author | Christian Urban <urbanc@in.tum.de> |
Thu, 29 Jan 2009 09:46:17 +0000 | |
changeset 88 | ebbd0dd008c8 |
parent 32 | 5bb2d29553c2 |
child 116 | c9ff326e3ce5 |
permissions | -rw-r--r-- |
32 | 1 |
theory Ind_General_Scheme |
2 |
imports Main |
|
3 |
begin |
|
4 |
||
88
ebbd0dd008c8
adaptation of the package chapter to fit the rest
Christian Urban <urbanc@in.tum.de>
parents:
32
diff
changeset
|
5 |
section{* The General Construction Principle \label{sec:ind-general-method} *} |
32 | 6 |
|
7 |
text {* |
|
88
ebbd0dd008c8
adaptation of the package chapter to fit the rest
Christian Urban <urbanc@in.tum.de>
parents:
32
diff
changeset
|
8 |
|
ebbd0dd008c8
adaptation of the package chapter to fit the rest
Christian Urban <urbanc@in.tum.de>
parents:
32
diff
changeset
|
9 |
Before we start with the implementation, it is useful to describe the general |
ebbd0dd008c8
adaptation of the package chapter to fit the rest
Christian Urban <urbanc@in.tum.de>
parents:
32
diff
changeset
|
10 |
form of inductive definitions that our package should accept. We closely follow |
ebbd0dd008c8
adaptation of the package chapter to fit the rest
Christian Urban <urbanc@in.tum.de>
parents:
32
diff
changeset
|
11 |
the notation for inductive definitions introduced by Schwichtenberg |
ebbd0dd008c8
adaptation of the package chapter to fit the rest
Christian Urban <urbanc@in.tum.de>
parents:
32
diff
changeset
|
12 |
\cite{Schwichtenberg-MLCF} for the Minlog system. |
ebbd0dd008c8
adaptation of the package chapter to fit the rest
Christian Urban <urbanc@in.tum.de>
parents:
32
diff
changeset
|
13 |
Let $R_1,\ldots,R_n$ be mutually inductive predicates and $\vec{p}$ be |
ebbd0dd008c8
adaptation of the package chapter to fit the rest
Christian Urban <urbanc@in.tum.de>
parents:
32
diff
changeset
|
14 |
parameters. Then the introduction rules for $R_1,\ldots,R_n$ may have |
ebbd0dd008c8
adaptation of the package chapter to fit the rest
Christian Urban <urbanc@in.tum.de>
parents:
32
diff
changeset
|
15 |
the form |
ebbd0dd008c8
adaptation of the package chapter to fit the rest
Christian Urban <urbanc@in.tum.de>
parents:
32
diff
changeset
|
16 |
|
ebbd0dd008c8
adaptation of the package chapter to fit the rest
Christian Urban <urbanc@in.tum.de>
parents:
32
diff
changeset
|
17 |
\[ |
ebbd0dd008c8
adaptation of the package chapter to fit the rest
Christian Urban <urbanc@in.tum.de>
parents:
32
diff
changeset
|
18 |
\bigwedge\vec{x}_i.~\vec{A}_i \Longrightarrow \left(\bigwedge\vec{y}_{ij}.~\vec{B}_{ij} \Longrightarrow |
32 | 19 |
R_{k_{ij}}~\vec{p}~\vec{s}_{ij}\right)_{j=1,\ldots,m_i} \Longrightarrow R_{l_i}~\vec{p}~\vec{t}_i |
88
ebbd0dd008c8
adaptation of the package chapter to fit the rest
Christian Urban <urbanc@in.tum.de>
parents:
32
diff
changeset
|
20 |
\qquad \mbox{for\ } i=1,\ldots,r |
ebbd0dd008c8
adaptation of the package chapter to fit the rest
Christian Urban <urbanc@in.tum.de>
parents:
32
diff
changeset
|
21 |
\] |
ebbd0dd008c8
adaptation of the package chapter to fit the rest
Christian Urban <urbanc@in.tum.de>
