
end
> ((Ax y. x+y)2) 10 = 2 + 10
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If you run this example, you will notice that the actual response is the seemingly
nonsensical 2 + 10 = 2 + 10. The reason is that the pretty-printer for cterms eta-
normalises (sic) terms and therefore produces this output. If we get hold of the
“raw” representation of the produced theorem, we obtain the expected result.

let

val add = @{cterm "Ax y. x + (y::nat)"}

val two = @{cterm "2::nat"}

val ten = @{cterm "10::nat"}

val ctrm = Thm.capply (Thm.capply add two) ten
in

Thm.prop_of (Thm.beta_conversion true ctrm)
end
> Const ("==",...) §
> (Abs ("x",...,Abs ("y",...,...)) $...$...) &
> (Const ("Groups.plus_class.plus",...) $ ... $ ...)

The argument true in beta_conversion indicates that the right-hand side should
be fully beta-normalised. If instead false is given, then only a single beta-reduction
is performed on the outer-most level.

The main point of conversions is that they can be used for rewriting cterms. One
example is the function rewr_conv, which expects a meta-equation as an argument.
Suppose the following meta-equation.

lemma true_conji:
shows "True A P = P" by simp

It can be used for example to rewrite True A (Foo —> Bar) to Foo — Bar. The
code is as follows.

let

val ctrm = @{cterm "True A (Foo — Bar)"}
in

Conv.rewr_conv @{thm true_conjl} ctrm
end

> True N (Foo — Bar) = Foo — Bar

Note, however, that the function rewr_conv only rewrites the outer-most level of the
cterm. If the given cterm does not match exactly the left-hand side of the theorem,
then rewr_conv fails, raising the exception CTERM.

This very primitive way of rewriting can be made more powerful by combining sev-
eral conversions into one. For this you can use conversion combinators. The simplest
conversion combinator is then_conv, which applies one conversion after another.
For example

let
val convl = Thm.beta_conversion false
val conv2 = Conv.rewr_conv @{thm true_conjl}
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val ctrm = Thm.capply @{cterm "Ax. x A False"} @{cterm "True"}
in

(convl then_conv conv2) ctrm
end
> (Ax. x A False) True = False

where we first beta-reduce the term and then rewrite according to true_conj1.
(When running this example recall the problem with the pretty-printer normalising
all terms.)

The conversion combinator else_conv tries out the first one, and if it does not apply,
tries the second. For example

let
val conv = Conv.rewr_conv @{thm true_conjl} else_conv Conv.all_conv
val ctrml = @{cterm "True N Q"}
val ctrm2 = @{cterm "P V (True A Q)"}
in
(conv ctrml, conv ctrm2)
end
> (True AN @ = Q, PV True AN @ = P V True A Q)

Here the conversion true_conj1 only applies in the first case, but fails in the second.
The whole conversion does not fail, however, because the combinator else_conv
will then try out all_conv, which always succeeds. The same behaviour can also be
achieved with conversion combinator try_conv. For example

let
val conv = Conv.try_conv (Conv.rewr_conv @{thm true_conjl})
val ctrm = @{cterm "True V P"}

in
conv ctrm

end

> True V P = True V P

Rewriting with more than one theorem can be done using the function rewrs_conv
from the structure More_Conv.

Apart from the function beta_conversion, which is able to fully beta-normalise
a term, the conversions so far are restricted in that they only apply to the outer-
most level of a cterm. In what follows we will lift this restriction. The combinators
fun_conv and arg_conv will apply a conversion to the first, respectively second,
argument of an application. For example

let
val conv = Conv.arg_conv (Conv.rewr_conv @{thm true_conjl})
val ctrm = @{cterm "P V (True A Q)"}

in
conv ctrm
end
>P V (True N @) =P V Q



AW o R

o N o o

136 CHAPTER 6. TACTICAL REASONING

The reason for this behaviour is that (op V) expects two arguments. Therefore the
term must be of the form (Const ... $ t1) $ t2. The conversion is then applied
to t2, which in the example above stands for True A Q. The function fun_conv
would apply the conversion to the term (Const ... $ t1).

The function abs_conv applies a conversion under an abstraction. For example:

let
val conv = Conv.rewr_conv @{thm true_conjl}

val ctrm = @{cterm "AP. True A (P A Foo)"}
in

Conv.abs_conv (K conv) @{context} ctrm
end

> AP. True N (P N Foo) = AP. P A Foo

Note that this conversion needs a context as an argument. We also give the conver-
sion as (K conv), which is a function that ignores its argument (the argument being
a sufficiently freshened version of the variable that is abstracted and a context). The
conversion that goes under an application is combination_conv. It expects two con-
versions as arguments, each of which is applied to the corresponding “branch” of the
application. An abbreviation for this conversion is the function comb_conv, which
applies the same conversion to both branches.

We can now apply all these functions in a conversion that recursively descends a
term and applies a “true_conj1”-conversion in all possible positions.

fun true_conjl_conv ctxt ctrm =

case (Thm.term_of ctrm) of

@{term "op A"} $ @{term True} $ _ =>

(Conv.arg_conv (true_conjl_conv ctxt) then_conv

Conv.rewr_conv @{thm true_conjl}) ctrm
| _ $ _ => Conv.comb_conv (true_conjl_conv ctxt) ctrm
| Abs _ => Conv.abs_conv (fn (_, ctxt) => true_conjl_conv ctxt) ctxt ctrm
| _ => Conv.all_conv ctrm

= |

This function “fires” if the term is of the form (True A ...). It descends under ap-
plications (Line 6) and abstractions (Line 7); otherwise it leaves the term unchanged
(Line 8). In Line 2 we need to transform the cterm into a term in order to be able
to pattern-match the term. To see this conversion in action, consider the following
example:

let

val conv = true_conjl_conv @{context}

val ctrm = @{cterm "distinct [1::nat, x] — True A 1 # x"}
in

conv ctrm
end

> distinct [1, x] — True A 1 # x = distinct [1, x] — 1 # x
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Conversions that traverse terms, like true_conji_conv above, can be implemented
more succinctly with the combinators bottom_conv and top_conv. For example:

fun true_conjl_conv ctxt =
let
val conv = Conv.try_conv (Conv.rewr_conv @{thm true_conj1})
in
More_Conv.bottom_conv (K conv) ctxt
end

If we regard terms as trees with variables and constants on the top, then bottom_conv
traverses first the the term and on the “way down” applies the conversion, whereas
top_conv applies the conversion on the “way up”. To see the difference, assume the
following two meta-equations

lemma conj_assoc:
fixes 4 B C::bool
shows "4 A (B AC) = (A ANB) AC"
and "(AAB) AC=AANBAO"
by simp_all

and the cterm (a A (b A ¢)) A d. Here you should pause for a moment to
be convinced that rewriting top-down and bottom-up according to the two meta-
equations produces two results. Below these two results are calculated.

let
val ctxt = @{context}
val conv = Conv.try_conv (More_Conv.rewrs_conv @{thms conj_assoc})
val conv_top = More_Conv.top_conv (K conv) ctxt
val conv_bot = More_Conv.bottom_conv (K conv) ctxt
val ctrm = @{cterm "(a A (b A c)) A d"}
in
(conv_top ctrm, conv_bot ctrm)
end
> ("(a AN (b Ac) Ad
> "(a AN (b AC)) AN

a A (b A (cANd)",
(a Ab) A (c ANd)")

To see how much control you have over rewriting with conversions, let us make the
task a bit more complicated by rewriting according to the rule true_conj1, but only
in the first arguments of Ifs. Then the conversion should be as follows.

fun if_truel_simple_conv ctxt ctrm =
case Thm.term_of ctrm of
Const (@{const_name If}, _) $ _ =>
Conv.arg_conv (true_conjl_conv ctxt) ctrm
| _ => Conv.no_conv ctrm

val if_truel_conv = More_Conv.top_sweep_conv if_truel_simple_conv

In the first function we only treat the top-most redex and also only the success case.
As default we return no_conv. To apply this “simple” conversion inside a term,
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we use in the last line the combinator top_sweep_conv, which traverses the term
starting from the root and applies it to all the redexes on the way, but stops in each
branch as soon as it found one redex. Here is an example for this conversion:

let

val ctrm = @{cterm "if P (True A 1 # (2::nat))

then True A True else True A False"}

in

if_truel_conv @{context} ctrm
end
> if P (True A 1 # 2) then True A True else True A False
> = if P (1 # 2) then True A True else True A False

So far we only applied conversions to cterms. Conversions can, however, also work
on theorems using the function fconv_rule. As an example, consider again the
conversion true_conji_conv and the lemma:

lemma foo_test:
shows "P V (True A —P)" by simp

Using the conversion you can transform this theorem into a new theorem as follows

let
val conv = Conv.fconv_rule (true_conjl_conv @{context})
val thm = @{thm foo_test}

in
conv thm

end

> 7P V = 7P

Finally, Isabelle provides function CONVERSION for turning conversions into tactics.
This needs some predefined conversion combinators that traverse a goal state and
can selectively apply the conversion. The combinators for the goal state are:

e params_conv for converting under parameters (i.e. where a goal state is of the
form Ax. P x = Q x)

e prems_conv for applying a conversion to premises of a goal state, and

e concl_conv for applying a conversion to the conclusion of a goal state.

Assume we want to apply true_conj1_conv only in the conclusion of the goal, and
if_truel_conv should only apply to the premises. Here is a tactic doing exactly
that:

fun truel_tac ctxt =
CONVERSION
(Conv.params_conv ~1 (fn ctxt =>
(Conv.prems_conv ~1 (if_truel_conv ctxt) then_conv
Conv.concl_conv ~1 (true_conjl_conv ctxt))) ctxt)
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We call the conversions with the argument ~1. By this we analyse all parameters,
all premises and the conclusion of a goal state. If we call concl_conv with a non-
negative number, say n, then this conversions will skip the first n premises and ap-
plies the conversion to the “rest” (similar for parameters and conclusions). To test
the tactic, consider the proof

lemma

"if True A P then P else True A False —

(if True A @ then True A @ else P) — True A (True A Q)"
apply (tactic {* truel_tac @{context} 1 *})

where the tactic yields the goal state

goal (1 subgoal):
1. if P then P else True A False — (if Q then Q else P) — @

As you can see, the premises are rewritten according to if_truel_conv, while the
conclusion according to true_conjl_conv. If we only have one conversion that
should be uniformly applied to the whole goal state, we can simplify truel_tac
using top_conv.

Conversions are also be helpful for constructing meta-equality theorems. Such theo-
rems are often definitions. As an example consider the following two ways of defin-
ing the identity function in Isabelle.

definition id1::"’a = ’a"

where "idl x = x"

definition id2::"’a = ’a"
where "id2 = Ax. x"

Although both definitions define the same function, the theorems idi_def and
id2_def are different meta-equations. However it is easy to transform one into the
other. The function abs_def from the structure Drule can automatically transform
theorem id1_def into id2_def by abstracting all variables on the left-hand side in
the right-hand side.

Drule.abs_def @{thm id1l_def}
> idl = M\x. x

Unfortunately, Isabelle has no built-in function that transforms the theorems in the
other direction. We can implement one using conversions. The feature of conver-
sions we are using is that if we apply a cterm to a conversion we obtain a meta-
equality theorem (recall that the type of conversions is an abbreviation for cterm ->
thm). The code of the transformation is below.

fun unabs_def ctxt def =
let
val (lhs, rhs) = Thm.dest_equals (cprop_of def)
val xs = strip_abs_vars (term_of rhs)
val (_, ctxt’) = Variable.add_fixes (map fst xs) ctxt
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val thy = ProofContext.theory_of ctxt’
val cxs = map (cterm_of thy o Free) xs
val new_lhs = Drule.list_comb (lhs, cxs)

fun get_conv [] = Conv.rewr_conv def
| get_conv (_::xs) = Conv.fun_conv (get_conv xs)

in

get_conv xs new_lhs [>

singleton (ProofContext.export ctxt’ ctxt)
end

In Line 3 we destruct the meta-equality into the cterms corresponding to the left-
hand and right-hand side of the meta-equality. The assumption in unabs_def is
that the right-hand side is an abstraction. We compute the possibly empty list of
abstracted variables in Line 4 using the function strip_abs_vars. For this we have
to first transform the cterm into a term. In Line 5 we import these variables into
the context ctxt’, in order to export them again in Line 15. In Line 8 we certify
the list of variables, which in turn we apply to the 1hs of the definition using the
function 1ist_comb. In Line 11 and 12 we generate the conversion according to the
length of the list of (abstracted) variables. If there are none, then we just return
the conversion corresponding to the original definition. If there are variables, then
we have to prefix this conversion with fun_conv. Now in Line 14 we only have to
apply the new left-hand side to the generated conversion and obtain the the theorem
we want to construct. As mentioned above, in Line 15 we only have to export the
context ctxt’ back to ctxt in order to produce meta-variables for the theorem. An
example is as follows.

unabs_def @{context} @{thm id2_def}
> id2 7x1 = 7x1

To sum up this section, conversions are more general than the simplifier or simprocs,
but you have to do more work yourself. Also conversions are often much less efficient
than the simplifier. The advantage of conversions, however, is that they provide
much less room for non-termination.

