# HG changeset patch # User Chengsong # Date 1579891492 0 # Node ID 8dbc83ecea3b1e45849523a127824687927ca367 # Parent c19f2d20d92cc0d2c230e9bd45470207b3f2597f test for talisker address change diff -r c19f2d20d92c -r 8dbc83ecea3b etnms/etnms.tex --- a/etnms/etnms.tex Fri Jan 24 09:27:03 2020 +0000 +++ b/etnms/etnms.tex Fri Jan 24 18:44:52 2020 +0000 @@ -8,6 +8,7 @@ \usepackage[noend]{algpseudocode} \usepackage{enumitem} \usepackage{nccmath} +\usepackage{soul} \definecolor{darkblue}{rgb}{0,0,0.6} \hypersetup{colorlinks=true,allcolors=darkblue} @@ -1311,6 +1312,39 @@ actually prove that simplification function never allows nested alternatives to happen, more on this later). +How about we do not allow the function $\simp$ +to fuse out the bits when it is unnecessary? +Like, for the above regular expression, we might +just delete the outer layer of alternative +\begin{center} +\st{$ {\oplus[\ZERO \;,}$} $_{bs}\oplus \textit{rs}$ \st{$]$} +\end{center} +and get $_{bs}\oplus \textit{rs}$ instead, without +fusing the bits $\textit{bs}$ inside to every element +of $\textit{rs}$. +This idea can be realized by making the following +changes to the $\simp$-function: +\begin{center} + \begin{tabular}{@{}lcl@{}} + + $\textit{simp} \; (_{\textit{bs}}(a_1 \cdot a_2))$ & $\dn$ & $ (\textit{simp} \; a_1, \textit{simp} \; a_2) \; \textit{match} $ \\ + &&$\quad\textit{case} \; (\ZERO, \_) \Rightarrow \ZERO$ \\ + &&$\quad\textit{case} \; (\_, \ZERO) \Rightarrow \ZERO$ \\ + &&$\quad\textit{case} \; (\ONE, a_2') \Rightarrow \textit{fuse} \; bs \; a_2'$ \\ + &&$\quad\textit{case} \; (a_1', \ONE) \Rightarrow \textit{fuse} \; bs \; a_1'$ \\ + &&$\quad\textit{case} \; (a_1', a_2') \Rightarrow _{\textit{bs}}(a_1' \cdot a_2')$ \\ + + $\textit{simp} \; (bs_\oplus as)$ & $\dn$ & $\textit{distinct}( \textit{flatten} ( \textit{map simp as})) \; \textit{match} $ \\ + &&$\quad\textit{case} \; [] \Rightarrow \ZERO$ \\ + &&$\quad\textit{case} \; a :: [] \Rightarrow \textit{fuse bs a}$ \\ + &&$\quad\textit{case} \; as' \Rightarrow \textit{ALTS}\;bs\;as'$\\ + + $\textit{simp} \; a$ & $\dn$ & $\textit{a} \qquad \textit{otherwise}$ +\end{tabular} +\end{center} + +\noindent + \subsection{Properties of the Function $\simp$} We have proved in Isabelle quite a few properties @@ -1320,9 +1354,14 @@ To start, we need a bit of auxiliary notations, which is quite basic and is only written here for clarity. -$\textit{sub}(r_1 \cdot r_2) \dn \textit{sub}(r_1) \cup \textit{sub}(r_2) \cup \{r\}$\\ + +$\textit{sub}(r)$ computes the set of the +sub-regular expression of $r$: +\begin{center} +$\textit{sub}(\ONE) \dn \{\ONE\}$\\ +$\textit{sub}(r_1 \cdot r_2) \dn \textit{sub}(r_1) \cup \textit{sub}(r_2) \cup \{r_1 \cdot r_2\}$\\ $\textit{sub}(r_1 + r_2) \dn \textit{sub}(r_1) \cup \textit{sub}(r_2) \cup \{r_1+r_2\}$\\ - +\end{center} $\textit{good}(r) \dn r \neq \ZERO \land \\ \forall r' \in \textit{sub}(r), \textit{if} \; r' = _{bs_1}\oplus(rs_1), \; \textit{then} \nexists r'' \in \textit{rs}_1 \; s.t.\;