parents:
32
diff
changeset
|
22 |
|
ebbd0dd008c8
adaptation of the package chapter to fit the rest
Christian Urban <urbanc@in.tum.de>
parents:
32
diff
changeset
|
23 |
where $\vec{A}_i$ and $\vec{B}_{ij}$ are formulae not containing $R_1,\ldots,R_n$. |
ebbd0dd008c8
adaptation of the package chapter to fit the rest
Christian Urban <urbanc@in.tum.de>
parents:
32
diff
changeset
|
24 |
Note that by disallowing the inductive predicates to occur in $\vec{B}_{ij}$ we make sure |
ebbd0dd008c8
adaptation of the package chapter to fit the rest
Christian Urban <urbanc@in.tum.de>
parents:
32
diff
changeset
|
25 |
that all occurrences of the predicates in the premises of the introduction rules are |
ebbd0dd008c8
adaptation of the package chapter to fit the rest
Christian Urban <urbanc@in.tum.de>
parents:
32
diff
changeset
|
26 |
\emph{strictly positive}. This condition guarantees the existence of predicates |
ebbd0dd008c8
adaptation of the package chapter to fit the rest
Christian Urban <urbanc@in.tum.de>
parents:
32
diff
changeset
|
27 |
that are closed under the introduction rules shown above. The inductive predicates |
ebbd0dd008c8
adaptation of the package chapter to fit the rest
Christian Urban <urbanc@in.tum.de>
parents:
32
diff
changeset
|
28 |
$R_1,\ldots,R_n$ can then be defined as follows: |
ebbd0dd008c8
adaptation of the package chapter to fit the rest
Christian Urban <urbanc@in.tum.de>
parents:
32
diff
changeset
|
29 |
|
ebbd0dd008c8
adaptation of the package chapter to fit the rest
Christian Urban <urbanc@in.tum.de>
parents:
32
diff
changeset
|
30 |
\[ |
ebbd0dd008c8
adaptation of the package chapter to fit the rest
Christian Urban <urbanc@in.tum.de>
parents:
32
diff
changeset
|
31 |
\begin{array}{l@ {\qquad}l} |
32 | 32 |
R_i \equiv \lambda\vec{p}~\vec{z}_i.~\forall P_1 \ldots P_n.~K_1 \longrightarrow \cdots \longrightarrow K_r \longrightarrow P_i~\vec{z}_i & |
33 |
\mbox{for\ } i=1,\ldots,n \\[1.5ex] |
|
34 |
\mbox{where} \\ |
|
35 |
K_i \equiv \forall\vec{x}_i.~\vec{A}_i \longrightarrow \left(\forall\vec{y}_{ij}.~\vec{B}_{ij} \longrightarrow |
|
88
ebbd0dd008c8
adaptation of the package chapter to fit the rest
Christian Urban <urbanc@in.tum.de>
parents:
32
diff
changeset
|
36 |
P_{k_{ij}}~\vec{s}_{ij}\right)_{j=1,\ldots,m_i} \longrightarrow P_{l_i}~\vec{t}_i & |
32 | 37 |
\mbox{for\ } i=1,\ldots,r |
88
ebbd0dd008c8
adaptation of the package chapter to fit the rest
Christian Urban <urbanc@in.tum.de>
parents:
32
diff
changeset
|
38 |
\end{array} |
ebbd0dd008c8
adaptation of the package chapter to fit the rest
Christian Urban <urbanc@in.tum.de>
parents:
32
diff
changeset
|
39 |
\] |
ebbd0dd008c8
adaptation of the package chapter to fit the rest
Christian Urban <urbanc@in.tum.de>
parents:
32
diff
changeset
|
40 |
|
ebbd0dd008c8
adaptation of the package chapter to fit the rest
Christian Urban <urbanc@in.tum.de>
parents:
32
diff
changeset
|
41 |
The (weak) induction rules for the inductive predicates $R_1,\ldots,R_n$ are |
ebbd0dd008c8
adaptation of the package chapter to fit the rest