Exercise 6.6.1: Write a tactic that does the same as the simproc in exercise 6.5.1, but is based
on conversions. You can make the same assumptions as in 6.5.1.

Exercise 6.6.2: Compare your solutions of Exercises 6.5.1 and 6.6.1, and try to determine
which way of rewriting such terms is faster. For this you might have to construct quite large
terms. Also see Recipe A.3 for information about timing.

Read More

See Pure/conv.ML and Tools/more_conv.ML for more information about conversion
combinators. Some basic conversions are defined in Pure/thm.ML, Pure/drule.ML and
Pure/meta_simplifier.ML.

(FIXME: check whether Pattern.match_rew and Pattern.rewrite_term are of any
use/efficient)


http://isabelle.in.tum.de/repos/isabelle/raw-file/tip/src/Pure/conv.ML
http://isabelle.in.tum.de/repos/isabelle/raw-file/tip/src/Tools/more_conv.ML
http://isabelle.in.tum.de/repos/isabelle/raw-file/tip/src/Pure/thm.ML
http://isabelle.in.tum.de/repos/isabelle/raw-file/tip/src/Pure/drule.ML
http://isabelle.in.tum.de/repos/isabelle/raw-file/tip/src/Pure/meta_simplifier.ML

6.7. DECLARATIONS (TBD)

6.7 Declarations (TBD)

6.8 Structured Proofs (TBD)

TBD

lemma True

proof

{

fix A BcC

assume r: "A & B — C"
assume A B

then have "4 & B" ..
then have C by (rule r)

fix A BC

assume r: "A & B — C"
assume A B

note conjI [OF this]
note r [OF this]

}

oops

val
val
val
val
val
ctxt;
val
val
val
val

ctxt0 = @{context};
ctxt = ctxt0;

(_, ctxt) = Variable.add_fixes ["A", "B", "C"] ctxt;
([r], ctxt) = Assumption.add_assumes [@{cprop "A & B —> C"}] ctxt
(this, ctxt) = Assumption.add_assumes [@{cprop "A"}, @{cprop "B"}]

this
this
this
this

[e{thm conjI} OF this];

r OF this;

Assumption.export false ctxt ctxtO this
Variable.export ctxt ctxtO [this]

6.9 Summary

Coding Conventions / Rules of Thumb

Reference theorems with the antiquotation @{thm ...}

If a tactic is supposed to fail, return the empty sequence.

141

If you apply a tactic to a sequence of subgoals, apply it in reverse order (i.e. start

with the last subgoal).

Use simpsets that are as small as possible.
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Chapter 7

How to Write a Definitional
Package

HOL is based on just a few primitive constants, like equality and implication, whose
properties are described by axioms. All other concepts, such as inductive predicates,
datatypes or recursive functions, are defined in terms of those primitives, and the
desired properties, for example induction theorems or recursion equations, are de-
rived from the definitions by a formal proof. Since it would be very tedious for a user
to define inductive predicates or datatypes “by hand” just using the primitive opera-
tors of higher order logic, definitional packages have been implemented to automate
such work. Thanks to those packages, the user can give a high-level specification,
for example a list of introduction rules or constructors, and the package then does
all the low-level definitions and proofs behind the scenes. In this chapter we explain
how such a package can be implemented.

As the running example we have chosen a rather simple package for defining induc-
tive predicates. To keep things really simple, we will not use the general Knaster-
Tarski fixpoint theorem on complete lattices, which forms the basis of Isabelle/HOL’s
standard inductive definition package. Instead, we will describe a simpler impred-
icative (i.e. involving quantification on predicate variables) encoding of inductive
predicates. Due to its simplicity, this package will necessarily have a reduced func-
tionality. It does neither support introduction rules involving arbitrary monotonic
operators, nor does it prove case analysis rules (also called inversion rules). More-
over, it only proves a weaker form of the induction principle for inductive predicates.
But it illustrates the implementation pf a typical package in Isabelle.

7.1 Preliminaries

The user will just give a specification of inductive predicate(s) and expects from the
package to produce a convenient reasoning infrastructure. This infrastructure needs
to be derived from the definition that correspond to the specified predicate(s). Be-
fore we start with explaining all parts of the package, let us first give some examples
showing how to define inductive predicates and then also how to generate a reason-

143
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ing infrastructure for them. From the examples we will figure out a general method
for defining inductive predicates. This is usually the first step in writing a package
for Isabelle. The aim in this section is not to write proofs that are as beautiful as
possible, but as close as possible to the ML-implementation we will develop in later
sections.

We first consider the transitive closure of a relation R. The “pencil-and-paper” speci-
fication for the transitive closure is:

Rxy trcl Ry z

trcl R x X trcl R x z

As mentioned before, the package has to make an appropriate definition for trcl.
Since an inductively defined predicate is the least predicate closed under a collection
of introduction rules, the predicate trcl R x y can be defined so that it holds if and
only if P x y holds for every predicate P closed under the rules above. This gives
rise to the definition

definition "trcl =

AR x y. VP. (Vx. P x x)
— (Vxyz. Rxy — Pyz —Pxz) — Pxy"

Note we have to use the object implication — and object quantification V for stating
this definition (there is no other way for definitions in HOL). However, the introduc-
tion rules and induction principles associated with the transitive closure should use
the meta-connectives, since they simplify the reasoning for the user.

With this definition, the proof of the induction principle for trcl is almost immedi-
ate. It suffices to convert all the meta-level connectives in the lemma to object-level
connectives using the proof method atomize (Line 4 below), expand the definition
of trcl (Line 5 and 6), eliminate the universal quantifier contained in it (Line 7),
and then solve the goal by assumption (Line 8).

lemma trcl_induct:

assumes "trcl R x y"

shows "(Ax. Pxx) — (Ax yz. Rxy = Pyz — Pxz) — Pxy"
apply (atomize (full))

apply (cut_tac prems)

apply (unfold trcl_def)

apply (drule spec[where x=P])

apply (assumption)

done

The proofs for the introduction rules are slightly more complicated. For the first one,
we need to prove the following lemma:

lemma trcl_base:
shows "trcl R x x"
apply (unfold trcl_def)
apply (zule alll impI)+
apply (drule spec)
apply (assumption)
done

We again unfold first the definition and apply introduction rules for V and — as
often as possible (Lines 3 and 4). We then end up in the goal state:
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goal (1 subgoal):
1. A\P. [Vx. Pxx; Vxyz. Rxy — Pyz — Pxz] = Pxx

The two assumptions come from the definition of trcl and correspond to the intro-
duction rules. Thus, all we have to do is to eliminate the universal quantifier in front
of the first assumption (Line 5), and then solve the goal by assumption (Line 6).

Next we have to show that the second introduction rule also follows from the defini-
tion. Since this rule has premises, the proof is a bit more involved. After unfolding
the definitions and applying the introduction rules for V and —

lemma trcl_step:

shows "R x y = trcl Ry z = trcl R x z"
apply (unfold trcl_def)

apply (rule alll impI)+

we obtain the goal state

goal (1 subgoal):

1. AP. [R x y;
VP. (Vx. Pxx) — (Vxyz. Rxy — Pyz — Pxz) — Pyz
Vx. Pxx; Vxyz. Rxy — Pyz — P x Z|]
= P x z

To see better where we are, let us explicitly name the assumptions by starting a
subproof.

proof -
case (goall P)
have p1: "R x y" by fact
have p2: "VP. (Vx. P x x)
— (Vxyz. Rxy — Pyz — Pxz) — Pyz" by fact
have r1: "Vx. P x x" by fact
have r2: "Vx yz. Rxy — Py z — P x z" by fact
show "P x z"

The assumptions p1 and p2 correspond to the premises of the second introduction
rule (unfolded); the assumptions r1 and r2 come from the definition of trcl. We
apply r2 to the goal P x z. In order for this assumption to be applicable as a rule,
we have to eliminate the universal quantifier and turn the object-level implications
into meta-level ones. This can be accomplished using the rule_format attribute. So
we continue the proof with:

apply (rule r2[rule_format])

This gives us two new subgoals

goal (2 subgoals):
1. Rx %y
2. P?y z
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which can be solved using assumptions p1 and p2. The latter involves a quantifier
and implications that have to be eliminated before it can be applied. To avoid poten-
tial problems with higher-order unification, we explicitly instantiate the quantifier to
P and also match explicitly the implications with r1 and r2. This gives the proof:

apply (rule p1)
apply (rule p2[THEN spec[where x=P], THEN mp, THEN mp, OF r1, OF r2])
done

ged

Now we are done. It might be surprising that we are not using the automatic tactics
available in Isabelle/HOL for proving this lemmas. After all blast would easily
dispense of it.

lemma trcl_step_blast:

shows "R x y = trcl Ry z — trcl R x z"
apply (unfold trcl_def)

apply (blast)

done

Experience has shown that it is generally a bad idea to rely heavily on blast, auto
and the like in automated proofs. The reason is that you do not have precise control
over them (the user can, for example, declare new intro- or simplification rules that
can throw automatic tactics off course) and also it is very hard to debug proofs
involving automatic tactics whenever something goes wrong. Therefore if possible,
automatic tactics in packages should be avoided or be constrained sufficiently.

The method of defining inductive predicates by impredicative quantification also
generalises to mutually inductive predicates. The next example defines the predi-
cates even and odd given by

odd n even n

even 0 even (Suc n) odd (Suc n)

Since the predicates even and odd are mutually inductive, each corresponding defi-
nition must quantify over both predicates (we name them below P and Q).

definition "even =
An. VP Q. PO — (Vm. Q m — P (Suc m))
— (Vm. Pm — Q (Suc m)) — P n"

definition "odd =
An. VP Q. PO — (Vm. @ m — P (Suc m))
— (Vm. Pm — Q (Suc m)) — Q@ n"

For proving the induction principles, we use exactly the same technique as in the
transitive closure example, namely:

lemma even_induct:

assumes "even n'"

shows "P 0 — (Am. @ m = P (Suc m)) — (Am. Pm — @ (Suc m)) — P n"
apply (atomize (full))

apply (cut_tac prems)

apply (unfold even_def)
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apply (drule spec[where x=P])
apply (drule spec[where x=Q])
apply (assumption)

done

The only difference with the proof trcl_induct is that we have to instantiate here
two universal quantifiers. We omit the other induction principle that has even n as
premise and @ n as conclusion. The proofs of the introduction rules are also very
similar to the ones in the trcl-example. We only show the proof of the second
introduction rule.

lemma evenS:

shows "odd m = even (Suc m)"
apply (unfold odd_def even_def)
apply (rule alll impI)+
proof -
case (goall P Q)
have p1: "vP Q. PO — (Vm. Q m — P (Suc m))
— (Vm. Pm — Q (Suc m)) — @ m" by fact
have ri1: "P 0" by fact
have r2: "Vm. Q m — P (Suc m)" by fact
have r3: "Vm. Pm — @ (Suc m)" by fact
show "P (Suc m)"
apply (rule r2[rule_format])
apply (rule p1[THEN spec[where x=P], THEN spec[where x=Q],
THEN mp, THEN mp, THEN mp, OF rl, OF r2, OF r3])
done
ged

The interesting lines are 7 to 15. Again, the assumptions fall into two categories:
pl corresponds to the premise of the introduction rule; r1 to r3 come from the
definition of even. In Line 13, we apply the assumption r2 (since we prove the
second introduction rule). In Lines 14 and 15 we apply assumption p1 (if the second
introduction rule had more premises we have to do that for all of them). In order
for this assumption to be applicable, the quantifiers need to be instantiated and then
also the implications need to be resolved with the other rules.

