32
|
1 |
(* @chunk SIMPLE_INDUCTIVE_PACKAGE *)
|
|
2 |
signature SIMPLE_INDUCTIVE_PACKAGE =
|
|
3 |
sig
|
|
4 |
val add_inductive_i:
|
|
5 |
((Name.binding * typ) * mixfix) list -> (*{predicates}*)
|
|
6 |
(Name.binding * typ) list -> (*{parameters}*)
|
|
7 |
(Attrib.binding * term) list -> (*{rules}*)
|
|
8 |
local_theory -> (thm list * thm list) * local_theory
|
|
9 |
val add_inductive:
|
|
10 |
(Name.binding * string option * mixfix) list -> (*{predicates}*)
|
|
11 |
(Name.binding * string option * mixfix) list -> (*{parameters}*)
|
|
12 |
(Attrib.binding * string) list -> (*{rules}*)
|
|
13 |
local_theory -> (thm list * thm list) * local_theory
|
|
14 |
end;
|
|
15 |
(* @end *)
|
|
16 |
|
|
17 |
structure SimpleInductivePackage: SIMPLE_INDUCTIVE_PACKAGE =
|
|
18 |
struct
|
|
19 |
|
|
20 |
fun add_inductive_i preds_syn params intrs lthy =
|
|
21 |
let
|
|
22 |
val params' = map (fn (p, T) => Free (Name.name_of p, T)) params;
|
|
23 |
val preds = map (fn ((R, T), _) =>
|
|
24 |
list_comb (Free (Name.name_of R, T), params')) preds_syn;
|
|
25 |
val Tss = map (binder_types o fastype_of) preds;
|
|
26 |
|
|
27 |
(* making the definition *)
|
|
28 |
|
|
29 |
val intrs' = map
|
|
30 |
(ObjectLogic.atomize_term (ProofContext.theory_of lthy) o snd) intrs;
|
|
31 |
|
|
32 |
fun mk_all x P = HOLogic.all_const (fastype_of x) $ lambda x P;
|
|
33 |
|
|
34 |
val (defs, lthy1) = fold_map (fn ((((R, _), syn), pred), Ts) =>
|
|
35 |
let val zs = map Free (Variable.variant_frees lthy intrs'
|
|
36 |
(map (pair "z") Ts))
|
|
37 |
in
|
|
38 |
LocalTheory.define Thm.internalK
|
|
39 |
((R, syn), (Attrib.no_binding, fold_rev lambda (params' @ zs)
|
|
40 |
(fold_rev mk_all preds (fold_rev (curry HOLogic.mk_imp)
|
|
41 |
intrs' (list_comb (pred, zs)))))) #>> snd #>> snd
|
|
42 |
end) (preds_syn ~~ preds ~~ Tss) lthy;
|
|
43 |
|
|
44 |
val (_, lthy2) = Variable.add_fixes (map (Name.name_of o fst) params) lthy1;
|
|
45 |
|
|
46 |
|
|
47 |
(* proving the induction rules *)
|
|
48 |
|
|
49 |
val (Pnames, lthy3) =
|
|
50 |
Variable.variant_fixes (replicate (length preds) "P") lthy2;
|
|
51 |
val Ps = map (fn (s, Ts) => Free (s, Ts ---> HOLogic.boolT))
|
|
52 |
(Pnames ~~ Tss);
|
|
53 |
val cPs = map (cterm_of (ProofContext.theory_of lthy3)) Ps;
|
|
54 |
val intrs'' = map (subst_free (preds ~~ Ps) o snd) intrs;
|
|
55 |
|
|
56 |
fun inst_spec ct = Drule.instantiate'
|
|
57 |
[SOME (ctyp_of_term ct)] [NONE, SOME ct] spec;
|
|
58 |
|
|
59 |
fun prove_indrule ((R, P), Ts) =
|
|
60 |
let
|
|
61 |
val (znames, lthy4) =
|
|
62 |
Variable.variant_fixes (replicate (length Ts) "z") lthy3;
|
|
63 |
val zs = map Free (znames ~~ Ts)
|
|
64 |
in
|
|
65 |
Goal.prove lthy4 []
|
|
66 |
[HOLogic.mk_Trueprop (list_comb (R, zs))]
|
|
67 |
(Logic.list_implies (intrs'',
|
|
68 |
HOLogic.mk_Trueprop (list_comb (P, zs))))
|
|
69 |
(fn {prems, ...} => EVERY
|
|
70 |
([ObjectLogic.full_atomize_tac 1,
|
|
71 |
cut_facts_tac prems 1,
|
|
72 |
rewrite_goals_tac defs] @
|
|
73 |
map (fn ct => dtac (inst_spec ct) 1) cPs @
|
|
74 |
[assume_tac 1])) |>
|
|
75 |
singleton (ProofContext.export lthy4 lthy1)
|
|
76 |
end;
|
|
77 |
|
|
78 |
val indrules = map prove_indrule (preds ~~ Ps ~~ Tss);
|
|
79 |
|
|
80 |
|
|
81 |
(* proving the introduction rules *)
|
|
82 |
|
|
83 |
val all_elims = fold (fn ct => fn th => th RS inst_spec ct);
|
|
84 |
