32
|
1 |
theory Ind_General_Scheme
|
|
2 |
imports Main
|
|
3 |
begin
|
|
4 |
|
|
5 |
section{* The general construction principle *}
|
|
6 |
|
|
7 |
text {*
|
|
8 |
\label{sec:ind-general-method}
|
|
9 |
Before we start with the implementation, it is useful to describe the general
|
|
10 |
form of inductive definitions that our package should accept. We closely follow
|
|
11 |
the notation for inductive definitions introduced by Schwichtenberg
|
|
12 |
\cite{Schwichtenberg-MLCF} for the Minlog system.
|
|
13 |
Let $R_1,\ldots,R_n$ be mutually inductive predicates and $\vec{p}$ be
|
|
14 |
parameters. Then the introduction rules for $R_1,\ldots,R_n$ may have
|
|
15 |
the form
|
|
16 |
\[
|
|
17 |
\bigwedge\vec{x}_i.~\vec{A}_i \Longrightarrow \left(\bigwedge\vec{y}_{ij}.~\vec{B}_{ij} \Longrightarrow
|
|
18 |
R_{k_{ij}}~\vec{p}~\vec{s}_{ij}\right)_{j=1,\ldots,m_i} \Longrightarrow R_{l_i}~\vec{p}~\vec{t}_i
|
|
19 |
\qquad \mbox{for\ } i=1,\ldots,r
|
|
20 |
\]
|
|
21 |
where $\vec{A}_i$ and $\vec{B}_{ij}$ are formulae not containing $R_1,\ldots,R_n$.
|
|
22 |
Note that by disallowing the inductive predicates to occur in $\vec{B}_{ij}$ we make sure
|
|
23 |
that all occurrences of the predicates in the premises of the introduction rules are
|
|
24 |
\emph{strictly positive}. This condition guarantees the existence of predicates
|
|
25 |
that are closed under the introduction rules shown above. The inductive predicates
|
|
26 |
$R_1,\ldots,R_n$ can then be defined as follows:
|
|
27 |
\[
|
|
28 |
\begin{array}{l@ {\qquad}l}
|
|
29 |
R_i \equiv \lambda\vec{p}~\vec{z}_i.~\forall P_1 \ldots P_n.~K_1 \longrightarrow \cdots \longrightarrow K_r \longrightarrow P_i~\vec{z}_i &
|
|
30 |
\mbox{for\ } i=1,\ldots,n \\[1.5ex]
|
|
31 |
\mbox{where} \\
|
|
32 |
K_i \equiv \forall\vec{x}_i.~\vec{A}_i \longrightarrow \left(\forall\vec{y}_{ij}.~\vec{B}_{ij} \longrightarrow
|
|
33 |
P_{k_{ij}}~\vec{s}_{ij}\right)_{j=1,\ldots,m_i} \longrightarrow P_{l_i}~\vec{t}_i &
|
|
34 |
\mbox{for\ } i=1,\ldots,r
|
|
35 |
\end{array}
|
|
36 |
\]
|
|
37 |
The (weak) induction rules for the inductive predicates $R_1,\ldots,R_n$ are
|
|
38 |
\[
|
|
39 |
\begin{array}{l@ {\qquad}l}
|
|
40 |
R_i~\vec{p}~\vec{z}_i \Longrightarrow I_1 \Longrightarrow \cdots \Longrightarrow I_r \Longrightarrow P_i~\vec{z}_i &
|
|
41 |
\mbox{for\ } i=1,\ldots,n \\[1.5ex]
|
|
42 |
\mbox{where} \\
|
|
43 |
I_i \equiv \bigwedge\vec{x}_i.~\vec{A}_i \Longrightarrow \left(\bigwedge\vec{y}_{ij}.~\vec{B}_{ij} \Longrightarrow
|
|
44 |
P_{k_{ij}}~\vec{s}_{ij}\right)_{j=1,\ldots,m_i} \Longrightarrow P_{l_i}~\vec{t}_i &
|
|
45 |
\mbox{for\ } i=1,\ldots,r
|
|
46 |
\end{array}
|
|
47 |
\]
|
|
48 |
Since $K_i$ and $I_i$ are equivalent modulo conversion between meta-level and object-level
|
|
49 |
connectives, it is clear that the proof of the induction theorem is straightforward. We will
|
|
50 |
therefore focus on the proof of the introduction rules. When proving the introduction rule
|
|
51 |
shown above, we start by unfolding the definition of $R_1,\ldots,R_n$, which yields
|
|
52 |
\[
|
|
53 |
\bigwedge\vec{x}_i.~\vec{A}_i \Longrightarrow \left(\bigwedge\vec{y}_{ij}.~\vec{B}_{ij} \Longrightarrow
|
|
54 |
\forall P_1 \ldots P_n.~\vec{K} \longrightarrow P_{k_{ij}}~\vec{s}_{ij}\right)_{j=1,\ldots,m_i} \Longrightarrow \forall P_1 \ldots P_n.~\vec{K} \longrightarrow P_{l_i}~\vec{t}_i
|
|
55 |
\]
|
|
56 |
where $\vec{K}$ abbreviates $K_1,\ldots,K_r$. Applying the introduction rules for
|
|
57 |
$\forall$ and $\longrightarrow$ yields a proof state in which we have to prove $P_{l_i}~\vec{t}_i$
|
|
58 |
from the additional assumptions $\vec{K}$. When using $K_{l_i}$ (converted to meta-logic format)
|
|
59 |
to prove $P_{l_i}~\vec{t}_i$, we get subgoals $\vec{A}_i$ that are trivially solvable by assumption,
|
|
60 |
as well as subgoals of the form
|
|
61 |
\[
|
|
62 |
\bigwedge\vec{y}_{ij}.~\vec{B}_{ij} \Longrightarrow P_{k_{ij}}~\vec{s}_{ij} \qquad \mbox{for\ } j=1,\ldots,m_i
|
|
63 |
\]
|
|
64 |
that can be solved using the assumptions
|
|
65 |
\[
|
|
66 |
\bigwedge\vec{y}_{ij}.~\vec{B}_{ij} \Longrightarrow
|
|
67 |
\forall P_1 \ldots P_n.~\vec{K} \longrightarrow P_{k_{ij}}~\vec{s}_{ij} \qquad \mbox{and} \qquad \vec{K}
|
|
68 |
\]
|
|
69 |
*}
|
|
70 |
|
|
71 |
end
|