Next we define the accessible part of a relation R given by the single rule:

/\y. Ry x — accpart Ry

accpart R x

The interesting point of this definition is that it contains a quantification that ranges
only over the premise and the premise has also a precondition. The definition of
accpart is:

definition "accpart = AR x. VP. (Vx. (Wy. Ry x — Py) — P x) — P x"
The proof of the induction principle is again straightforward and omitted. Proving

the introduction rule is a little more complicated, because the quantifier and the
implication in the premise. The proof is as follows.

lemma accpartI:
shows "(Ay. R y x = accpart R y) — accpart R x"
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apply (unfold accpart_def)
apply (rule alll impI)+
proof -
case (goall P)
have p1: "Ay. Ry x =
(VP. (Vx. (Wy. Ryx — Py) — Px) — P y)" by fact
have r1: "vx. (Vy. Ry x — P y) — P x" by fact
show "p x"
apply (rule ri[rule_format])
proof -
case (goall y)
have ri_prem: "R y x" by fact
show "p y"
apply (rule p1[OF ri1_prem, THEN spec[where x=P], THEN mp, OF ri])
done
qed
ged
As you can see, there are now two subproofs. The assumptions fall as usual into
two categories (Lines 7 to 9). In Line 11, applying the assumption r1 generates
a goal state with the new local assumption R y x, named ri_prem in the second
subproof (Line 14). This local assumption is used to solve the goal P y with the help
of assumption p1.

Exercise 7.1.1: Give the definition for the freshness predicate for lambda-terms. The rules for
this predicate are:

a#b fresh a t fresh a s
fresh a (Var b) fresh a (App t s)
a#b fresh a t
fresh a (Lam a t) fresh a (Lam b t)

From the definition derive the induction principle and the introduction rules.

The point of all these examples is to get a feeling what the automatic proofs should
do in order to solve all inductive definitions we throw at them. This is usually the
first step in writing a package. We next explain the parsing and typing part of the
package.

7.2 Parsing and Typing the Specification

To be able to write down the specifications of inductive predicates, we have to in-
troduce a new command (see Section 5.8). As the keyword for the new command
we chose simple_inductive. Examples of specifications from the previous section
are shown in Figure 7.1. The syntax used in these examples more or less translates
directly into the parser:

val spec_parser =
OuterParse.fixes —--
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simple_inductive

trcl :: "(’a = ’a = bool) = ’a = ’a = bool"
where

base: "trcl R x x"
| step: "trcl Rxy =—> Ry z = trcl R x z"

simple_inductive
even and odd
where
evenO: "even 0"
| evenS: "odd n —> even (Suc n)"
| oddS: "even n = odd (Suc n)"

simple_inductive
accpart :: "(’a = ’a = bool) = ’a = bool"
where
accpartI: "(\y. R y x = accpart R y) —> accpart R x"

simple_inductive
fresh :: "string = trm = bool"
where
fresh_var: "a#b =—> fresh a (Var b)"
| fresh_app: "[fresh a t; fresh a s|] = fresh a (App t s)"
| fresh_laml: "fresh a (Lam a t)"
| fresh_lam2: "[a#b; fresh a t] = fresh a (Lam b t)"

Figure 7.1: Specification given by the user for the inductive predicates trcl, even

and odd, accpart and fresh.

Scan.optional
(OuterParse.$$$ "where" [—-

OuterParse.!!!
(OuterParse.enuml "|["
(SpecParse.opt_thm_name ":" -- OuterParse.prop))) []

which we explained in Section 5.7. There is no code included for parsing the key-
word and what is called a target. The latter can be given optionally after the key-
word. The target is an “advanced” feature which we will inherit for “free” from the
infrastructure on which we shall build the package. The target stands for a locale

and allows us to specify

locale rel =
fixes R :: "’a = ’a = bool"

and then define the transitive closure and the accessible part of this locale as follows:

simple_inductive (in rel)
trcl’
where
base: "trcl’ x x"
| step: "trcl’ x y = Ry z = trcl’ x z"
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simple_inductive (in rel)
accpart’
where
accpartI: "(A\y. Ry x = accpart’ y) —> accpart’ x"

Note that in these definitions the parameter R, standing for the relation, is left im-
plicit. For the moment we will ignore this kind of implicit parameters and rely on the
fact that the infrastructure will deal with them. Later, however, we will come back
to them.

If we feed into the parser the string that corresponds to our definition of even and
odd

let
val input = filtered_input
("even and odd " ~
"where " ~
evenO[intro]: \"even O\" " ~
"| evenS[intro]: \"odd n =—> even (Suc n)\" " ~
"| oddS[intro]: \"even n = odd (Suc n)\" ")

n

in
parse spec_parser input
end
> (([(even, NONE, NoSyn), (odd, NONE, NoSyn)],
> [((evenO,...), "\"E\"Ftoken\ Eeven O\"E\"F\"E"),
> ((evenS,...), "\"E\"Ftoken\"Eodd n —> even (Suc n)\"E\"F\"E"),
> ((oddS, ...), "\"E\"Ftoken\"Eeven n —> odd (Suc n)\"E\"F\"E")]), [])

then we get back the specifications of the predicates (with type and syntax anno-
tations), and specifications of the introduction rules. This is all the information we
need for calling the package and setting up the keyword. The latter is done in Lines
5 to 7 in the code below.

val specification : (local_theory -> local_theory) parser =
spec_parser >>
(fn (pred_specs, rule_specs) => add_inductive_cmd pred_specs rule_specs)

val _ = QOuterSyntax.local_theory "simple_inductive2"
"definition of simple inductive predicates"
OuterKeyword.thy_decl specification

We call local_theory with the kind-indicator thy_decl since the package does not
need to open up any proof (see Section 5.8). The auxiliary function specification
in Lines 1 to 3 gathers the information from the parser to be processed further by
the function add_inductive_cmd, which we describe below.

Note that the predicates when they come out of the parser are just some “naked”
strings: they have no type yet (even if we annotate them with types) and they are
also not defined constants yet (which the predicates eventually will be). Also the in-
troduction rules are just strings. What we have to do first is to transform the parser’s
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output into some internal datastructures that can be processed further. For this we
can use the function read_spec. This function takes some strings (with possible
typing annotations) and some rule specifications, and attempts to find a typing ac-
cording to the given type constraints given by the user and the type constraints by
the “ambient” theory. It returns the type for the predicates and also returns typed
terms for the introduction rules. So at the heart of the function add_inductive_cmd
is a call to read_spec.

fun add_inductive_cmd pred_specs rule_specs lthy =
let
val ((pred_specs’, rule_specs’), _) =
Specification.read_spec pred_specs rule_specs lthy
in
add_inductive pred_specs’ rule_specs’ lthy
end

Once we have the input data as some internal datastructure, we call the function
add_inductive. This function does the heavy duty lifting in the package: it gener-
ates definitions for the predicates and derives from them corresponding induction
principles and introduction rules. The description of this function will span over the
next two sections.

7.3 The Code in a Nutshell

The inductive package will generate the reasoning infrastructure for mutually recur-
sive predicates, say pred;...pred,. In what follows we will have the convention
that various, possibly empty collections of “things” (lists, terms, nested implications
and so on) are indicated either by adding an "s" or by adding a superscript "*".
The shorthand for the predicates will therefore be preds or pred*. In the case of
the predicates there must be, of course, at least a single one in order to obtain a
meaningful definition.

The input for the inductive package will be some preds with possible typing and
syntax annotations, and also some introduction rules. We call below the introduction
rules short as rules. Borrowing some idealised Isabelle notation, one such rule is
assumed to be of the form

rule ::= Axs. As — (/\ys. Bs = pred ss)* — pred ts

non-recursive premises recursive premises

For the purposes here, we will assume the rules have this format and omit any
code that actually tests this. Therefore “things” can go horribly wrong, if the rules
are not of this form. The As and Bs in a rule stand for formulae not involving the
inductive predicates preds; the instances pred ss and pred ts can stand for differ-
ent predicates, like pred; ss and preds ts, in case mutual recursive predicates are
defined; the terms ss and ts are the arguments of these predicates. Every formula
left of "= pred ts" is a premise of the rule. The outermost quantified variables
xs are usually omitted in the user’s input. The quantification for the variables ys is
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local with respect to one recursive premise and must be given. Some examples of
rules are

a # b = fresh a (Var b)

which has only a single non-recursive premise, whereas
odd n = even (Suc n)

has a single recursive premise; the rule

(A\y.- Ry x = accpart R y) = accpart R x

has a single recursive premise that has a precondition. As is custom all rules are
stated without the leading meta-quantification Axs.

The output of the inductive package will be definitions for the predicates, induction
principles and introduction rules. For the definitions we need to have the rules in a
form where the meta-quantifiers and meta-implications are replaced by their object
logic equivalents. Therefore an orule is of the form

orule ::= Vxs. As — (Vys. Bs — pred ss)* — pred ts
A definition for the predicate pred has then the form

def ::= pred = Azs. Vpreds. orules — pred zs

The induction principles for every predicate pred are of the form
ind ::= pred 7zs = rules[preds := ?Ps] = 7P 7zs

where in the rules-part every pred is replaced by a fresh schematic variable ?P.

In order to derive an induction principle for the predicate pred, we first transform
ind into the object logic and fix the schematic variables. Hence we have to prove a
formula of the form

pred zs — orules[preds := Ps] — P zs

If we assume pred zs and unfold its definition, then we have an assumption
Vpreds. orules —+ pred zs

and must prove the goal

orules[preds := Ps] — P zs

This can be done by instantiating the V preds-quantification with the Ps. Then we
are done since we are left with a simple identity.

Although the user declares the introduction rules rules, they must also be derived
from the defs. These derivations are a bit involved. Assuming we want to prove the
introduction rule
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Nxs. As = (/A\ys. Bs = pred ss)* —> pred ts
then we have assumptions of the form

(i) As
(ii) (A\ys. Bs = pred ss)*

and must show the goal
pred ts
If we now unfold the definitions for the preds, we have assumptions

(i) 4s
(ii) (MAys. Bs = Vpreds. orules —> pred ss)*
(iii) orules

and need to show
pred ts

In the last step we removed some quantifiers and moved the precondition orules
into the assumption. The orules stand for all introduction rules that are given by
the user. We apply the orule that corresponds to introduction rule we are proving.
After transforming the object connectives into meta-connectives, this introduction
rule must necessarily be of the form

As = (A\ys. Bs = pred ss)* —> pred ts

When we apply this rule we end up in the goal state where we have to prove goals
of the form

(a) As
(b) (A\ys. Bs = pred ss)*

We can immediately discharge the goals As using the assumptions in (i). The goals
in (b) can be discharged as follows: we assume the Bs and prove pred ss. For this
we resolve the Bs with the assumptions in (ii). This gives us the assumptions

(Vpreds. orules — pred ss)*

Instantiating the universal quantifiers and then resolving with the assumptions in
(iii) gives us pred ss, which is the goal we are after. This completes the proof for
introduction rules.

What remains is to implement in Isabelle the reasoning outlined in this section.
We will describe the code in the next section. For building testcases, we use the
shorthands for even/odd, fresh and accpart defined in Figure 7.2.
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(* even-odd example *)
val eo_defs = [@{thm even_def}, @{thm odd_def}]

val eo_rules =
[@{prop "even 0"},
@{prop "An. odd n —> even (Suc n)"},
©{prop "An. even n = odd (Suc n)"}]

val eo_orules =
[e{prop "even 0"},
@{prop "Vn. odd n — even (Suc n)"},
@{prop "Vn. even n — odd (Suc n)"}]

val eo_preds = [@{term "even::nat = bool"}, @{term "odd::nat = bool"}]
val eo_prednames = [@{binding "even"}, @{binding "odd"}]

val eo_mxs = [NoSyn, NoSyn]

val eo_arg_tyss = [[@{typ "nat"}], [@{typ "nat"}]]

val e_pred = @{term "even::nat = bool"}

val e_arg_tys = [@{typ "nat"}]

(* freshness example *)
val fresh_rules =
[e{prop "A\a b. a # b —> fresh a (Var b)"},
@{prop "Na s t. fresh a t —> fresh a s —> fresh a (4pp t s)"},
@{prop "ANa t. fresh a (Lam a t)"},
@{prop "Na b t. a # b — fresh a t —> fresh a (Lam b t)"}]

val fresh_orules =
[e{prop "Va b. a # b —» fresh a (Var b)"},
@{prop "Va s t. fresh a t — fresh a s — fresh a (dpp t s)"},
@{prop "Va t. fresh a (Lam a t)"},
@{prop "VYa b t. a # b —> fresh a t —» fresh a (Lam b t)"}]

val fresh_pred = @{term "fresh::string = trm = bool"}
val fresh_arg_ tys = [@{typ "string"}, @{typ "trm"}]

(* accessible-part example *)
val acc_rules =

[e{prop "AR x. (\y. R y x = accpart R y) —> accpart R x"}]
val acc_pred = @{term "accpart::(’a = ’a = bool) =-’a = bool"}

Figure 7.2: Shorthands for the inductive predicates even/odd, fresh and accpart.
The names of these shorthands follow the convention rules, orules, preds and so
on. The purpose of these shorthands is to simplify the construction of testcases in
Section 7.4.
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7.4 The Gory Details

As mentioned before the code falls roughly into three parts: the code that deals with
the definitions, with the induction principles and with the introduction rules. In
addition there are some administrative functions that string everything together.