Christian Urban <urbanc@in.tum.de>
parents:
32
diff
changeset
|
42 |
|
ebbd0dd008c8
adaptation of the package chapter to fit the rest
Christian Urban <urbanc@in.tum.de>
parents:
32
diff
changeset
|
43 |
\[ |
ebbd0dd008c8
adaptation of the package chapter to fit the rest
Christian Urban <urbanc@in.tum.de>
parents:
32
diff
changeset
|
44 |
\begin{array}{l@ {\qquad}l} |
32 | 45 |
R_i~\vec{p}~\vec{z}_i \Longrightarrow I_1 \Longrightarrow \cdots \Longrightarrow I_r \Longrightarrow P_i~\vec{z}_i & |
46 |
\mbox{for\ } i=1,\ldots,n \\[1.5ex] |
|
47 |
\mbox{where} \\ |
|
48 |
I_i \equiv \bigwedge\vec{x}_i.~\vec{A}_i \Longrightarrow \left(\bigwedge\vec{y}_{ij}.~\vec{B}_{ij} \Longrightarrow |
|
88
ebbd0dd008c8
adaptation of the package chapter to fit the rest
Christian Urban <urbanc@in.tum.de>
parents:
32
diff
changeset
|
49 |
P_{k_{ij}}~\vec{s}_{ij}\right)_{j=1,\ldots,m_i} \Longrightarrow P_{l_i}~\vec{t}_i & |
32 | 50 |
\mbox{for\ } i=1,\ldots,r |
88
ebbd0dd008c8
adaptation of the package chapter to fit the rest
Christian Urban <urbanc@in.tum.de>
parents:
32
diff
changeset
|
51 |
\end{array} |
ebbd0dd008c8
adaptation of the package chapter to fit the rest
Christian Urban <urbanc@in.tum.de>
parents:
32
diff
changeset
|
52 |
\] |
ebbd0dd008c8
adaptation of the package chapter to fit the rest
Christian Urban <urbanc@in.tum.de>
parents:
32
diff
changeset
|
53 |
|
ebbd0dd008c8
adaptation of the package chapter to fit the rest
Christian Urban <urbanc@in.tum.de>
parents:
32
diff
changeset
|
54 |
Since $K_i$ and $I_i$ are equivalent modulo conversion between meta-level and object-level |
ebbd0dd008c8
adaptation of the package chapter to fit the rest
Christian Urban <urbanc@in.tum.de>
parents:
32
diff
changeset
|
55 |
connectives, it is clear that the proof of the induction theorem is straightforward. We will |
ebbd0dd008c8
adaptation of the package chapter to fit the rest
Christian Urban <urbanc@in.tum.de>
parents:
32
diff
changeset
|
56 |
therefore focus on the proof of the introduction rules. When proving the introduction rule |
ebbd0dd008c8
adaptation of the package chapter to fit the rest
Christian Urban <urbanc@in.tum.de>
parents:
32
diff
changeset
|
57 |
shown above, we start by unfolding the definition of $R_1,\ldots,R_n$, which yields |
ebbd0dd008c8
adaptation of the package chapter to fit the rest
Christian Urban <urbanc@in.tum.de>
parents:
32
diff
changeset
|
58 |
|
ebbd0dd008c8
adaptation of the package chapter to fit the rest
Christian Urban <urbanc@in.tum.de>
parents:
32
diff
changeset
|
59 |
\[ |
ebbd0dd008c8
adaptation of the package chapter to fit the rest
Christian Urban <urbanc@in.tum.de>
parents:
32
diff
changeset
|
60 |
\bigwedge\vec{x}_i.~\vec{A}_i \Longrightarrow \left(\bigwedge\vec{y}_{ij}.~\vec{B}_{ij} \Longrightarrow |
32 | 61 |
\forall P_1 \ldots P_n.~\vec{K} \longrightarrow P_{k_{ij}}~\vec{s}_{ij}\right)_{j=1,\ldots,m_i} \Longrightarrow \forall P_1 \ldots P_n.~\vec{K} \longrightarrow P_{l_i}~\vec{t}_i |
88
ebbd0dd008c8