val imp_elims = fold (fn th => fn th' => [th', th] MRS mp);
|
|
85 |
|
|
86 |
fun prove_intr (i, (_, r)) =
|
|
87 |
Goal.prove lthy2 [] [] r
|
|
88 |
(fn {prems, context = ctxt} => EVERY
|
|
89 |
[ObjectLogic.rulify_tac 1,
|
|
90 |
rewrite_goals_tac defs,
|
|
91 |
REPEAT (resolve_tac [allI, impI] 1),
|
|
92 |
SUBPROOF (fn {params, prems, context = ctxt', ...} =>
|
|
93 |
let
|
|
94 |
val (prems1, prems2) =
|
|
95 |
chop (length prems - length intrs) prems;
|
|
96 |
val (params1, params2) =
|
|
97 |
chop (length params - length preds) params
|
|
98 |
in
|
|
99 |
rtac (ObjectLogic.rulify
|
|
100 |
(all_elims params1 (nth prems2 i))) 1 THEN
|
|
101 |
EVERY (map (fn prem =>
|
|
102 |
SUBPROOF (fn {prems = prems', concl, ...} =>
|
|
103 |
let
|
|
104 |
val prem' = prems' MRS prem;
|
|
105 |
val prem'' = case prop_of prem' of
|
|
106 |
_ $ (Const (@{const_name All}, _) $ _) =>
|
|
107 |
prem' |> all_elims params2 |>
|
|
108 |
imp_elims prems2
|
|
109 |
| _ => prem'
|
|
110 |
in rtac prem'' 1 end) ctxt' 1) prems1)
|
|
111 |
end) ctxt 1]) |>
|
|
112 |
singleton (ProofContext.export lthy2 lthy1);
|
|
113 |
|
|
114 |
val intr_ths = map_index prove_intr intrs;
|
|
115 |
|
|
116 |
|
|
117 |
(* storing the theorems *)
|
|
118 |
|
|
119 |
val mut_name = space_implode "_" (map (Name.name_of o fst o fst) preds_syn);
|
|
120 |
val case_names = map (Name.name_of o fst o fst) intrs
|
|
121 |
in
|
|
122 |
lthy1 |>
|
|
123 |
LocalTheory.notes Thm.theoremK (map (fn (((a, atts), _), th) =>
|
|
124 |
((Name.qualified mut_name a, atts), [([th], [])]))
|
|
125 |
(intrs ~~ intr_ths)) |->
|
|
126 |
(fn intr_thss => LocalTheory.note Thm.theoremK
|
|
127 |
((Name.qualified mut_name (Name.binding "intros"), []), maps snd intr_thss)) |>>
|
|
128 |
snd ||>>
|
|
129 |
(LocalTheory.notes Thm.theoremK (map (fn (((R, _), _), th) =>
|
|
130 |
((Name.qualified (Name.name_of R) (Name.binding "induct"),
|
|
131 |
[Attrib.internal (K (RuleCases.case_names case_names)),
|
|
132 |
Attrib.internal (K (RuleCases.consumes 1)),
|
|
133 |
Attrib.internal (K (Induct.induct_pred ""))]), [([th], [])]))
|
|
134 |
(preds_syn ~~ indrules)) #>> maps snd)
|
|
135 |
end;
|
|
136 |
|
|
137 |
(* @chunk add_inductive *)
|
|
138 |
fun add_inductive preds_syn params_syn intro_srcs lthy =
|
|
139 |
let
|
|
140 |
val ((vars, specs), _) = Specification.read_specification
|
|
141 |
(preds_syn @ params_syn) (map (fn (a, s) => [(a, [s])]) intro_srcs)
|
|
142 |
lthy;
|
|
143 |
val (preds_syn', params_syn') = chop (length preds_syn) vars;
|
|
144 |
val intrs = map (apsnd the_single) specs
|
|
145 |
in
|
|
146 |
add_inductive_i preds_syn' (map fst params_syn') intrs lthy
|
|
147 |
end;
|
|
148 |
(* @end *)
|
|
149 |
|
|
150 |
|
|
151 |
(* outer syntax *)
|
|
152 |
|
|
153 |
(* @chunk syntax *)
|
|
154 |
local structure P = OuterParse and K = OuterKeyword in
|
|
155 |
|
|
156 |
val ind_decl =
|
|
157 |
P.opt_target --
|
|
158 |
P.fixes -- P.for_fixes --
|
|
159 |
Scan.optional (P.$$$ "where" |--
|
|
160 |
P.!!! (P.enum1 "|" (SpecParse.opt_thm_name ":" -- P.prop))) [] >>
|
|
161 |
(fn (((loc, preds), params), specs) =>
|
|
162 |
Toplevel.local_theory loc (add_inductive preds params specs #> snd));
|
|
163 |
|
|
164 |
val _ = OuterSyntax.command "simple_inductive" "define inductive predicates"
|
|
165 |
K.thy_decl ind_decl;
|
|
166 |
|
|
167 |
end;
|
|
168 |
(* @end *)
|
|
169 |
|
|
170 |
end;
|