Definitions

We first have to produce for each predicate the user specifies an appropriate defini-
tion, whose general form is

pred = Azs. Vpreds. orules — pred zs

and then “register” the definition inside a local theory. To do the latter, we use the
following wrapper for the function define. The wrapper takes a predicate name, a
syntax annotation and a term representing the right-hand side of the definition.

fun make_defn ((predname, mx), trm) lthy =
let
val arg = ((predname, mx), (Attrib.empty_binding, trm))
val ((_, (_ , thm)), 1thy’) = Local_Theory.define arg lthy
in
(thm, 1thy’)
end

It returns the definition (as a theorem) and the local theory in which the definition
has been made. We use empty_binding in Line 3, since the definitions for our
inductive predicates are not meant to be seen by the user and therefore do not need
to have any theorem attributes.

The next two functions construct the right-hand sides of the definitions, which are
terms whose general form is:

Azs. Vpreds. orules — pred zs

When constructing these terms, the variables zs need to be chosen so that they do
not occur in the orules and also be distinct from the preds.

The first function, named defn_aux, constructs the term for one particular predicate
(the argument pred in the code below). The number of arguments of this predi-
cate is determined by the number of argument types given in arg_tys. The other
arguments of the function are the orules and all the preds.

fun defn_aux 1lthy orules preds (pred, arg_tys) =
let
fun mk_all x P = HOLogic.all const (fastype_of x) $ lambda x P

val fresh_args
arg_tys
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[> map (pair "z")
|> Variable.variant_frees lthy (preds @ orules)
|> map Free
in
list_comb (pred, fresh_args)
|> fold_rev (curry HOLogic.mk_imp) orules
[> fold_rev mk_all preds
|> fold_rev lambda fresh_args
end

The function mk_all in Line 3 is just a helper function for constructing universal
quantifications. The code in Lines 5 to 9 produces the fresh zs. For this it pairs every
argument type with the string "z" (Line 7); then generates variants for all these
strings so that they are unique w.r.t. to the predicates and orules (Line 8); in Line 9
it generates the corresponding variable terms for the unique strings.

The unique variables are applied to the predicate in Line 11 using the function
list_comb; then the orules are prefixed (Line 12); in Line 13 we quantify over
all predicates; and in line 14 we just abstract over all the zs, i.e., the fresh argu-
ments of the predicate. A testcase for this function is

local_setup {* fn 1thy =>
let
val def = defn_aux 1thy eo_orules eo_preds (e_pred, e_arg_tys)
in
tracing (string_of_term lthy def); lthy
end *}

where we use the shorthands defined in Figure 7.2. The testcase calls defn_aux for
the predicate even and prints out the generated definition. So we obtain as printout

Az. Veven odd. (even 0) — (Vn. odd n — even (Suc n))
— (Vn. even n — odd (Suc n)) — even z

If we try out the function with the rules for freshness

local setup {* fn 1thy =>
let
val arg = (fresh_pred, fresh_arg_tys)
val def = defn_aux 1thy fresh_orules [fresh_pred] arg
in
tracing (string_of_term 1lthy def); lthy
end *}

we obtain

Az za.
V fresh.
(Va b. a # b — fresh a (Var b)) —
(Va s t. fresh a t —> fresh a s — fresh a (App t s)) —>
(Va t. fresh a (Lam a t)) —
(Vabt. a+#b — freshat — fresh a (Lam b t)) — fresh z za
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The second function, named defns, has to iterate the function defn_aux over all
predicates. The argument preds is again the list of predicates as terms; the argu-
ment prednames is the list of binding names of the predicates; mxs are the list of
syntax, or mixfix, annotations for the predicates; arg_tyss is the list of argument-

type-lists.

fun defns rules preds prednames mxs arg_typss lthy =
let
val thy = ProofContext.theory_of lthy
val orules = map (Object_Logic.atomize_term thy) rules
val defs = map (defn_aux 1lthy orules preds) (preds ~~ arg_typss)
in
fold_map make_defn (prednames ~~ mxs ~~ defs) lthy
end

The user will state the introduction rules using meta-implications and meta-quanti-
fications. In Line 4, we transform these introduction rules into the object logic (since
definitions cannot be stated with meta-connectives). To do this transformation we
have to obtain the theory behind the local theory using the function theory_of (Line
3); with this theory we can use the function atomize_term to make the transforma-
tion (Line 4). The call to defn_aux in Line 5 produces all right-hand sides of the
definitions. The actual definitions are then made in Line 7. The result of the func-
tion is a list of theorems and a local theory (the theorems are registered with the
local theory). A testcase for this function is

local_setup {* fn 1thy =>
let
val (defs, 1lthy’) =
defns eo_rules eo_preds eo_prednames eo_mxs eo_arg_tyss lthy
in
tracing (string_of_thms_no_vars lthy’ defs); lthy
end *}

where we feed into the function all parameters corresponding to the even/odd ex-
ample. The definitions we obtain are:

even = M\z. Veven odd. (even 0) — (Vn. odd n — even (Suc n))

— (Vn. even n — odd (Suc n)) — even z,
odd = Az. Veven odd. (even 0) — (Vn. odd n — even (Suc n))

— (Vn. even n — odd (Suc n)) — odd z

Note that in the testcase we return the local theory 1thy (not the modified 1thy’).
As a result the test case has no effect on the ambient theory. The reason is that if we
introduce the definition again, we pollute the name space with two versions of even
and odd. We want to avoid this here.

This completes the code for introducing the definitions. Next we deal with the in-
duction principles.
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Induction Principles

Recall that the manual proof for the induction principle of even was:

lemma manual_ind_prin_even:

assumes prem: "even z'"

shows "P 0 = (Am. § m = P (Suc m)) = (Am. Pm — Q (Suc m)) = P z"
apply (atomize (full))

apply (cut_tac prem)

apply (unfold even_def)

apply (drule spec[where x=P])

apply (drule spec[where x=Q])

apply (assumption)

done

The code for automating such induction principles has to accomplish two tasks: con-
structing the induction principles from the given introduction rules and then auto-
matically generating proofs for them using a tactic.

The tactic will use the following helper function for instantiating universal quanti-
fiers.

fun inst_spec ctrm =
let
val cty = ctyp_of_term ctrm
in
Drule.instantiate’ [SOME cty] [NONE, SOME ctrm] @{thm spec}
end

This helper function uses the function instantiate’ and instantiates the ?x in the
theorem Vx. ?P x —> ?P ?x with a given cterm. We call this helper function in
the following tactic..

fun inst_spec_tac ctrms =
EVERY’ (map (dtac o inst_spec) ctrms)

This tactic expects a list of cterms. It allows us in the proof below to instantiate the
three quantifiers in the assumption.

lemma
fixes P::"nat = nat = nat = bool"
shows "Vx y z. P x y z = True"
apply (tactic {*
inst_spec_tac [@{cterm "a::nat"},@{cterm "b::nat"},@{cterm "c::nat"}] 1 *})

We obtain the goal state
goal (1 subgoal):
1. Pab c = True

The complete tactic for proving the induction principles can now be implemented as
follows:
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fun ind_tac defs prem insts =
EVERY1 [Object_Logic.full_atomize_tac,
cut_facts_tac prem,
rewrite_goal_tac defs,
inst_spec_tac insts,
assume_tac]

We have to give it as arguments the definitions, the premise (a list of formulae) and
the instantiations. The premise is even n in lemma manual_ind_prin_even shown
above; in our code it will always be a list consisting of a single formula. Compare
this tactic with the manual proof for the lemma manual_ind_prin_even: as you can
see there is almost a one-to-one correspondence between the apply-script and the
ind_tac. We first rewrite the goal to use only object connectives (Line 2), "cut in”
the premise (Line 3), unfold the definitions (Line 4), instantiate the assumptions of
the goal (Line 5) and then conclude with assume_tac.

Two testcases for this tactic are:

lemma automatic_ind_prin_even:
assumes prem: "even z'"
shows "P 0 = (Am. @ m = P (Suc m)) = (Am. Pm — Q (Suc m)) =— P z"
by (tactic {* ind_tac eo_defs @{thms prem}
[@{cterm "P::nat=>bool"}, @{cterm "Q::nat=>bool"}] *})

lemma automatic_ind_prin_fresh:
assumes prem: "fresh z za"
shows "(Aa b. a # b = P a (Var b)) —

(Nats. [Pat; Pas] = Pa (4pp t s)) =

(Na t. P a (Lam a t)) =

(Nabt. Ja#b; Pat]=— Pa (Lamb t)) = P z za"
by (tactic {* ind_tac @{thms fresh_def} @{thms prem}

[e{cterm "P::string=-trm=-bool"}] *})

While the tactic for proving the induction principles is relatively simple, it will be a
bit more work to construct the goals from the introduction rules the user provides.
Therefore let us have a closer look at the first proved theorem:

thm automatic_ind_prin_even
> [even ?z; ?P 0; Am. ?@ m = 7P (Suc m); Am. 7P m — ?Q (Suc m)] = ?P 7z

The variables z, P and @ are schematic variables (since they are not quantified in the
lemma). These variables must be schematic, otherwise they cannot be instantiated
by the user. To generate these schematic variables we use a common trick in Isabelle
programming: we first declare them as free, but fixed, and then use the infrastructure
to turn them into schematic variables.

In general we have to construct for each predicate pred a goal of the form

pred 7zs — rules[preds := 7?Ps] =— 7P 7zs

where the predicates preds are replaced in rules by new distinct variables ?Ps. We
also need to generate fresh arguments ?zs for the predicate pred and the 7P in the
conclusion.
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We generate these goals in two steps. The first function, named prove_ind, ex-
pects that the introduction rules are already appropriately substituted. The argu-
ment srules stands for these substituted rules; cnewpreds are the certified terms
coresponding to the variables ?Ps; pred is the predicate for which we prove the in-
duction principle; newpred is its replacement and arg_tys are the argument types
of this predicate.

fun prove_ind lthy defs srules cnewpreds ((pred, newpred), arg_tys) =
let

val zs = replicate (length arg_tys) "z"

val (newargnames, lthy’) = Variable.variant_fixes zs lthy;

val newargs = map Free (newargnames ~~ arg_tys)

val prem = HOLogic.mk_Trueprop (list_comb (pred, newargs))
val goal = Logic.list_implies
(srules, HOLogic.mk_Trueprop (list_comb (newpred, newargs)))

in
Goal.prove 1lthy’ [] [prem] goal
(fn {prems, ...} => ind_tac defs prems cnewpreds)
|> singleton (ProofContext.export lthy’ 1thy)
end

In Line 3 we produce names zs for each type in the argument type list. Line 4 makes
these names unique and declares them as free, but fixed, variables in the local theory
1thy’. That means they are not schematic variables (yet). In Line 5 we construct the
terms corresponding to these variables. The variables are applied to the predicate
in Line 7 (this corresponds to the first premise pred zs of the induction principle).
In Line 8 and 9, we first construct the term P zs and then add the (substituted)
introduction rules as preconditions. In case that no introduction rules are given, the
conclusion of this implication needs to be wrapped inside a Trueprop, otherwise the
Isabelle’s goal mechanism will fail.!