adaptation of the package chapter to fit the rest
Christian Urban <urbanc@in.tum.de>
parents:
32
diff
changeset
|
62 |
\] |
ebbd0dd008c8
adaptation of the package chapter to fit the rest
Christian Urban <urbanc@in.tum.de>
parents:
32
diff
changeset
|
63 |
|
ebbd0dd008c8
adaptation of the package chapter to fit the rest
Christian Urban <urbanc@in.tum.de>
parents:
32
diff
changeset
|
64 |
where $\vec{K}$ abbreviates $K_1,\ldots,K_r$. Applying the introduction rules for |
ebbd0dd008c8
adaptation of the package chapter to fit the rest
Christian Urban <urbanc@in.tum.de>
parents:
32
diff
changeset
|
65 |
$\forall$ and $\longrightarrow$ yields a proof state in which we have to prove $P_{l_i}~\vec{t}_i$ |
ebbd0dd008c8
adaptation of the package chapter to fit the rest
Christian Urban <urbanc@in.tum.de>
parents:
32
diff
changeset
|
66 |
from the additional assumptions $\vec{K}$. When using $K_{l_i}$ (converted to meta-logic format) |
ebbd0dd008c8
adaptation of the package chapter to fit the rest
Christian Urban <urbanc@in.tum.de>
parents:
32
diff
changeset
|
67 |
to prove $P_{l_i}~\vec{t}_i$, we get subgoals $\vec{A}_i$ that are trivially solvable by assumption, |
ebbd0dd008c8
adaptation of the package chapter to fit the rest
Christian Urban <urbanc@in.tum.de>
parents:
32
diff
changeset
|
68 |
as well as subgoals of the form |
ebbd0dd008c8
adaptation of the package chapter to fit the rest
Christian Urban <urbanc@in.tum.de>
parents:
32
diff
changeset
|
69 |
|
ebbd0dd008c8
adaptation of the package chapter to fit the rest
Christian Urban <urbanc@in.tum.de>
parents:
32
diff
changeset
|
70 |
\[ |
ebbd0dd008c8
adaptation of the package chapter to fit the rest
Christian Urban <urbanc@in.tum.de>
parents:
32
diff
changeset
|
71 |
\bigwedge\vec{y}_{ij}.~\vec{B}_{ij} \Longrightarrow P_{k_{ij}}~\vec{s}_{ij} \qquad \mbox{for\ } j=1,\ldots,m_i |
ebbd0dd008c8
adaptation of the package chapter to fit the rest
Christian Urban <urbanc@in.tum.de>
parents:
32
diff
changeset
|
72 |
\] |
ebbd0dd008c8
adaptation of the package chapter to fit the rest
Christian Urban <urbanc@in.tum.de>
parents:
32
diff
changeset
|
73 |
|
ebbd0dd008c8
adaptation of the package chapter to fit the rest
Christian Urban <urbanc@in.tum.de>
parents:
32
diff
changeset
|
74 |
that can be solved using the assumptions |
ebbd0dd008c8
adaptation of the package chapter to fit the rest
Christian Urban <urbanc@in.tum.de>
parents:
32
diff
changeset
|
75 |
|
ebbd0dd008c8
adaptation of the package chapter to fit the rest
Christian Urban <urbanc@in.tum.de>
parents:
32
diff
changeset
|
76 |
\[ |
ebbd0dd008c8
adaptation of the package chapter to fit the rest
Christian Urban <urbanc@in.tum.de>
parents:
32
diff
changeset
|
77 |
\bigwedge\vec{y}_{ij}.~\vec{B}_{ij} \Longrightarrow |
32 | 78 |
\forall P_1 \ldots P_n.~\vec{K} \longrightarrow P_{k_{ij}}~\vec{s}_{ij} \qquad \mbox{and} \qquad \vec{K} |
88
ebbd0dd008c8
adaptation of the package chapter to fit the rest
Christian Urban <urbanc@in.tum.de>
parents:
32
diff
changeset
|
79 |
\] |
32 | 80 |
*} |
81 |
||
82 |
end |