In Line 11 we set up the goal to be proved using the function prove; in the next
line we call the tactic for proving the induction principle. As mentioned before, this
tactic expects the definitions, the premise and the (certified) predicates with which
the introduction rules have been substituted. The code in these two lines will return
a theorem. However, it is a theorem proved inside the local theory 1thy’, where the
variables zs are free, but fixed (see Line 4). By exporting this theorem from 1thy’
(which contains the zs as free variables) to 1thy (which does not), we obtain the
desired schematic variables 7zs. A testcase for this function is

local setup {* fn 1thy =>

let
val newpreds = [@{term "P::nat = bool"}, @{term "Q::nat =- bool"}]
val cnewpreds = [@{cterm "P::nat = bool"}, @{cterm "@::nat =- bool"}]
val newpred = @{term "P::nat = bool"}
val srules = map (subst_free (eo_preds ~~ newpreds)) eo_rules
val intro =

'FIXME: check with Stefan...is this so?
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prove_ind lthy eo_defs srules cnewpreds ((e_pred, newpred), e_arg_tys)
in
tracing (string_of_thm 1thy intro); lthy
end *}

This prints out the theorem:
[even ?z; P 0; An. Q n = P (Suc n); An. Pn — § (Suc n)] = P 7z

The export from 1thy’ to 1thy in Line 13 above has correctly turned the free, but
fixed, z into a schematic variable ?z; the variables P and q are not yet schematic.

We still have to produce the new predicates with which the introduction rules are
substituted and iterate prove_ind over all predicates. This is what the second func-
tion, named inds does.

fun inds rules defs preds arg_tyss lthy =
let
val Ps = replicate (length preds) "P"
val (newprednames, 1lthy’) = Variable.variant_fixes Ps lthy

val thy = ProofContext.theory_of 1thy’

val tyss’ = map (fn tys => tys —---> HOLogic.boolT) arg_tyss
val newpreds = map Free (newprednames ~~ tyss’)

val cnewpreds = map (cterm_of thy) newpreds

val srules = map (subst_free (preds ~~ newpreds)) rules

in
map (prove_ind lthy’ defs srules cnewpreds)
(preds ~~ newpreds ~~ arg_tyss)
|> ProofContext.export lthy’ lthy
end

In Line 3, we generate a string "P" for each predicate. In Line 4, we use the same
trick as in the previous function, that is making the Ps fresh and declaring them as
free, but fixed, in the new local theory 1thy’. From the local theory we extract the
ambient theory in Line 6. We need this theory in order to certify the new predicates.
In Line 8, we construct the types of these new predicates using the given argument
types. Next we turn them into terms and subsequently certify them (Line 9 and 10).
We can now produce the substituted introduction rules (Line 11) using the function
subst_free. Line 14 and 15 just iterate the proofs for all predicates. From this we
obtain a list of theorems. Finally we need to export the fixed variables Ps to obtain
the schematic variables ?Ps (Line 16).

A testcase for this function is

local_setup {* fn lthy =>
let
val ind_thms = inds eo_rules eo_defs eo_preds eo_arg_tyss lthy
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in
tracing (string_of_thms lthy ind_thms); lthy
end *}

which prints out

even 7z — 7P1 0 —
(Am. ?Pal m = ?P1 (Suc m)) = (Am. 7P1 m = ?7Pal (Suc m)) = ?P1 7z,
odd 7z — 7P1 0 —
(Am. ?Pal m = ?P1 (Suc m)) = (Am. 7P1 m = 7Pal (Suc m)) = ?Pal 7z

Note that now both, the ?Ps and the ?zs, are schematic variables. The numbers
attached to these variables have been introduced by the pretty-printer and are not
important for the user.

This completes the code for the induction principles. The final peice of reasoning
infrastructure we need are the introduction rules.

Introduction Rules

Constructing the goals for the introduction rules is easy: they are just the rules given
by the user. However, their proofs are quite a bit more involved than the ones for
the induction principles. To explain the general method, our running example will
be the introduction rule

Na b t. [a # b; fresh a t] = fresh a (Lam b t)

about freshness for lambdas. In order to ease somewhat our work here, we use the
following two helper functions.

val all_elims = fold (fn ct => fn th => th RS inst_spec ct)
val imp_elims = fold (fn th => fn th’ => [th’, th] MRS @{thm mp})

To see what these functions do, let us suppose we have the following three theorems.

lemma all_elims_test:
fixes P::"nat = nat = nat = bool"
shows "Vx y z. P x y z" sorry

lemma imp_elims_test:
shows "A — B — C" sorry

lemma imp_elims_test’:
shows "A" "B" sorry

The function all_elims takes a list of (certified) terms and instantiates theorems
of the form all_elims_test. For example we can instantiate the quantifiers in this
theorem with a, b and ¢ as follows:
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let
val ctrms = [@{cterm "a::nat"}, @{cterm "b::nat"}, @{cterm "c::nat"}]
val new_thm = all_elims ctrms @{thm all_elims_test}

in
tracing (string_of_thm_no_vars @{context} new_thm)

end

>Pabc

Note the difference with inst_spec_tac from Page 158: inst_spec_tac is a tactic
which operates on a goal state; in contrast all_elims operates on theorems.

Similarly, the function imp_elims eliminates preconditions from implications. For
example we can eliminate the preconditions 4 and B from imp_elims_test:

let
val res = imp_elims @{thms imp_elims_test’} @{thm imp_elims_test}
in
tracing (string_of_thm_no_vars @{context} res)
end
> C

Now we set up the proof for the introduction rule as follows:

lemma fresh_Lam:
shows "Aa b t. [a # b; fresh a t] = fresh a (Lam b t)"

The first step in the proof will be to expand the definitions of freshness and then
introduce quantifiers and implications. For this we will use the tactic

fun expand_tac defs =
Object_Logic.rulify_tac 1
THEN rewrite_goal_tac defs 1
THEN (REPEAT (resolve_tac [@{thm allI}, @{thm impI}] 1))

The function in Line 2 “rulifies” the lemma.? This will turn out to be important later
on. Applying this tactic in our proof of fresh_Lem

apply (tactic {* expand_tac @{thms fresh_def} *})

gives us the goal state

goal (1 subgoal):
1. Na b t fresh.
[a # b;
V fresh.
(Va b. a # b — fresh a (Var b)) —
(Va t s. fresh a t —> fresh a s — fresh a (App t s)) —
(Va t. fresh a (Lam a t)) —

(Vabt. a#b — freshat — fresh a (Lam b t)) — fresh a t;

Va b. a # b — fresh a (Var b);

2FIXME: explain this better
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Va t s. fresh a t — fresh a s — fresh a (App t s);
Va t. fresh a (Lam a t);

Vabt. a#b — freshat — fresh a (Lam b t)]
—> fresh a (Lam b t)

As you can see, there are parameters (namely a, b and t) which come from the in-
troduction rule and parameters (in the case above only fresh) which come from the
universal quantification in the definition fresh a (App t s). Similarly, there are
assumptions that come from the premises of the rule (namely the first two) and as-
sumptions from the definition of the predicate (assumption three to six). We need to
treat these parameters and assumptions differently. In the code below we will there-
fore separate them into params1 and params2, respectively prems1 and prems2. To
do this separation, it is best to open a subproof with the tactic SUBPROOF, since this
tactic provides us with the parameters (as list of cterms) and the assumptions (as
list of thms). The problem with SUBPROOF, however, is that it always expects us to
completely discharge the goal (see Section 6.2). This is a bit inconvenient for our
gradual explanation of the proof here. Therefore we use first the function FOCUS,
which does s ame as SUBPROOF but does not require us to completely discharge the
goal.

First we calculate the values for params1/2 and prems1/2 from params and prems,
respectively. To better see what is going in our example, we will print out these
values using the printing function in Figure 7.3. Since FOCUS will supply us the
params and prems as lists, we can separate them using the function chop.

fun chop_test_tac preds rules =

Subgoal .FOCUS (fn {params, prems, context, ...} =>

let
val cparams = map snd params
val (paramsl, params2) = chop (length cparams - length preds) cparams
val (premsl, prems2) = chop (length prems - length rules) prems

in
chop_print paramsl params2 premsl prems2 context; all_tac

end)

For the separation we can rely on the fact that Isabelle deterministically produces
parameters and premises in a goal state. The last parameters that were introduced
come from the quantifications in the definitions (see the tactic expand_tac). There-
fore we only have to subtract in Line 5 the number of predicates (in this case only
1) from the lenghts of all parameters. Similarly with the prems in line 6: the last
premises in the goal state come from unfolding the definition of the predicate in
the conclusion. So we can just subtract the number of rules from the number of all
premises. To check our calculations we print them out in Line 8 using the function
chop_print from Figure 7.3 and then just do nothing, that is all_tac. Applying
this tactic in our example

apply (tactic {* chop_test_tac [fresh_pred] fresh_rules @{context} 1 *})

gives
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fun chop_print paramsl params2 premsl prems2 ctxt =

let
val s = ["Paramsl from the rule:", string_of_cterms ctxt paramsl]
@ ["Params2 from the predicate:", string_of_cterms ctxt params2]
@ ["Prems1 from the rule:"] @ (map (string_of_thm ctxt) premsl)
@ ["Prems2 from the predicate:"] @ (map (string_of_thm ctxt) prems2)
in
s |> cat_lines
[> tracing
end

Figure 7.3: A helper function that prints out the parameters and premises that need
to be treated differently.

Params1l from the rule:

a, b, t

Params2 from the predicate:

fresh

Premsl from the rule:

a #b

V fresh.

(Va b. a # b — fresh a (Var b)) —

(Va t s. fresh a t — fresh a s — fresh a (App t s)) —
(Va t. fresh a (Lam a t)) —

(Vabt. a#b — freshat — fresh a (Lam b t)) — fresh a t
Prems2 from the predicate:

VYa b. a # b — fresh a (Var b)

Va t s. fresh a t — fresh a s —> fresh a (dpp t s)

Va t. fresh a (Lam a t)

Vabt. a#*b — freshat — fresh a (Lam b t)

We now have to select from prems2 the premise that corresponds to the introduction
rule we prove, namely:

Vabt. a#b — freshat — fresh a (Lam a t)

To use this premise with rtac, we need to instantiate its quantifiers (with params1)
and transform it into rule format (using rulify). So we can modify the code as
follows:

fun apply_prem_tac i preds rules =

Subgoal .FOCUS (fn {params, prems, context, ...} =

let
val cparams = map snd params
val (paramsl, params2) = chop (length cparams - length preds) cparams
val (premsl, prems2) = chop (length prems - length rules) prems

in
rtac (Object_Logic.rulify (all_elims paramsl (nth prems2 i))) 1

end)



166 CHAPTER 7. HOW TO WRITE A DEFINITIONAL PACKAGE

The argument i corresponds to the number of the introduction we want to prove.
We will later on let it range from 0 to the number of rules - 1. Below we apply
this function with 3, since we are proving the fourth introduction rule.

apply (tactic {* apply_prem_tac 3 [fresh_pred] fresh_rules @{context} 1 *})

The goal state we obtain is:

1. ... = a #b
2. ... =— fresh a t

As expected there are two subgoals, where the first comes from the non-recursive
premise of the introduction rule and the second comes from the recursive one. The
first goal can be solved immediately by prems1. The second needs more work. It can
be solved with the other premise in prems1, namely

V fresh.
(Va b. a # b — fresh a (Var b)) —
(Va t s. fresh a t —> fresh a s — fresh a (App t s)) —>
(Va t. fresh a (Lam a t)) —
(Vabt. a#b — freshat — fresha (Lamb t)) — fresh a t

but we have to instantiate it appropriately. These instantiations come from params1
and prems2. We can determine whether we are in the simple or complicated case by
checking whether the topmost connective is an V. The premises in the simple case
cannot have such a quantification, since the first step of expand_tac was to “rulify”
the lemma. The premise of the complicated case must have at least one V coming
from the quantification over the preds. So we can implement the following function

fun prepare_prem params2 prems2 prem =
rtac (case prop_of prem of
_ $ (Const (@{const_name All}, _) $ _) =>
prem [> all_elims params2
[> imp_elims prems2
| _ => prem)

which either applies the premise outright (the default case) or if it has an outermost
universial quantification, instantiates it first with params1 and then premsi. The
following tactic will therefore prove the lemma completely.

fun prove_intro_tac i preds rules =

SUBPROOF (fn {params, prems, ...} =>

let
val cparams = map snd params
val (paramsl, params2) = chop (length cparams - length preds) cparams
val (premsl, prems2) = chop (length prems - length rules) prems

in
rtac (Object_Logic.rulify (all_elims paramsl (nth prems2 1i))) 1
THEN EVERY1 (map (prepare_prem params2 prems2) premsl1)

end)
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Note that the tactic is now SUBPROOF, not FOCUS anymore. The full proof of the
introduction rule is as follows:

lemma fresh_Lam:

shows "Aa b t. [a # b; fresh a t] = fresh a (Lam b t)"

apply (tactic {* expand_tac @{thms fresh_def} *})

apply (tactic {* prove_intro_tac 3 [fresh_pred] fresh_rules @{context} 1 *})
done

Phew!. ..

Unfortunately, not everything is done yet. If you look closely at the general principle
outlined for the introduction rules in Section 7.3, we have not yet dealt with the case
where recursive premises have preconditions. The introduction rule of the accessible
part is such a rule.

lemma accpartI:

shows "AR x. (Ay. R y x = accpart R y) =—> accpart R x"

apply (tactic {* expand_tac @{thms accpart_def} *})

apply (tactic {* chop_test_tac [acc_pred] acc_rules @{context} 1 *})
apply (tactic {* apply_prem_tac O [acc_pred] acc_rules @{context} 1 *})

Here chop_test_tac prints out the following values for params1/2 and prems1/2

Paramsl from the rule:

X

Params2 from the predicate:

P

Prems1 from the rule:

R?y x = VP. (Wx. (Wy. Ryx — Py) — Px) — P 7%y
Prems2 from the predicate:

vVx. Wy. Ryx — Py) — Px

and after application of the introduction rule using apply_prem_tac, we are in the
goal state

1. Ay. Ryx = Py

In order to make progress, we have to use the precondition R y x (in general there
can be many of them). The best way to get a handle on these preconditions is to open
up another subproof, since the preconditions will then be bound to prems. Therfore
we modify the function prepare_prem as follows

fun prepare_prem params2 prems2 ctxt prem =
SUBPROOF (fn {prems, ...} =>
let
val prem’ = prems MRS prem
in
rtac (case prop_of prem’ of
_ $ (Const (@{const_name All}, _) $ _) =>
prem’ [> all_elims params2
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[> imp_elims prems2
| _ => prem’) 1
end) ctxt

In Line 4 we use the prems from the SUBPROOF and resolve them with prem. In the
simple cases, that is where the prem comes from a non-recursive premise of the rule,
prems will be just the empty list and the function MRS does nothing. Similarly, in the
cases where the recursive premises of the rule do not have preconditions. In case
there are preconditions, then Line 4 discharges them. After that we can proceed as
before, i.e., check whether the outermost connective is V.

The function prove_intro_tac only needs to be changed so that it gives the context
to prepare_prem (Line 8). The modified version is below.

fun prove_intro_tac i preds rules =

SUBPROOF (fn {params, prems, context, ...} =>

let
val cparams = map snd params
val (paramsl, params2) = chop (length cparams - length preds) cparams
val (premsl, prems2) = chop (length prems - length rules) prems

in
rtac (Object_Logic.rulify (all_elims paramsl (nth prems2 i))) 1
THEN EVERY1 (map (prepare_prem params2 prems2 context) prems1)

end)

With these two functions we can now also prove the introduction rule for the acces-
sible part.

lemma accpartI:

shows "AR x. (A\y. R y x — accpart R y) — accpart R x"

apply (tactic {* expand_tac @{thms accpart_def} *})

apply (tactic {* prove_intro_tac 0 [acc_pred] acc_rules @{context} 1 *})
done

Finally we need two functions that string everything together. The first function is
the tactic that performs the proofs.

fun intro_tac defs rules preds i ctxt =
EVERY1 [Object_Logic.rulify_tac,
rewrite_goal_tac defs,
REPEAT o (resolve_tac [@{thm allIl}, @{thm impI}]),
prove_intro_tac i preds rules ctxt]

Lines 2 to 4 in this tactic correspond to the function expand_tac. Some testcases for
this tactic are:

lemma evenO_intro:
shows "even 0"
by (tactic {* intro_tac eo_defs eo_rules eo_preds 0 @{context} *})

lemma evenS_intro:
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shows "Am. odd m = even (Suc m)"
by (tactic {* intro_tac eo_defs eo_rules eo_preds 1 @{context} *})

lemma fresh_App:
shows "Aa t s. [fresh a t; fresh a s] = fresh a (dpp t s)"
by (tactic {*
intro_tac @{thms fresh_def} fresh_rules [fresh_pred] 1 @{context} *})

The second function sets up in Line 4 the goals to be proved (this is easy for the
introduction rules since they are exactly the rules given by the user) and iterates
intro_tac over all introduction rules.

fun intros rules preds defs lthy =
let

fun intros_aux (i, goal) =

Goal.prove 1thy [] [] goal
(fn {context, ...} => intro_tac defs rules preds i context)

in

map_index intros_aux rules
end

The iteration is done with the function map_index since we need the introduction
rule together with its number (counted from 0). This completes the code for the
functions deriving the reasoning infrastructure. It remains to implement some ad-
ministrative code that strings everything together.

Administrative Functions

We have produced various theorems (definitions, induction principles and introduc-
tion rules), but apart from the definitions, we have not yet registered them with the
theorem database. This is what the functions note does.

For convenience, we use the following three wrappers this function:

fun note_many gname ((name, attrs), thms) =
Local_Theory.note ((Binding.qualify false gname name, attrs), thms)

fun note_singlel gname ((name, attrs), thm) =
note_many gname ((name, attrs), [thm])

fun note_single2 name attrs (qname, thm) =
note_many (Binding.name_of gname) ((name, attrs), [thm])

The function that “holds everything together” is add_inductive. Its arguments are
the specification of the predicates pred_specs and the introduction rules rule_spec.

fun add_inductive pred_specs rule_specs lthy =
let

val mxs = map snd pred_specs

val pred_specs’ = map fst pred_specs
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val prednames = map fst pred_specs’
val preds = map (fn (p, ty) => Free (Binding.name_of p, ty)) pred_specs’
val tyss = map (binder_types o fastype_of) preds

val (namesattrs, rules) = split_list rule_specs

val (defs, 1lthy’) = defns rules preds prednames mxs tyss lthy
val ind_prins = inds rules defs preds tyss lthy’
val intro_rules = intros rules preds defs lthy’

val mut_name = space_implode "_" (map Binding.name_of prednames)
val case_names = map (Binding.name_of o fst) namesattrs
in
1thy’ [|> note_many mut_name ((@{binding "intros"}, []), intro_rules)
[ [>> note_many mut_name ((@{binding "inducts"}, []), ind_prins)
[ [>> fold_map (note_singlel mut_name) (namesattrs ~~ intro_rules)
[ [>> fold_map (note_single2 @{binding "induct"}
[Attrib.internal (K (Rule_Cases.case_names case_names)),
Attrib.internal (K (Rule_Cases.consumes 1)),
Attrib.internal (K (Induct.induct_pred ""))])
(prednames ~~ ind_prins)
[> snd
end

In Line 3 the function extracts the syntax annotations from the predicates. Lines
4 to 6 extract the names of the predicates and generate the variables terms (with
types) corresponding to the predicates. Line 7 produces the argument types for each
predicate.

Line 9 extracts the introduction rules from the specifications and stores also in
namesattrs the names and attributes the user may have attached to these rules.

Line 11 produces the definitions and also registers the definitions in the local theory
1thy’. The next two lines produce the induction principles and the introduction
rules (all of them as theorems). Both need the local theory 1thy’ in which the
definitions have been registered.

Lines 15 produces the name that is used to register the introduction rules. It is cos-
tum to collect all introduction rules under string.intros, whereby string stands
for the "_"-separated list of predicate names (for example even_odd. Also by cus-
tom, the case names in intuction proofs correspond to the names of the introduction
rules. These are generated in Line 16.

Lines 18 and 19 now add to 1thy’ all the introduction rules und induction prin-
ciples under the name mut_name. intros and mut_name.inducts, respectively (see
previous paragraph).

Line 20 add further every introduction rule under its own name (given by the user).>
Line 21 registers the induction principles. For this we have to use some specific
attributes. The first case_names corresponds to the case names that are used by Isar
to reference the proof obligations in the induction. The second consumes 1 indicates
that the first premise of the induction principle (namely the predicate over which the

SFIXME: what happens if the user did not give any name.
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induction proceeds) is eliminated.
This completes all the code and fits in with the “front end” described in Section 7.2.4

7.5 Extensions of the Package (TBD)

Things to include at the end:

e include the code for the parameters
e say something about add-inductive to return the rules

e say something about the two interfaces for calling packages

Exercise 7.5.1: In Section 7.3 we required that introduction rules must be of the form
rule ::= Axs. As = (/\ys. Bs = pred ss)* = pred ts

where the As and Bs can be any collection of formulae not containing the preds. This require-
ment is important, because if violated, the theory behind the inductive package does not work
and also the proofs break. Write code that tests whether the introduction rules given by the user
fit into the scheme described above. Hint: It is not important in which order the premises ar
given; the As and (/\ys. Bs = pred ss) premises can occur in any order.

Exercise 7.5.2: If you define even and odd with the standard inductive package

inductive
even_2 and odd_2
where
even0_2: "even_2 0"
| evenS_2: "odd_2 m — even_2 (Suc m)"
| oddS_2: "even_2 m — odd_2 (Suc m)"

you will see that the generated induction principle for even’ (namely even_2_odd_2. inducts
has the additional assumptions odd_2 mand even_2 min the recursive cases. These additional
assumptions can sometimes make “life easier” in proofs. Since more assumptions can be made
when proving properties, these induction principles are called strong inductions principles. How-
ever, it is the case that the “weak” induction principles imply the “strong” ones. Hint: Prove a
property taking a pair (or tuple in case of more than one predicate) as argument: the property
that you originally want to prove and the predicate(s) over which the induction proceeds.

Write code that automates the derivation of the strong induction principles from the weak ones.

Read More

The standard inductive package is based on least fix-points. It allows more general intro-
duction rules that can include any monotone operators and also provides a richer reasoning
infrastructure. The code of this package can be found in HOL/Tools/inductive.ML.

7.6 Definitional Packages

Type declarations

*FIXME: Describe Induct.induct_pred. Why the mut-name? What does Binding.qualify do?


http://isabelle.in.tum.de/repos/isabelle/raw-file/tip/src/HOL/Tools/inductive.ML
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Typedef.add_typedef false NONE (@{binding testl}, [],NoSyn)
O{term "{1}::nat set"} NONE (simp_tac @{simpset} 1) @{theory}



Appendix A

Recipes

Possible topics:

e translations/print translations; ProofContext.print_syntax
e user space type systems (in the form that already exists)
e useful datastructures: discrimination nets, graphs, association lists

e Brief history of Isabelle

A.1 Useful Document Antiquotations

Problem: How to keep your ML-code inside a document synchronised with the ac-
tual code?

Solution: This can be achieved with document antiquotations.

Document antiquotations can be used for ensuring consistent type-setting of various
entities in a document. They can also be used for sophisticated KIgX-hacking. If you
type on the Isabelle level

print_antiquotations

you obtain a list of all currently available document antiquotations and their options.

Below we will give the code for two additional document antiquotations both of
which are intended to typeset ML-code. The crucial point of these document antiquo-
tations is that they not just print the ML-code, but also check whether it compiles.
This will provide a sanity check for the code and also allows you to keep documents
in sync with other code, for example Isabelle.

We first describe the antiquotation ML_checked with the syntax:
O@{ML_checked "a_piece_of_code"}

The code is checked by sending the ML-expression "val _ = a_piece_of_code"
to the ML-compiler (i.e. the function ML_Context.eval_in in Line 4 below). The
complete code of the document antiquotation is as follows:

173
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fun ml_val code_txt = "val _ = " = code_txt

fun output_ml {context = ctxt, ...} code_txt =
(ML_Context.eval_in (SOME ctxt) false Position.none (ml_val code_txt);
ThyOutput.output (map Pretty.str (space_explode "\n" code_txt)))

val _ = ThyOutput.antiquotation "ML_checked" (Scan.lift Args.name) output_ml

The parser (Scan.lift Args.name) in Line 7 parses a string, in this case the code,
and then calls the function output_ml. As mentioned before, the parsed code is
sent to the ML-compiler in Line 4 using the function m1_val, which constructs the
appropriate ML-expression, and using eval_in, which calls the compiler. If the code
is “approved” by the compiler, then the output function output in the next line pretty
prints the code. This function expects that the code is a list of (pretty)strings where
each string correspond to a line in the output. Therefore the use of (space_explode
"\n" txt) which produces such a list according to linebreaks. There are a number
of options for antiquotations that are observed by the function output when printing
the code (including [display] and [quotes]). The function antiquotation in
Line 7 sets up the new document antiquotation.

Read More
For more information about options of document antiquotations see [Isar Ref. Man.,
Sec. 4.2]).

Since we used the argument Position.none, the compiler cannot give specific in-
formation about the line number, in case an error is detected. We can improve the
code above slightly by writing

fun output_ml {context = ctxt, ...} (code_txt, pos) =
(ML_Context.eval_in (SOME ctxt) false pos (ml_val code_txt);
ThyOutput.output (map Pretty.str (space_explode "\n" code_txt)))

val _ = ThyOutput.antiquotation "ML_checked"
(Scan.lift (OuterParse.position Args.name)) output_ml

where in Lines 1 and 2 the positional information is properly treated. The parser
OuterParse.position encodes the positional information in the result.

We can now write @{ML_checked "2 + 3"} in a document in order to obtain 2
+ 3 and be sure that this code compiles until somebody changes the definition of
addition.

The second document antiquotation we describe extends the first by a pattern that
specifies what the result of the ML-code should be and checks the consistency of
the actual result with the given pattern. For this we are going to implement the
document antiquotation:

@{ML_resp "a_piece_of_code" "a_pattern"}

To add some convenience and also to deal with large outputs, the user can give a
partial specification by using ellipses. For example (..., ...) for specifying a pair.
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In order to check consistency between the pattern and the output of the code, we
have to change the ML-expression that is sent to the compiler: in ML_checked we

sent the expression "val _ = a_piece_of_code" to the compiler; now the wildcard
_ must be be replaced by the given pattern. However, we have to remove all ellipses
from it and replace them by "_". The following function will do this:

fun ml_pat (code_txt, pat) =
let val pat’ =
implode (map (fn "..." => "_" | s => s) (Symbol.explode pat))
in
"val " ~ pat’ ~ " = " ~ code_txt
end

Next we add a response indicator to the result using:
fun add_resp pat = map (fn s => "> " ~ s) pat
The rest of the code of ML_resp is:

fun output_ml_resp {context = ctxt, ...} ((code_txt, pat), pos) =

(ML_Context.eval_in (SOME ctxt) false pos (ml_pat (code_txt, pat));
let

val code_output = space_explode "\n'" code_txt

val resp_output = add_resp (space_explode "\n" pat)
in

ThyOutput.output (map Pretty.str (code_output @ resp_output))
end)

val _ = ThyOutput.antiquotation "ML_resp"
(Scan.lift (OuterParse.position (Args.name -- Args.name)))
output_ml_resp

In comparison with ML_checked, we only changed the line about the compiler (Line 2),
the lines about the output (Lines 4 to 7) and the parser in the setup (Line 11). Now
you can write

@{ML_resp [display] "true andalso false" "false"}

to obtain

true andalso false
> false

or
@{ML_resp [display] "let val i = 3 in (i * i, "foo") end" "(9, ...)"}

to obtain
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let val i = 3 in (i * i, "foo") end
> (9, ...)

In both cases, the check by the compiler ensures that code and result match. A
limitation of this document antiquotation, however, is that the pattern can only be
given for values that can be constructed. This excludes values that are abstract
datatypes, like thms and cterms.

A.2 Restricting the Runtime of a Function

Problem: Your tool should run only a specified amount of time.
Solution: In PolyML 5.2.1 and later, this can be achieved using the function timeLimit.

Assume you defined the Ackermann function on the ML-level.

fun ackermann (0, n) =n + 1
| ackermann (m, 0) = ackermann (m - 1, 1)
| ackermann (m, n) ackermann (m - 1, ackermann (m, n - 1))

Now the call

ackermann (4, 12)
> ...

takes a bit of time before it finishes. To avoid this, the call can be encapsulated in a
time limit of five seconds. For this you have to write

TimeLimit.timeLimit (Time.fromSeconds 5) ackermann (4, 12)
handle TimeLimit.TimeOut => ~1
> 1

where TimeOut is the exception raised when the time limit is reached.

Note that timeLimit is only meaningful when you use PolyML 5.2.1 or later, because
this version of PolyML has the infrastructure for multithreaded programming on
which timeLimit relies.

Read More

The function timeLimit is defined in the structure TimeLimit which can be found in the
file Pure/ML-Systems/multithreading_polyml.ML

A.3 Measuring Time

Problem: You want to measure the running time of a tactic or function.

Solution: Time can be measured using the function start_timing and end_timing.


http://isabelle.in.tum.de/repos/isabelle/raw-file/tip/src/Pure/ML-Systems/multithreading_polyml.ML
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Suppose you defined the Ackermann function on the Isabelle level.
fun

ackermann:: "(nat X nat) = nat"
where
"ackermann (0, n) =n + 1"
| "ackermann (m, 0) ackermann (m - 1, 1)"
| "ackermann (m, n) ackermann (m - 1, ackermann (m, n - 1))"

You can measure how long the simplifier takes to verify a datapoint of this function.
The actual timing is done inside the wrapper function:

fun timing wrapper tac st =
let
val t_start = start_timing ();
val res = tac st;
val t_end = end_timing t_start;
in
(writeln (#message t_end); res)
end

Note that this function, in addition to a tactic, also takes a state st as argument and
applies this state to the tactic (Line 4). The reason is that tactics are lazy functions
and you need to force them to run, otherwise the timing will be meaningless. The
simplifier tactic, amongst others, can be forced to run by just applying the state to
it. But “fully” lazy tactics, such as resolve_tac, need even more “standing-on-ones-
head” to force them to run.

The time between start and finish of the simplifier will be calculated as the end time
minus the start time. An example of the wrapper is the proof
lemma "ackermann (3, 4) = 125"
apply (tactic {*

timing_wrapper (simp_tac (@{simpset} addsimps @{thms "nat_number"}) 1) *})
done

where it returns something on the scale of 3 seconds. We chose to return this infor-
mation as a string, but the timing information is also accessible in number format.

Read More
Basic functions regarding timing are defined in Pure/ML-Systems/polyml_common.ML
(for the PolyML compiler). Some more advanced functions are defined in

Pure/General/output.ML.

A.4 Executing an External Application (TBD)

Problem: You want to use an external application.
Solution: The function bash_output might be the right thing for you.

This function executes an external command as if printed in a shell. It returns the
output of the program and its return value.

For example, consider running an ordinary shell commands:


http://isabelle.in.tum.de/repos/isabelle/raw-file/tip/src/Pure/ML-Systems/polyml_common.ML
http://isabelle.in.tum.de/repos/isabelle/raw-file/tip/src/Pure/General/output.ML
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bash_output "echo Hello world!"
> ("Hello world!\n", 0)

Note that it works also fine with timeouts (see Recipe A.2 on Page 176), i.e. external
applications are killed properly. For example, the following expression takes only
approximately one second:

TimeLimit.timeLimit (Time.fromSeconds 1) bash_output "sleep 30"
handle TimeLimit.TimeOut => ("timeout", ~1)
> ("timeout", ~1)

The function bash_output can also be used for more reasonable applications, e.g.
coupling external solvers with Isabelle. In that case, one has to make sure that
Isabelle can find the particular executable. One way to ensure this is by adding a
Bash-like variable binding into one of Isabelle’s settings file (prefer the user settings
file usually to be found at $HOME/ . isabelle/etc/settings).

For example, assume you want to use the application foo which is here supposed
to be located at /usr/local/bin/. The following line has to be added to one of
Isabelle’s settings file:

F0OO=/usr/local/bin/foo
In Isabelle, this application may now be executed by

bash_output "$F00"
> ...

A.5 Writing an Oracle (TBD)

Problem: You want to use a fast, new decision procedure not based one Isabelle’s
tactics, and you do not care whether it is sound.

Solution: Isabelle provides the oracle mechanisms to bypass the inference kernel.
Note that theorems proven by an oracle carry a special mark to inform the user of
their potential incorrectness.

Read More

A short introduction to oracles can be found in [isar-ref: no suitable label for section 3.11].
A simple example, which we will slightly extend here, is given in FOL/ex/Iff_Oracle.thy.
The raw interface for adding oracles is add_oracle in Pure/thm.ML.

For our explanation here, we restrict ourselves to decide propositional formulae
which consist only of equivalences between propositional variables, i.e. we want
to decide whether (P = (@ = P)) = @ is a tautology.

Assume, that we have a decision procedure for such formulae, implemented in ML.
Since we do not care how it works, we will use it here as an “external solver”:


http://isabelle.in.tum.de/repos/isabelle/raw-file/tip/src/FOL/ex/Iff_Oracle.thy
http://isabelle.in.tum.de/repos/isabelle/raw-file/tip/src/Pure/thm.ML
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use "external_solver.ML"

We do, however, know that the solver provides a function IffSolver.decide. It
takes a string representation of a formula and returns either true if the formula is a
tautology or false otherwise. The input syntax is specified as follows:

formula ::= atom | ( formula <=> formula )
and all token are separated by at least one space.
(FIXME: is there a better way for describing the syntax?)

We will proceed in the following way. We start by translating a HOL formula into the
string representation expected by the solver. The solver’s result is then used to build
an oracle, which we will subsequently use as a core for an Isar method to be able to
apply the oracle in proving theorems.

Let us start with the translation function from Isabelle propositions into the solver’s
string representation. To increase efficiency while building the string, we use func-
tions from the Buffer module.

fun translate t =
let
fun trans t =
(case t of
@{term "op = :: bool = bool = bool"} $ t $ u =>
Buffer.add " (" #>
trans t #>
Buffer.add "<=>" #>
trans u #>
Buffer.add ") "
| Free (n, @{typ bool}) =>
Buffer.add " " #>
Buffer.add n #>
Buffer.add " "
| _ => error "inacceptable term")
in Buffer.content (trans t Buffer.empty) end

Here is the string representation of the termp = (q = p):
translate @{term "p = (q = p)"}

>" (p<=>(qgq<=>p))"

Let us check, what the solver returns when given a tautology:
IffSolver.decide (translate @{term "p = (q = p) = q"})
> true

And here is what it returns for a formula which is not valid:

IffSolver.decide (translate @{term "p = (q = p)"})
> false

Now, we combine these functions into an oracle. In general, an oracle may be given
any input, but it has to return a certified proposition (a special term which is type-
checked), out of which Isabelle’s inference kernel “magically” makes a theorem.
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Here, we take the proposition to be show as input. Note that we have to first extract
the term which is then passed to the translation and decision procedure. If the solver
finds this term to be valid, we return the given proposition unchanged to be turned
then into a theorem:

oracle iff_oracle = {* fn ct =>
if IffSolver.decide (translate (HOLogic.dest_Trueprop (Thm.term_of ct)))
then ct
else error "Proof failed."*}

Here is what we get when applying the oracle:

iff_oracle @{cprop "p = (p::bool)"}

>p=p

(FIXME: is there a better way to present the theorem?)

To be able to use our oracle for Isar proofs, we wrap it into a tactic:

val iff_oracle_tac =
CSUBGOAL (fn (goal, i) =>
(case try iff_oracle goal of
NONE => no_tac
| SOME thm => rtac thm i))

and create a new method solely based on this tactic:

method_setup iff_oracle = {*
Scan.succeed (K (Method.SIMPLE_METHOD’ iff_oracle_tac))
*} "Oracle-based decision procedure for chains of equivalences"

Finally, we can test our oracle to prove some theorems:

lemma "p = (p::bool)"
by iff_oracle

lemma "p = (q = p) = q"
by iff_oracle

(FIXME: say something about what the proof of the oracle is ... what do you mean?)

A.6 SAT Solvers

Problem: You like to use a SAT solver to find out whether an Isabelle formula is
satisfiable or not.

Solution: Isabelle contains a general interface for a number of external SAT solvers
(including ZChaff and Minisat) and also contains a simple internal SAT solver that is
based on the DPLL algorithm.

The SAT solvers expect a propositional formula as input and produce a result indi-
cating that the formula is either satisfiable, unsatisfiable or unknown. The type of
the propositional formula is PropLogic.prop_formula with the usual constructors
such as And, Or and so on.
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The function PropLogic.prop_formula_of_term translates an Isabelle term into a
propositional formula. Let us illustrate this function by translating 4 A = 4 Vv B.
The function will return a propositional formula and a table. Suppose

val (pform, table) =
PropLogic.prop_formula_of_term @{term "A A —A V B"} Termtab.empty

then the resulting propositional formula pform is

Or (And (BoolVar 1, Not (BoolVar 1)), BoolVar 2)

where indices are assigned for the variables A and B, respectively. This assignment
is recorded in the table that is given to the translation function and also returned
(appropriately updated) in the result. In the case above the input table is empty
(i.e. Termtab.empty) and the output table is

Termtab.dest table
> [(Free ("A", "bool"), 1), (Free ("B", "bool"), 2)]

An index is also produced whenever the translation function cannot find an appro-
priate propositional formula for a term. Attempting to translate Vx. P x

val (pform’, table’) =
PropLogic.prop_formula_of_term @{term "Vx::nat. P x"} Termtab.empty

returns BoolVar 1 for pform’ and the table table’ is:

map (apfst (string_of_term @{context})) (Termtab.dest table’)
> (Vx. Px, 1)

In the print out of the tabel, we used some pretty printing scaffolding to see better
which assignment the table contains.

Having produced a propositional formula, you can now call the SAT solvers with the
function SatSolver. invoke_solver. For example

SatSolver.invoke_solver "dpll" pform
> SatSolver.SATISFIABLE assg

determines that the formula pform is satisfiable. If we inspect the returned function
assg

let
val SatSolver.SATISFIABLE assg = SatSolver.invoke_solver "dpll" pform
in
(assg 1, assg 2, assg 3)
end
> (SOME true, SOME true, NONE)
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we obtain a possible assignment for the variables A and B that makes the formula
satisfiable.

Note that we invoked the SAT solver with the string "dpl11". This string specifies
which SAT solver is invoked (in this case the internal one). If instead you invoke the
SAT solver with the string "auto"

SatSolver.invoke_solver "auto" pform

several external SAT solvers will be tried (assuming they are installed). If no external
SAT solver is installed, then the default is "dp11".

There are also two tactics that make use of SAT solvers. One is the tactic sat_tac.
For example

lemma "True"
apply (tactic {* sat.sat_tac @{context} 1 *})
done

However, for proving anything more exciting using sat_tac you have to use a SAT
solver that can produce a proof. The internal one is not usuable for this.

Read More

The interface for the external SAT solvers is implemented in HOL/Tools/sat_solver.ML.
This file contains also a simple SAT solver based on the DPLL algorithm. The tactics for
SAT solvers are implemented in HOL/Tools/sat_funcs.ML. Functions concerning propo-
sitional formulas are implemented in HOL/Tools/prop_logic.ML. The tables used in the
translation function are implemented in Pure/General/table.ML.

A.7 User Space Type-Systems (TBD)


http://isabelle.in.tum.de/repos/isabelle/raw-file/tip/src/HOL/Tools/sat_solver.ML
http://isabelle.in.tum.de/repos/isabelle/raw-file/tip/src/HOL/Tools/sat_funcs.ML
http://isabelle.in.tum.de/repos/isabelle/raw-file/tip/src/HOL/Tools/prop_logic.ML
http://isabelle.in.tum.de/repos/isabelle/raw-file/tip/src/Pure/General/table.ML

Appendix B

Solutions to Most Exercises

Solution for Exercise 3.2.1.

fun rev_sum ((p as Const (@{const_name plus}, _)) $t $ w =
p$ud rev_sumt
| rev_sum t = t

An alternative solution using the function mk_binop is:

fun rev_sum t =
let
fun dest_sum (Const (@{const_name plus}, _) $ u $ u’) = u’ :: dest_sum u
| dest_sum u = [u]
in
foldll (HOLogic.mk_binop @{const_name plus}) (dest_sum t)
end

Solution for Exercise 3.2.2.

fun make_sum t1 t2 =
HOLogic.mk_nat (HOLogic.dest_nat t1 + HOLogic.dest_nat t2)

Solution for Exercise 3.2.3.

fun P n = @{term "P::nat = bool"} $ (HOLogic.mk_number @{typ "nat"} n)

fun rhs 1 = P 1
| rhs n = HOLogic.mk_conj (P n, rhs (n - 1))

fun lhs 1 n = HOLogic.mk_imp (HOLogic.mk_eq (P 1, P n), rhs n)
| 1hs m n = HOLogic.mk_conj (HOLogic.mk_imp
(HOLogic.mk_eq (P (m - 1), P m), rhs n), lhs (m - 1) n)

fun de_bruijn n =
HOLogic.mk_Trueprop (HOLogic.mk_imp (lhs n n, rhs n))

183
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Solution for Exercise 5.1.1.

val any = Scan.one (Symbol.not_eof)

val scan_cmt =

let
val begin_cmt = Scan.this_string "(*"
val end_cmt = Scan.this_string "*)"

in
begin_cmt [-- Scan.repeat (Scan.unless end_cmt any) --| end_cmt
>> (enclose "(**" "%)" o implode)

end

val parser = Scan.repeat (scan_cmt || any)

val scan_all =
Scan.finite Symbol.stopper parser >> implode #> fst

By using #> fst in the last line, the function scan_all retruns a string, instead of
the pair a parser would normally return. For example:

let
val inputl = (explode "foo bar")
val input2 = (explode "foo (*test*) bar (*test*)")
in
(scan_all inputl, scan_all input2)
end
> ("foo bar", "foo (k*test**) bar (**testx*x*)")

Solution for Exercise 5.2.2.

datatype expr =
Number of int
| Mult of expr * expr
| Add of expr * expr

fun parse_basic xs =

(OuterParse.nat >> Number

|| OuterParse.$$$ "(" |-- parse_expr —--| OuterParse.$$$ ")") xs
and parse_factor xs =

(parse_basic --| OuterParse.$$$ "*" -- parse_factor >> Mult

|| parse_basic) xs
and parse_expr Xs =

(parse_factor --| OuterParse.$$$ "+" -- parse_expr >> Add

|| parse_factor) xs

Solution for Exercise 6.3.1.

The axiom rule can be implemented with the function atac. The other rules corre-
spond to the theorems:
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A conjI
R . J False FalseE
Vg, disjI1 .
Lo AL conjE
Vg, disjI2 o
: Vi disjE
R impl iffE
=p iffI L

For the other rules we need to prove the following lemmas.

lemma impE1:
shows "[4 — B; A; B = R] = R"
by iprover

lemma impE2:
shows "[(¢c A D) — B; ¢ — (D —B) — R] = R"
by iprover

lemma impE3:
shows "[(C Vv D) — B; [¢ — B; D — B] = R] = R"
by iprover

lemma impE4:
shows "[(¢ — D) — B; D — B — C — D; B = R] — R"
by iprover

lemma impE5:
shows "[(C =D) — B; (C — D) — ((D — C) — B) = R] = R"
by iprover

Now the tactic which applies a single rule can be implemented as follows.

val apply_tac =
let
val intros = [@{thm conjI}, @{thm disjI1}, @{thm disjI2},
@{thm impI}, @{thm iffI}]
val elims = [@{thm FalseE}, @{thm conjE}, @{thm disjE}, @{thm iffE},
@{thm impE2}, @{thm impE3}, @{thm impE4}, @{thm impE5}]
in
atac
ORELSE’ resolve_tac intros
ORELSE’ eresolve_tac elims
ORELSE’ (etac @{thm impE1} THEN’ atac)
end

In Line 11 we apply the rule impE1 in concjunction with atac in order to reduce the
number of possibilities that need to be explored. You can use the tactic as follows.

lemma

shows "((((P — @) — P) — P) — Q) — Q"
apply (tactic {* (DEPTH_SOLVE o apply_tac) 1 *})
done

We can use the tactic to prove or disprove automatically the de Bruijn formulae from
Exercise 3.2.3.
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fun de_bruijn_prove ctxt n =
let
val goal = HOLogic.mk_Trueprop (HOLogic.mk_imp (lhs n n, rhs n))
in
Goal.prove ctxt ["P"] [] goal
(fn _ => (DEPTH_SOLVE o apply_tac) 1)
end

You can use this function to prove de Bruijn formulae.

de_bruijn_prove @{context} 3

Solution for Exercise 6.5.1.

fun dest_sum term =
case term of
(e{term "(op +):: nat = nat = nat"} $ t1 $ t2) =>
(snd (HOLogic.dest_number t1), snd (HOLogic.dest_number t2))
| _ => raise TERM ("dest_sum", [term])

fun get_sum_thm ctxt t (nl, n2) =
let
val sum = HOLogic.mk_number @{typ "nat"} (nl + n2)
val goal = Logic.mk_equals (t, sum)
in
Goal.prove ctxt [] [] goal (K (Arith_Data.arith_tac ctxt 1))
end

fun add_sp_aux ss t =

let
val ctxt = Simplifier.the_context ss
val t’ = term_of t

in

SOME (get_sum_thm ctxt t’ (dest_sum t’))
handle TERM _ => NONE
end

The setup for the simproc is

simproc_setup add_sp ("t1 + t2") = {* K add_sp_aux *}

and a test case is the lemma

lemma "P (Suc (99 + 1)) ((0 + 0)::nat) (Suc (3 + 3 + 3)) ((4 + 1)::nat)"
apply (tactic {* simp_tac (HOL_basic_ss addsimprocs [@{simproc add_sp}]) 1 *})

where the simproc produces the goal state
goal (1 subgoal):
1. P (Suc 100) 0 (Suc 9) 5
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Solution for Exercise 6.6.1.

The following code assumes the function dest_sum from the previous exercise.

fun add_simple_conv ctxt ctrm =
let
val trm = Thm.term_of ctrm
in
case trm of
@{term "(op +)::nat = nat = nat"} $ _ $ _ =>
get_sum_thm ctxt trm (dest_sum trm)
| _ => Conv.all_conv ctrm
end

val add_conv = More_Conv.bottom_conv add_simple_conv

fun add_tac ctxt = CONVERSION (add_conv ctxt)

A test case for this conversion is as follows

lemma "P (Suc (99 + 1)) ((0 + 0)::nat) (Suc (3 + 3 + 3)) ((4 + 1)::nat)"
apply (tactic {* add_tac @{context} 1 *})7

where it produces the goal state

goal (1 subgoal):
1. P (Suc 100) 0 (Suc 9) 5

Solution for Exercise 6.6.2.

We use the timing function timing_wrapper from Recipe A.3. To measure any dif-
ference between the simproc and conversion, we will create mechanically terms in-
volving additions and then set up a goal to be simplified. We have to be careful to set
up the goal so that other parts of the simplifier do not interfere. For this we construct
an unprovable goal which, after simplification, we are going to “prove” with the help
of “sorry”, that is the method Skip_Proof.cheat_tac

For constructing test cases, we first define a function that returns a complete binary
tree whose leaves are numbers and the nodes are additions.

fun term_tree n =
let
val count = Unsynchronized.ref O;

fun term_tree_aux n =
case n of
0 => (count := !count + 1; HOLogic.mk_number @{typ nat} (!count))
| _ => Const (@{const_name "plus"}, @{typ "nat=>nat=-nat"})
$ (term_tree_aux (n - 1)) $ (term_tree_aux (n - 1))
in
term_tree_aux n
end

This function generates for example:
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writeln (string_of_term @{context} (term_tree 2))
> (1 +2)+@3+4

The next function constructs a goal of the form P ... with a term produced by
term_tree filled in.

fun goal n = HOLogic.mk_Trueprop (@{term "P::nat=- bool"} $ (term_tree n))

Note that the goal needs to be wrapped in a Trueprop. Next we define two tactics,
c_tac and s_tac, for the conversion and simproc, respectively. The idea is to first
apply the conversion (respectively simproc) and then prove the remaining goal using
cheat_tac.

local
fun mk_tac tac =
timing_wrapper (EVERY1 [tac, K (Skip_Proof.cheat_tac @{theory})])
in
val c_tac
val s_tac

mk_tac (add_tac @{context})
mk_tac (simp_tac
(HOL_basic_ss addsimprocs [@{simproc add_sp}]))

end

This is all we need to let the conversion run against the simproc:

Goal.prove @{context} [] [] (goal 8) (K c_tac)
Goal.prove @{context} [] [] (goal 8) (K s_tac)

val

val

If you do the exercise, you can see that both ways of simplifying additions perform
relatively similar with perhaps some advantages for the simproc. That means the
simplifier, even if much more complicated than conversions, is quite efficient for
tasks it is designed for. It usually does not make sense to implement general-purpose
rewriting using conversions. Conversions only have clear advantages in special situa-
tions: for example if you need to have control over innermost or outermost rewriting,
or when rewriting rules are lead to non-termination.
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